
Distr ibuted Authentication in Kerberos Using Public Key Cryptography

Marvin A. Sirbu John Chung-I Chuang
sirbu@cmu.edu chuang+@cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

In this work we describe a method for fully distributed
authentication using public key cryptography within the
Kerberos ticket framework. By distributing most of the
authentication workload away from the trusted
intermediary and to the communicating parties,
significant enhancements to security and scalability can
be achieved as compared to Kerberos V5. Privacy of
Kerberos clients is also enhanced. A working
implementation of this extended protocol has been
developed, and a migration plan is proposed for a
transition from traditional to public key based Kerberos.

1. Motivation

The scalability of network security infrastructures is
becoming a growing concern as the explosive growth of
the Internet continues unabated. The number of new users
and applications requiring authentication will continue to
increase at a rapid rate for the foreseeable future. The
proliferation of web-based commerce, for example, will
add to the network tens of millions of daily transactions
between large numbers of geographically distributed
merchants and consumers. Authentication schemes are
needed which can scale to easily handle millions of
principals within a single realm of trust, such as all the
customers of a major bank.

As Neuman et al. have noted [11] the traditional
Kerberos presents an attractive security target in the form
of the KDC which maintains a shared symmetric key with
every principal in the realm. In the event of a KDC
compromise, all the symmetric keys will be divulged to
the attacker and will have to be revoked. Recovering from
such a compromise requires the re-establishment of new
shared keys with all principals in the realm. Such a
recovery is very costly in terms of time, effort and
financial resources.

In this paper, we attempt to address both of these
concerns through the integration of public key
cryptography with traditional Kerberos authentication.

1.1. The role of trusted intermediaries in
authentication

Public key based systems rely on Certificate
Authorities as trusted intermediaries when authenticating
clients and servers. Key Distribution Centers in Kerberos
are another form of trusted intermediary. Scalability of
the trusted intermediary is a challenge in either system. If
the challenge is not met, users can experience significant
delays in authentication, or be forced to accept an increased
risk of fraudulent credentials.

In the Kerberos scheme, the KDC issues to clients a
relatively short lived credential (a Ticket Granting Ticket-
TGT) which must then be presented to a centralized Ticket
Granting Service (TGS) to obtain a session ticket for a
particular server. The KDC is burdened by the need to
constantly renew these short-lived TGT's, and the TGS
must be involved every time a client wishes to establish
contact with a new server. Typically, the short lifetime of
a TGT provides the only protection against revoked
credentials; a TGS replica will not be informed when the
KDC revokes a user's privileges.

In a public key scheme, a Certificate Authority (CA)
issues a relatively long lived credential -- a public key
certificate. When both clients and servers have such
certificates they can authenticate to each other without
further reference to a CA. However, precisely because
these certificates are long-lived, some method is required
to inform servers of revoked certificates. This can be done
by requiring servers to check a certificate's current validity
with the CA on each use of a certificate, or by distributing
Certificate Revocation Lists (CRL's) to all servers
periodically.

Thus, the factors controlling the burden on centralized
services are different in the two cases. In Kerberos, the
burden on the KDC/TGS is determined by the number of
times clients want to authenticate to servers. In a Public
Key scheme, it is determined by the frequency with which
clients or servers must be in touch with a CA to learn of
revoked certificates.

Partitioning of the principals into realms served by
different servers is one method of improving scalability.
This must be coupled with a means for cross-realm

authentication. In the Kerberos scheme, each realm has
its own well-defined administrative boundary, and more
importantly, a manageable number of principals. A
Kerberos KDC and/or TGS may be replicated in each
realm to handle all authentication requests within the
realm, though one instance of the KDC must be declared
the master for updates of shared secrets. Cross-realm
authentication is made possible through the bi-lateral
establishment of inter-realm keys by the realm
administrators. This is accomplished by registering the
Ticket Granting Server of one realm as a principal in the
other. Even though Kerberos realms can, in theory, be
organized hierarchically, bi-lateral agreements must be
established a priori and few Kerberos realms are cross
registered in practice. Nevertheless an organization, such
as a bank with millions of customers, can handle the issue
of scalability by dividing its customer base into separate
realms and setting up cross-realm authentication among
them.

