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Abstract— We consider a distributed average consensus al-
gorithm over a network in which communication links fail
with independent probability. Convergence in such stochastic
networks is defined in terms of the variance of deviation from
average. We characterize the decay factor of the variance in
terms of the eigenvalues of a Lyapunov-like matrix recursion.
We give expressions for the decay factors in the asymptotic
limits of small failure probability and large networks. We
also present a simulation-free method for computing the decay
factor for any particular graph instance and use this method to
study the behavior of various network examples as a function
of link failure probability.

I. INTRODUCTION

We consider the distributed average consensus problem
over networks with stochastic communication failures. Each
node has some initial value and the goal is for all nodes
to reach consensus at the average of these initial values
using only communication between neighbors in the net-
work graph. Distributed average consensus is an important
problem that has been studied in contexts such as vehicle
formation [1], [2], [3], aggregation in sensor networks and
peer-to-peer networks [4], and even load balancing in parallel
processors [5], [6].

Distributed consensus has been widely investigated in sta-
tic networks, where it has been shown that the convergence
rate of a consensus algorithm depends on the second largest
eigenvalue of the Laplacian of the network graph [7], [8].
However the assumption that a network topology is static, i.e.
that communication links are fixed and reliable, is not always
realistic. In sensor networks and mobile ad-hoc networks,
for example, messages can be lost due to interference, and
in wired networks, messages may be dropped due to buffer
overflow. In these scenarios, it is desirable to quantify the
effects these communication failures have upon the perfor-
mance of the protocol.

Previous work on dynamic networks has focused on
the identification of convergence conditions for distributed
consensus algorithms. Conditions have been derived for
dynamic or switching topologies where the network topology
evolves over time [1], [2], [3]. It has also been shown
that in a network with a time-varying topology, as long
as the union of all infinitely occurring graph instances is
connected, there is a distributed consensus algorithm that
will eventually converge [9]. Work has also been done to
establish convergence conditions for networks with stochastic
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communication failures. Hatano and Mesbahi [10] identify
sufficient conditions for convergence in completely connec-
ted graphs, where each link has an equal probability of
failure. The convergence condition depends on the second
largest eigenvalue of the Laplacian of the mean network
graph. The recent work by Kar and Moura [11] extends
this model to include arbitrary topologies where links may
fail with non-uniform probabilities and again establishes a
sufficient condition based on the mean Laplacian.

As already discussed, although there has been work that
gives conditions for convergence with communication failu-
res, to our knowledge, there has been no work to date that has
quantified the effects of stochastic communication failures
on the convergence rate of the distributed average consensus
algorithm. We consider a network with an arbitrary, fixed
underlying topology but where each edge fails with indepen-
dent probability. In such stochastic networks, convergence is
defined in terms of the variance of deviation from average.
We characterize the decay factor of this variance in terms of
the eigenvalues of a Lyapunov-like matrix recursion. We give
expressions for the decay factors in the asymptotic limits of
small failure probability and large networks. We also present
a simulation-free method for computing the decay factor for
any particular network instance and use this method to study
the behavior of various network examples as a function of
link failure probability.

The remainder of this paper is organized as follows. In
Section II, we define our system model and distributed
consensus algorithm. Section III gives our main convergence
results. Section IV presents computational results on decay
factors for various network topologies. Finally, we conclude
in Section V.

II. PROBLEM FORMULATION

We model the network as an undirected graph G = (V,E)
where V is the set of nodes, with |V | = n, and E is the set of
communication links between them. In this work, we assume
that each link (i, j) ∈ E has an independent probability p(i,j)

of failing in each round. If a link fails, no communication
takes place across the link in either direction in that round.
A link that does not fail in round k is active. The neighbor
set of node i, denoted by Ni(k) for round k, is the set of
nodes with which node i has active communication links in
round k.

We consider the following simple distributed consensus
algorithm. Every node i has an initial value xi(0), and the
average of all values in the system is xave = 1

n

∑n
i=1 xi(0).

The objective of the algorithm is to converge to an equilibri-
um where xi(k) = xave for all i ∈ V . In each round, each
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node sends a fraction β of its current value to each neighbor
with which it has an active communication link. Each node’s
value is updated according to the following rule.

xi(k + 1) = β
∑

j∈Ni(k)

xj(k) + (1− β|Ni(k)|)xi(k),

where β is the parameter that defines an instance of the
algorithm. This algorithm can be implemented without any
a priori knowledge of link failures.