Similarly, a chain of certificates allows a principal to
verify a certificate issued by a different CA than the
principal's own.

In practice companies such as Verisign have already
demonstrated the ability to handle from a single CA the
burden of hundreds of thousands of certificates. By
incorporating public key cryptography into the Kerberos
framework, it should be possible to establish a Kerberos
realm with millions of principals, with no need for cross-
realm authentication.

There have been numerous recent proposals to
incorporate public key cryptography into Kerberos [3]
[11]. These proposals focus on various aspects of
Kerberos, such as security and portability. The centralized
KDC remains in all of the proposals. The present work,
extended and generalized from the NetBill security and
transaction protocol [2], seeks to address both the
scalability and security concerns by bypassing the
centralized KDC altogether. This proposed extension to
Kerberos shall be referred to as "Public key based Kerberos
for Distributed Authentication" or "PKDA" in the
remainder of this paper.

Neuman et al. propose to solve the security problem
by calling for the use of public key cryptography in the
initial authentication between the clients and the KDC.
By registering only the public keys with the KDC, the
clients will not have to re-generate a new shared secret in
the event of a KDC compromise. Only the application
servers, which will continue to use conventional
cryptography, will have to re-establish new symmetric
keys. Limiting the use of public key cryptography to the
initial authentication is justified on performance grounds.
Once key-exchange is achieved during initial
authentication, all subsequent message exchanges,
including those to secure server tickets from a TGS, can
be accomplished using the computationally more efficient
symmetric key method.

The proposed PKDA extension requires the use of
public key operations each time a service ticket is

required. However, these operations are distributed among
the clients and servers, rather than concentrating them at
the KDC. Additionally, it offers a more complete
solution to the security problem. Fully distributed
authentication between the Kerberos clients and servers
using public key cryptography means that neither the
clients nor the servers will need to maintain symmetric
keys with the KDC. In fact, there is no longer a
centralized KDC to be compromised. Only the CA
remains as the trusted intermediary.

Finally, while Kerberos V5 and its predecessors provide
the means to protect the content of messages, they provide
no protection against traffic analysis, as the identities of
the parties to a communication are typically sent in the
clear during session establishment. With a simple
modification to the message format, it is possible to
preserve the privacy of the client identity at very little
cost.

1.2. PKDA versus SSL

Version 3.0 of the Secure Sockets Layer protocol [5]
provides public key based services for mutual
authentication, and key exchange for privacy. It has been
rapidly adopted by many firms for use in conjunction with
HTTP, as well as for other services such as telnet.

Like the PKDA proposal, SSL 3.0 allows a client and
server who are each in possession of a public key
certificate signed by a trusted CA to mutually authenticate
and establish a shared symmetric session key. Moreover,
SSL specifications cover the use of multiple public key
algorithms (DSA, RSA) and multiple session key
algorithms (DES, RC4) as determined by the parties.
While Kerberos provides a means of specifying multiple
encryption methods, most implementations support only
DES.

We see four fundamental advantages to PKDA vis-à-vis
SSL 3.0:

1. SSL 3.0 is a transport layer protocol which can only
be used in conjunction with TCP-based client-server
communications. Kerberos, on the other hand, sits at
the application layer and can be used with either UDP
or TCP. However, this transport layer independence
comes at a price: it is more work to integrate
Kerberos with each application.

2. In order to avoid the computational burden of public
key operations at the beginning of every TCP
connection, SSL 3.0 permits the reuse of session
keys. To make use of this facility, however, requires
the server to keep a cache of all recently issued
session keys and an associated serial number.
Kerberos (and PKDA) relieves servers from
maintaining such state information, by conveying
the session key in an encrypted ticket readable only
by the server. Moreover, agreeing to use cached
session keys in SSL requires the exchange of several
packets at the beginning of each TCP connection.

No such exchange is required to re-use a previously
issued Kerberos ticket.

3. Kerberos tickets can be used to encrypt messages
which transit one or more servers on the way to their
ultimate destination. This is not possible with SSL
3.0.

4. The Kerberos proxy mechanism provides a convenient
way of conveying rights limitations along with
authentication. Restricted rights could only be
implemented in SSL via certificate extensions which
have not been specified. Rights delegation in PKDA
will be discussed in Section 2.5.

Despite these advantages for PKDA, the widespread
support for SSL in the marketplace makes it a formidable
alternative.

2. The PKDA Protocol

In the RFC 1510 protocol specification for Kerberos
V5 [7], a normally executed (error-free) authentication
procedure begins with the exchange of the following five
messages:

1. C --> AS: AS_REQ
2. AS --> C: AS_REP
3. C --> TGS: TGS_REQ
4. TGS --> C: TGS_REP
5. C --> S: AP_REQ

where

AS_REQ: Authentication Service Request
AS_REP: Authentication Service Response
TGS_REQ: Ticket Granting Service Request
TGS_REP: Ticket Granting Service Response
AP_REQ: Application Service Request

The client first obtains a ticket granting ticket (TGT)
from the Authentication Service (AS) of the KDC, with
whom a shared symmetric key has previously been
established. Using this TGT, the client communicates
with the Ticket Granting Server (TGS) to secure a shared
session key between itself and the server with which it
wishes to communicate. The client can then proceed to
request the desired service from the application server in
step 5. This sequence of message exchanges is preserved
in the proposed extension by Neuman et al. [11]. The
extension departs from conventional Kerberos only in the
first two steps, where the messages are encrypted and
signed using the public key pairs of the client and the
KDC. The client will continue to receive and use
conventional TGT's and service tickets.

In the proposed PKDA protocol, the Kerberos KDC is
bypassed altogether. Communicating directly with the
application server, the client will be able to request the
server's certificate and establish a session ticket without

necessarily contacting a centralized intermediary. A
PKDA-enabled server will be able to service certificate
requests as well as issue session tickets in the capacity of
the TGS, albeit only for sessions with itself:

1. C --> S: SCERT_REQ
2. S --> C: SCERT_REP
3. C --> S: PKTGS_REQ
4. S --> C: PKTGS_REP
5. C --> S: AP_REQ

where

SCERT_REQ: Request for Server's Certificate
SCERT_REP: Provision of Server's Certificate
PKTGS_REQ: Public key based TGS Request
PKTGS_REP: Public key based TGS Response
AP_REQ: Application Service Request

It is evident from the above that the PKDA protocol
can be executed in a completely distributed fashion. Yet
the protocol is not computationally more demanding than
other public key based proposals such as SSL. The first
two steps require no cryptographic operations, since the
information being transferred is all public information and
the integrity of the certificate is verified in subsequent
steps. In the case where the client has certificate caching
capabilities, these two steps can even be bypassed for
repeated authentication. Again, public key cryptography
is limited to initial authentication only, which occurs in
step 3 in this protocol. All subsequent steps employ the
faster symmetric cryptography. While the client generates
and sends a public key based TGS request in step 3, it
receives a conventional service ticket in step 4 and normal
operations proceed from step 5 onwards.

The PKDA protocol extension to Kerberos V5 is built
upon existing public key infrastructure standards such as
PKCS [12] and X.509 [6]. Detailed protocol
specifications in ASN.1 format can be found in [13]. A
sample specification of the protocol, based upon the
Interface Specification Language [1], can also be found in
[8].

2.1. Notation

The following notation will be used to denote the
parties, operations, and key variables involved in the
message exchanges described in the rest of the paper:

C Client
S Server
G Rights Grantee (Proxy)
CA Certificate Authority
Krand random one-time symmetric key
Kc,s symmetric key shared by C and S
Ps public key of S
Pc

-1 private key of C
{M}K message encrypted using key K

{M}P s message encrypted using S's public key
{M}P c

-1 message signed using C's private key
Ts# time-stamps
Tauth initial authentication time
Tc,s ticket for session between S and C

2.2. Obtaining the server's public key certificate

The client initiates the authentication exchange by
requesting from the server the public key certificate of the
application service. This is necessary since the
construction of the subsequent ticket request message
(PKTGS_REQ) requires the encryption of data using the
server's public key. The SCERT_REQ message simply
consists of the identity (principal name and realm) of the
server:

SCERT_REQ: S

This and all subsequent PKDA authentication messages
are directed to the application service's assigned port.