In a network with no communication failures, this al-
gorithm can be expressed as an n by n matrix, A :=
I − βL, where L is the Laplacian matrix1 of the graph G.
The evolution of the system is described by the following
recursion equation.

x(k + 1) = Ax(k) (1)

It is a well known result that for 0 < β ≤ 1
dmax

(with
equality only if the graph is not bipartite), where dmax is the
maximum degree of G, the system converges to equilibrium
at xave if and only if the magnitude of the second largest
eigenvalue of A, λ2(A), is strictly less than 1 [8]. The
convergence rate of the system can be computed from λ2(A).

(1) can be extended to include stochastic communication
failures as follows. Let b(i,j) be the vector with the i’th entry
equal to 1, the j’th entry equal to −1 and all other entries
equal to 0. B(i,j) is defined as

B(i,j) := β b(i,j)b
∗
(i,j). (2)

The system can then be described by the following recursion
equation.

x(k + 1) =



A +
∑

(i,j)∈E

δ(i,j)(k)B(i,j)



 x(k) (3)

where δ(i,j) is a Bernoulli random variable with

δ(i,j)(k) :=
{

1 with probability p(i,j)

0 with probability 1− p(i,j)

When δ(i,j) = 1, the edge (i, j) has failed. One can
interpret (3) as first performing the algorithm on the complete
communication graph, and then simulating the failed edges
by undoing the effects of communication over those edges.
In essence, each B(i,j) matrix returns the values sent across
edge (i, j), yielding the state in which edge (i, j) did not
play a part.

We rewrite (3) in a form that is more convenient for our
analysis using zero mean random variables. Let µ(i,j)(k) :=
δ(i,j)(k)− p(i,j) and observe that they are zero mean.

The dynamics can now be rewritten as

x(k + 1) = Ax(k) +
∑

(i,j)∈E(k)

µ(i,j)(k)B(i,j)x(k) (4)

where Ā := A +
∑

(i,j)∈E p(i,j)B(i,j).

1Let E be the adjacency matrix of a graph G and D be the diagonal
matrix with the diagonal entry in row i equal to the degree of node i. Then
the Laplacian matrix of G is defined as L := D − E .

We measure how far the current state of the system is from
the average of all states using the deviation from average
vector x̃ whose components are

x̃i(k) := xi(k) − 1
n

(x1(k) + . . . + xn(k)) .

The entire vector x̃ can be written as the projection

x̃(k) = P x(k),

with P := (I− 1
n11∗), where 1 is the vector with all entries

of 1.
In this paper, we are primarily interested in characterizing

the convergence rate of x̃ to zero. Since the dynamics of x
and x̃ are stochastic, we use the decay rate of the variance
of total deviation from average E

{
||x̃(k)||2

}
as an indicator

of the rate of convergence.
Problem Statement: Consider a distributed consensus

algorithm with random link failures as modeled by the system
with multiplicative noise (4). Determine the rate at which
the variance of total deviation from average E

{
||x̃(k)||2

}

converges to 0 as k →∞.
The key to addressing this problem is to study the equati-

ons governing the second order statistics of the states of (4).
To this end, we define the autocorrelation matrices of x and
x̃ by

M(k) := E {x(k)x∗(k)} ,

M̃(k) := E {x̃(k)x̃∗(k)} ,

and note that they are related by the projection P

M̃(k) = E {x̃(k)x̃∗(k)} = E {Px(k)x∗(k)P}
= P E {x(k)x∗(k)} P
= P M(k) P.

The variance of the total deviation from average is given by
the trace of M̃ , since

E
{
||x̃(k)||2

}
= E {x̃∗(k) x̃(k)} = tr (E {x̃(k)x̃∗(k)})

= tr
(
M̃(k)

)
.

It is well known that the autocorrelation matrix of the
system (4) with zero-mean multiplicative noise [12] is given
by the following recursion equation

M(k +1) = AM(k)A+
∑

(i,j)∈E

σ2
(i,j)B(i,j)M(k)B(i,j) (5)

where σ2
(i,j) := var(µ(i,j)(k)). This is a discrete-time

Lyapunov-like matrix difference equation. The additional
terms multiplying σ2

(i,j) in (5) makes this a nonstandard
Lyapunov recursion. The matrix M̃(k) satisfies a similar
recursion relation which we derive in the next section and
then study its convergence properties.
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III. CHARACTERIZING CONVERGENCE

In this section, we first derive a recursion equation for M̃ ,
the autocorrelation of E

{
||x̃(k)||2

}
which is the variance

of the total deviation from average. We then characterize
the decay rate of this variance in terms of the eigenvalues
of a Lyapunov-like matrix valued operator. An exact com-
putational procedure for these eigenvalues is given in the
next section, while we give expressions in this section for
the asymptotic cases of small failure probability p and large
network size n.