In response to the request, the server returns its
certificate or certificate-chain, which can be transmitted via
an unprotected channel:

SCERT_REP: s-cert

If the client has certificate caching capabilities, the
above two steps may be bypassed for subsequent
authentication attempts with a server.

The client is responsible for verifying that the
certificate has been signed by a trusted CA or chain of
CA's, and that it has not been subsequently revoked. This
can be accomplished either by checking against a
regularly-updated copy of the Certificate Revocation List
(CRL), or by performing a query to the Certificate
Authority (CA). Alternatively, the client may choose to
secure the server's certificate directly from the CA. In
either case, the client must have established secure
communications with the CA, for example using PKDA
with the CA's well known public key. The operational
details of the CA/CRL infrastructure are beyond the
scope of this paper.

2.3. Client/server authentication using public key
cryptography

2.3.1. Public key based TGS request. Once the client
has obtained and verified the server's public key certificate,
it can proceed to generate the service ticket request. The
message contains similar information to that in a
conventional ticket request, but it is sent to the server
directly, rather than to the KDC as in traditional Kerberos.
This message is digitally signed with the client's private
key, and encrypted with the server's public key.
Therefore, the server and only the server can determine and
authenticate the identity of the client. Conversely, the
client is assured of the identity of the server because only

the server with the matching private key can decrypt the
PKTGS_REQ and construct a valid response.

The critical fields of the PKTGS_REQ message are as
follows:

PKTGS_REQ: S, {Tauth, Krand, auth-data}Ps

where

auth-data = C, c-cert, {Krand, S, Ps, Tauth}Pc
-1

The server's identity, S, is the only field transmitted in the
clear. All other fields are encrypted for either security or
privacy reasons. The integrity of the field S is guaranteed
by its inclusion in the authorization field, which is
digitally signed. The server identity must be in the clear
so that the listener process receiving the PKTGS_REQ
message knows for which principal the message is
intended in the event that multiple principals are served
from the same server port.

The remainder of the message is encrypted using the
public key of the server, Ps. (In practice this means
encrypting the message with a symmetric key which in
turn is encrypted using Ps.) There are three distinct
elements in this encrypted portion, namely the
authentication time Tauth, the random key K rand, and the
digitally signed authorization field 'auth-data'.

The field Tauth indicates the time of the initial
authentication request, which is the time at which the
current request message is being generated. Since the
client generates this timestamp, the server will have to
verify the time elapsed between this timestamp and when
it receives this message. By refusing to service a ticket
request that occurred 'too far' in the past, i.e., beyond the
acceptable clock skew, the server can prevent replay
attacks. This field should not be left in the clear since any
observable lag would indicate to a potential attacker that
the client may have a clock synchronization problem
which can be exploited.

The field K rand is a random one-time key generated by
the client. In traditional Kerberos, this random key is
generated by the KDC for the client to use in
communicating with the TGS in the TGT_REQ/
TGT_REP exchange. The client now generates this
random key. This key is not the actual session key, but
is rather used by the server to encrypt the response, which
contains the service ticket and the session key itself.

The generation of this random key does impose a
burden on the client to have an appropriate random
number generator. However, the client does have access
to the user's private key, which can be used along with
other available sources of entropy to seed a quality pseudo-
random number generator. It should be noted, in
comparison, that traditional Kerberos requires the
generation by the client of a nonce, but the nonce can be
based either on a random number generator or on
timestamps. The inclusion of this one-time random key
in the message eliminates the need for a separate nonce.

The third and final element, 'auth-data', is in essence an
authorization field digitally signed with the client's private
key. This field contains the information necessary to
authenticate the client's identity and to check the integrity
of the message.

The construction of 'auth-data' deserves special
attention. We choose to represent the 'auth-data' field
using the 'SignedData' construct as specified in the PKCS
Cryptographic Message Syntax Standard (PKCS #7) [12].
The 'SignedData' container includes not only a placeholder
for the content to be signed, but also placeholders for the
client's identity C, and the client's certificate 'c-cert'
(among other supporting fields needed for public key
operations). There is therefore no need to explicitly
duplicate these fields elsewhere in the request message.

The client's identity and certificate fields, while part of
the 'auth-data' construct, are not themselves 'signed' per se.
The fields actually subject to the signature process are the
random key K rand, the server's identity S, the server's
public key Ps, and the timestamp Tauth. The random key
Krand is signed for authenticity, while the server identity is
included to prevent replay attacks first addressed by
Denning-Sacco [4]. The server's public key (or any other
identifier which uniquely ties the server's certificate to the
key used in encrypting this PKTGS_REQ message) will
serve to avert "man-in-the-middle" attacks. An alternate
candidate for this field may be a combination of
'Certificate.issuer' and the issuer specific
'Certificate.serialNumber' fields in a X.509 certificate.
The server, S, by comparing this unique identifier with
the same field found in its own certificate copy, will detect
any attempt by a previous server S* to reuse the client's
signed auth-data in an attempt to obtain a ticket in C's
name for S. Finally, the timestamp Tauth is included to
prevent replay attacks.

Note that the client's identity and its certificate can
only be found within the encrypted portion of the
message. The same is true for the PKTGS_REP message
to be described in the next section. This is in contrast to
the conventional TGS_REQ and TGS_REP messages,
where the client's identity is transmitted in cleartext. The
impact of this change on client privacy will be revisited in
Section 2.3.2.

Upon receipt of the PKTGS_REQ message, the server
decrypts the message using its private key. It then
retrieves the client's public key, found in the client's
certificate, c-cert. Using this key, the client's signature
(and authenticity of the request) can be verified. The
server may also want to check for any revoked client
certificates.

2.3.2. Response to a PKTGS request. The server, in
its ticket granting service capacity, responds with a
PKTGS_REP message very similar to the TGS_REP
message of traditional Kerberos:

PKTGS_REP: Tc,s, {C, S, Kc,s, Tauth}K rand

This message, like the TGS_REP, consists of the service
ticket Tc,s and an encrypted part. The ticket is just a
conventional ticket, identical to that issued by the
traditional TGS:

Tc,s = S, {Kc,s, C, Tauth}K s

Here, the ticket is encrypted using Ks, a symmetric key
known only to the server. This prevents the client from
modifying the ticket. In traditional Kerberos, the
symmetric key is shared between the server and the TGS.
Of course, the server and the TGS are the same entity in
PKDA. This reinforces the fact that the server can only
issue session tickets for clients to communicate with
itself, and not with any other application server. This is
in contrast to traditional Kerberos, where the centralized
TGS can issue session tickets for any application service
that has registered itself with the TGS.

Moving to the encrypted portion of the message, it can
be noted that the client identity, C, is no longer
transmitted in plaintext, as is the case in traditional
Kerberos. This modification echoes that of the
PKTGS_REQ change described in the previous section.
The purpose of this pair of changes is to offer a greater
degree of protection of client privacy. While this
approach does not prevent a network observer from
capturing IP address information, it does prevent the
tracking of session requests between identifiable client and
server pairs, as is the case with Kerberos V5. There are
many ways to reduce the value of any captured IP address
information. Corporate firewalls often perform IP address
remapping, thus making IP addresses less useful to an
observer outside the firewall. (Note, however, that in this
case, if the optional 'caddr' field is set in the
PKTGS_REQ message, it should be set to the IP address
of the firewall, not of the client.) Dial-up IP service
providers dynamically assign IP addresses to customers.
Finally, the client may be on a multi-user host. In the
event that multiple authentication requests originate from
a single IP address, the matching of the PKTGS_REP to
the correct PKTGS_REQ can still be unambiguously
achieved by examining the originating port address.
However, a network observer would not have direct access
to the client's identity.