For simplicity, we assume that all edges have equal failure
of probability, p. Therefore σ2

(i,j) = σ2 = p − p2 for all
(i, j) ∈ E. The convergence results can easily be generalized
to the non-uniform probability failure model.

Lemma 3.1: The matrices M̃(k) (under the uniform pro-
bability assumption) satisfy the recursion

M̃(k + 1) =
(
Ã + pβL

)
M̃(k)

(
Ã + pβL

)

+ σ2
∑

(i,j)∈E

B(i,j)M̃(k)B(i,j), (6)

where Ã := PAP .
Proof:

First note that from the definitions of the matrices B(i,j),
their sum is proportional to the graph’s Laplacian, i.e.∑

(i,j)∈E B(i,j) = βL. Therefore, Ā is simply

Ā = A + p
∑

(i,j)∈E

B(i,j) = A + pβ L

= I − (1− p)β L.

Observe that the following equalities hold for the action of
P on any of the matrices B(i,j)

B(i,j)P = β b(i,j)b
∗
(i,j)(I−

1
n

11∗) = β b(i,j)b
∗
(i,j) = B(i,j),

where the second equality follows from 1∗b(i,j) = 0 for
any edge (i, j). Similarly P B(i,j) = B(i,j).

The second fact needed is that L, and consequently A
and Ā, commute with the projection P . This follows from
the fact that 1 is both a left and a right eigenvector of L.

(6) follows from multiplying both sides of (5) by P and
using P = P2 as follows

M̃(k + 1)
= PM(k + 1)P
= PAM(k)AP + σ2

∑

(i,j)∈E

PB(i,j)M(k)B(i,j)P

= P2AM(k)AP2 + σ2
∑

(i,j)∈E

B(i,j)PM(k)PB(i,j)

= PAPM(k)PAP + σ2
∑

(i,j)∈E

B(i,j)M̃(k)B(i,j)

= PAP2M(k)P2AP + σ2
∑

(i,j)∈E

B(i,j)M̃(k)B(i,j)

M̃(k + 1) =
(
Ã + pβL

)
M̃(k)

(
Ã + pβL

)

+ σ2
∑

(i,j)∈E

B(i,j)M̃(k)B(i,j).

To study the decay or growth properties of the matrix
sequence M̃(k), we define the Lypunov-like operator

A(X) :=
(
Ã + pβL

)
X

(
Ã + pβL

)

+ (p− p2)
∑

(i,j)∈E

B(i,j) X B(i,j). (7)

The linear matrix recursion (6) can now be written as

M̃(k + 1) = A
(
M̃(k)

)
. (8)

Since this is a linear matrix equation, the condition for
asymptotic decay of each entry of M̃(k) is

|ρ(A)| < 1,

where ρ(A) is the spectral radius of A, which we call
the decay factor of the algorithm instance. In fact, since
each entry of M̃(k) has the asymptotic bound of a constant
times |ρ(A)|k, then so does its trace and consequently
E

{
||x̃(k)||2

}
.

We summarize these results in the following theorem.
Theorem 3.2: Consider a distributed consensus algorithm

with random link failures as modeled by the system with
multiplicative noise (4).

1) The variance of the total deviation from average
E

{
||x̃(k)||2

}
converges to 0 as k → ∞ if and only

if
|ρ(A)| < 1.

2) The worst case asymptotic growth of E
{
||x̃(k)||2

}
is

given by
|ρ(A)|k.

Note that in the case that links do not fail, when p = 0,
we have

A : X &→ ÃXÃ

and ρ(A) is precisely (ρ(Ã))2, which is the square of the
eigenvalue of A with the second largest modulus, as is
well known. However, when failures occur with non-zero
probability, p > 0, the additional terms in the operator A
play a role. For p '= 0, the operator A is no longer a pure
Lyapunov operator of the form X &→ ÃXÃ but rather
a sum of such terms. Thus, one does not expect a simple
relationship between the eigenvalues of A and those of the
constitutive matrices as in the pure Lyapunov operator case.

Perturbation Analysis
One important asymptotic case is that of small, uniform

link failure probability p. We can analyze this case by doing
a first order eigenvalue perturbation analysis of the operator
A in (7) as a function of the parameter p. We first recall the
basic set up from analytic perturbation theory for eigenvalues
of symmetric operators [13].
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Consider a symmetric, matrix-valued function A(p, X) of
a real parameter p and matrix X of the form

A(p, X) = Ao(X) + p A1(X) + p2 A2(X).

Let γ(p) and W (p) be an eigenvalue-eigenmatrix pair of
A(p, .) as p varies, i.e.