The session key Kc,s is also included in the encrypted
response. The client will use this session key to
construct the authenticator exactly as in traditional
Kerberos.

It is worth noting that the encryption key used in
PKTGS_REP is the random key K rand, extracted from the
PKTGS_REQ message. This key serves the same
function as the session key extracted from the TGT in
traditional Kerberos. Additionally, since K rand is a one-
time key generated by the client, it can and does serve a
second role as the nonce.

2.4. Using the service ticket

The service ticket received by the client is simply a
conventional service ticket. Therefore, the client generates
the application service request as before:

AP_REQ: Tc,s, {C, Ts1}Kc,s

All operations from this point on can proceed per normal
Kerberos operations. Direct authentication between client
and server is thus accomplished.

2.5. Rights delegation in PKDA

Kerberos V5 supports rights delegation via the use of
proxiable and forwardable tickets. Neuman showed that it
is straightforward to implement proxies in encryption-
based authentication mechanisms based on either public
key or conventional cryptography [9].

Under the proposed PKDA scheme, it is possible to
achieve rights delegation even in the absence of a
centralized KDC. As long as the destination server is
PKDA-enabled and is configured to provide proxiable
tickets, the same delegation mechanism used in Kerberos
can be applied here.

If the client C wants G (the rights grantee) to act as its
proxy in communicating with the destination server S, it
will first establish a session with G and then initiate the
following exchange:

1. C --> S: SCERT_REQ
2. S --> C: SCERT_REP
3. C --> S: PKTGS_REQ

(with PROXIABLE flag set)
4. S --> C: PKTGS_REP

(returns proxiable ticket)
5. C --> G: KRB_CRED
6. G --> S: AP_REQ

The client contacts the application server directly to
request a proxiable ticket with the address of G included in
the ticket. The full PKTGS_REQ message format, like
the AS_REQ and TGS_REQ message formats, allows the
client to set the PROXIABLE flag and specify the
addresses from which the ticket is usable [13]. The
PKDA-enabled server simply responds with a proxiable
ticket. The client will then construct an authenticator
which the grantee will present to the application server.
The authenticator includes a proxy key in the 'subkey'
field, and this key will be used as the actual session key
between G and S. The client can also set the desired
proxy restrictions in the 'authorization-data' field within
the authenticator.

Using the KRB_CRED construct in traditional
Kerberos, the client will forward the proxiable ticket, the
authenticator and the proxy key to the grantee in step 5.
Since C and G have already established a secure session
with each other, the proxy key and other encrypted

information in KRB_CRED will not be divulged to an
eavesdropper. Furnished with this 3-tuple of ticket,
authenticator, and proxy key, the grantee can then proceed
to communicate with the application server on the client's
behalf as per traditional Kerberos.

There may be a scenario where the client cannot
communicate directly with the application server. For
example S may be located behind a firewall and can only
be accessed via the gateway G. In such a case G can
simply serve as a relay for the messages exchanged in
steps 1-4. Since the PKDA protocol has been designed to
be immune to a "man-in-the-middle" attack, there is
nothing that G can do to compromise the protocol
(beyond denial of service).

3. Migration plan - obtaining service tickets
from a PKDA-enabled TGS

If the server with whom the client wishes to
communicate is not capable of handling service ticket
requests using the PKDA protocol, the client will have to
resort to sending the request to a centralized PKDA-
enabled TGS. We should realistically expect that a hybrid
of PKDA-enabled and non-PKDA-enabled application
servers will be in co-existence during a system-wide
transition to PKDA. Therefore the existence of these
interim centralized TGS's as PKDA-servers of last resort
is essential to preserving the functionality and integrity of
the Kerberos Authentication scheme during the transition.

When the application server fails to respond to a
certificate request (SCERT_REQ) with a matching
SCERT_REP, the client can assume that the server is not
PKDA-enabled. Then the client will have to
communicate with a PKDA-enabled TGS to get a
traditional TGT and the subsequent service ticket for the
application server. This is accomplished by the following
seven step exchange:

1. C --> TGS: SCERT_REQ
2. TGS --> C: SCERT_REP
3. C --> TGS: PKTGS_REQ
4. TGS --> C: PKTGS_REP
5. C --> TGS: TGS_REQ
6. TGS --> C: TGS_REP
7. C --> S: AP_REQ

It is worth noting that the client will be
communicating with the TGS for the first six steps of the
exchange. Therefore, the performance bottleneck
associated with a centralized KDC/TGS remains.
However, the centralized database of symmetric keys will
be much smaller in size, since the clients will now
authenticate themselves to the TGS using public keys
instead of symmetric keys. Shared symmetric keys
between the KDC and the application servers are still
required.

The essential features of this message exchange are as
follows:

SCERT_REQ: TGS

SCERT_REP: tgs-cert

PKTGS_REQ: TGS, {Tauth, Krand, auth-data}Ptgs

PKTGS_REP: {C, TGS, Kc,tgs, Tauth}K rand, TGT

TGS_REQ: C, S, Ts1, TGT, {authenticator}Kc,tgs

TGS_REP: C, {K c,s, S, Ts1}Kc,tgs, Tc,s

AP_REQ: Tc,s, {C, Ts2}Kc,s

where

auth-data = C, c-cert, {Krand, TGS, Ptgs, Tauth}Pc
-1

TGT = Tc,tgs

= TGS, {Kc,tgs, C, Tauth}K tgs

Tc,s = S, {Kc,s, C, Tauth}K s,tgs

The first four steps of the message exchange are
identical to those of the PKDA protocol as described in
Section 2, and so the discussion will not be repeated here.
The only exception is that the server being contacted in
this case is the TGS (which has to be PKDA-enabled.)
Therefore, all instances of and references to 'S' are replaced
by 'TGS'. In effect, the client is issuing a PKTGS_REQ
to the TGS requesting a "service ticket" in the form of a
traditional TGT. Then, steps 5-7 are really identical to
steps 3-5 of the traditional Kerberos exchange, where the
client uses the TGT to request an actual service ticket.
Since this traditional TGT can be reused, only steps 5-7
need to be repeated for subsequent authentication with
other non-PKDA-enabled servers.

It is obvious from this message format, however, that
the protection of the client's identity in steps 3 and 4 of
this exchange is betrayed by the traditional Kerberos
exchange in steps 5 and 6. Therefore, the privacy
enhancements of PKDA cannot be realized unless clients
contact servers directly using the PKDA protocol.

An alternate approach to transition might have each
server host running a localized PKDA-enabled TGS at a
well-known port. This "localized TGS" would have
certificates for each server principal running on that host
and share a symmetric key with each service. With this
setup, steps 1-4 of the PKDA protocol could be directed to
this well-known port instead of the assigned port of the
specific application service. The session ticket obtained
from this "localized TGS" can then be used to contact an
unmodified traditional Kerberized application service
running at the host. We do not advocate this approach,

however, as it is likely to further delay the complete
migration to PKDA-enabled applications.

4. Progress

The fundamental correctness of the PKDA protocol has
been verified using Convince, a formal verification tool
based on belief logic. This work is reported by Lichota et
al. [8]. A working implementation of PKDA has been
developed for the NetBill electronic payment project at
CMU [14]. NetBill consumers and merchants authenticate
with each other, as well as with the NetBill server, in a
fully distributed manner using the handshake described
above. NetBill uses DCE RPC's between clients and
servers and steps 1-4 of the PKDA protocol are additional
RPC's that must be supported on any server's interface. A
pre-processor to the standard DCE IDL compiler is used to
automatically add these two RPC's to every interface. An
Internet Draft [13] detailing the PKDA protocol, in its full
specification, has been submitted to the IETF. This
proposal is compatible with, and can be integrated with
other current proposals (such as [11]) to bring public key
cryptography into Kerberos.

5. Conclusion

An extension to the Kerberos authentication framework
has been described. This extension employs public key
cryptography to facilitate initial authentication directly
between Kerberos servers and clients. By distributing the
authentication workload from the centralized KDC's to the
individual principals on the network, potential
communications and/or processing bottlenecks at the
KDC's can be avoided. This significantly enhances the
scalability of the Kerberos framework in the rapidly
growing Internet environment. By eliminating the need
for a KDC and its centralized database of symmetric keys,
the catastrophic consequences of a KDC compromise,
including the subsequent key-recovery effort, can be
avoided.

It has also been shown that the privacy of the client's
identity in a Kerberos authentication can be protected. By
moving the client identity fields from unencrypted to
encrypted portions of the messages, potential
eavesdroppers will be prevented from extracting such
information.

The feasibility and robustness of the PKDA protocol
has been successfully demonstrated via a formal
verification process and the development of a working
implementation. A migration plan has been proposed for
a transition from traditional to public key based Kerberos.

Acknowledgments

The authors would like to acknowledge Ben Cox and J.
Doug Tygar for their contributions to the design and
implementation of PKDA, and Cliff Neuman and the

anonymous referees for their helpful comments on this
paper.

This work is sponsored by the Air Force Materiel
Command, under Advanced Research Projects Agency
Contract No. F19628-95-C-0018, "Electronic Commerce:
The NetBill Project. " Additional support comes from the
National Science Foundation under Cooperative
Agreement No. IRI-9411299. The views and conclusions
in this paper remain those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Advanced Research Projects
Agency, the National Science Foundation, or the U.S.
Government.

Kerberos is a trademark of the Massachusetts Institute
of Technology; NetBill is a trademark of Carnegie Mellon
University.

References

[1] S. Brackin. An Interface Specification Language for
Automatically Analyzing Cryptographic Protocols,
Internet Society Symposium on Network and
Distributed System Security, February 1997.

[2] B. Cox, J.D. Tygar, M. Sirbu. NetBill Security and
Transaction Protocol. In Proceedings of the USENIX
Workshop on Electronic Commerce, July 1995.

[3] D. Davis. Kerberos Plus RSA for World Wide Web
Security. In Proceedings of the USENIX Workshop on
Electronic Commerce, July 1995.

[4] D.E. Denning, G.M. Sacco. Timestamps in Key
Distribution Protocols. Communication of the ACM,
24(8):533-536, August 1981.

[5] A.O. Freier, P. Karlton, P.C. Kocher. Secure Socket
Layer 3.0. Internet Draft, March 1996. (ftp://ietf.org/
internet-drafts/draft-freier-ssl-version3-01.txt)

[6] International Telegraph and Telephone Consultative
Committee (CCITT). Recommendation X.509: The
Directory Authentication Framework. 1988.

[7] J. Kohl, C. Neuman. The Kerberos Authentication
Service (v5). Internet RFC 1510, September 1993.

[8] R. Lichota, G. Hammonds, S. Brackin. Verifying
Cryptographic Protocols for Electronic Commerce.
2nd USENIX Workshop on Electronic Commerce,
November 1996.

[9] B.C. Neuman. Proxy-Based Authorization and
Accounting for Distributed Systems. In Proceedings
of the 13th International Conference on Distributed
Computing Systems, May 1993.

[10] B.C. Neuman, T. Ts'o. Kerberos: An Authentication
Service for Computer Networks. IEEE
Communications, 32(9):33-38, September 1994.

[11] B.C. Neuman, B. Tung, J. Wray, J. Trostle. Public Key
Cryptography for Initial Authentication in Kerberos.
Internet Draft, October 1996. (ftp://ietf.org/internet-
drafts/draft-ietf-cat-kerberos-pk-init-02.txt)

[12] RSA Laboratories. PKCS #7: Cryptographic Message
Syntax Standard. Version 1.5, November 1993.

[13] M. Sirbu, J.C. Chuang. Public key Based Ticket
Granting Service in Kerberos. Internet Draft, May
1996. (ftp://ietf.org/internet-drafts/draft-sirbu-kerb-
ext-00.txt)

[14] M. Sirbu, J.D. Tygar. NetBill: An Internet Commerce
System Optimized for Network Delivered Services.
IEEE CompCon Conference, March 1995.