A(p, W (p)) = γ(p)W (p).

It is a standard result of spectral perturbation theory that for
isolated eigenvalues of A(0, .) the functions γ and W are
well defined and analytic in some neighborhood p ∈ (−ε, ε).

The power series expansion of γ is

γ(p) = λ + c1p + c2p
2 + · · · ,

where λ is an eigenvalue of Ao. The calculation of the
coefficient c1 involves the eigenmatrix V of λ and is given
by

c1 =
〈V,A1(V )〉
〈V, V 〉 . (9)

Note that we are dealing with matrix-valued operators on
matrices, and the inner product on matrices is given by
〈X, Y 〉 := tr (X∗Y ).

In order to apply this procedure to the operator A in (7),
we first note that it can be written as

A = Ao + p A1 + p2 A2,

where

Ao(X) = ÃXÃ

A1(X) = βLXÃ + βÃXL +
∑

(i,j)∈E

B(i,j) X B(i,j)

A2(X) = β2LXL −
∑

(i,j)∈E

B(i,j) X B(i,j).

Now to investigate the first order behavior of the largest
eigenvalue, we observe that the eigenmatrix corresponding
to the largest eigenvalue of Ao is

V = v2v
∗
2 ,

where v2 is the vector corresponding to the second smallest
eigenvalue of the Laplacian L, also called the Fiedler vector.
Applying formula (9) to this expression for V yields the first
order term in the expansion of the largest eigenvalue of A
to be

c1 = 2β λ(L) λ(Ã) +
∑

(i,j)∈E

(
v∗2B(i,j)v2

)2
, (10)

where λ(L) is the second smallest eigenvalue of L and λ(Ã)
is the largest eigenvalue of Ã (equivalently, the second largest
eigenvalue of A).

Since A = I − βL it follows that [14], [15] for β ≤ 1
dmax

we have
λ(Ã) = 1− βλ(L).

Using this identity, the fact that ρ(Ao) = (ρ(Ã))2 = (1−
βλ(L))2, and equation (10) above gives the following ex-
pression for ρ(A) which is valid up to first order in p

ρ(A) = 1 − 2(p− 1)β λ(L) +

(1− 2p)β2(λ(L))2 + p
∑

(i,j)∈E

(
v∗2B(i,j)v2

)2
.

In the special case of a tori network, there are explicit
asymptotic expressions [14], [15] for λ(L). Furthermore, it
can be shown that the term quadratic in v2 decays to zero
with the size of the network. These facts lead to the following
statement whose proof we omit for brevity.

Theorem 3.3: For d-dimensional tori of size n, the first
order expansion (in p) of the decay factor is given by

ρ(A) = 1 − (p− 1)β
8π2

n2/d
+ (1− 2p)O

(
1

n4/d

)
.

It is interesting to note that for large n, the leading order
behavior of the decay factor is

1 − (p− 1)β
8π2

n2/d
.

Recall that β is the fraction that is sent across each link.
Therefore for large n, link failures will reduce the effective
fraction that is sent across each link by a factor of 1− p.

IV. COMPUTATIONS

In this section, we give computational results for the
multiplicative decay factor, ρ(A), of various network topo-
logies as function of uniform link failure probability.

Since we have a characterization of the decay factor in
terms of the largest eigenvalue of the linear operator A
defined in (7), it is not necessary to perform Monte Carlo
simulations of the original system (4) to compute decay
factors. However, A is not in a form to which standard
eigenvalue computation routines (such as those in MATLAB)
can be immediately applied. We present a simple procedure
to obtain a matrix representation of A which can then be
readily used in eigenvalue computation routines.

Recall that the Kronecker product of any two m× n and
r× s matrices C and D respectively is the mr× ns matrix

C ⊗D :=




c11D · · · c1nD

...
. . .

...
cm1D · · · cmnD



 .

Let vec(X) denote the “vectorization” of any m× n matrix
X constructed by stacking the matrix columns on top of one
another to form an mn × 1 vector. It then follows that a
matrix equation of the form Y = CXD can be rewritten
using matrix-vector products as

vec(Y ) = (C ⊗D) vec(X).

Thus, using Kronecker products, A in (7) has a matrix
representation of the form

A =
(
Ã + pβL

)
⊗

(
Ã + pβL

)
+ σ2

∑

(i,j)∈E

B(i,j)⊗B(i,j).
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For a graph with n nodes, A is an n2 × n2 matrix. This
matrix representation can be used to find ρ(A) via readily
available eigenvalue routines in MATLAB.

We do this next for several examples and investigate the
behavior of the decay factor ρ(A) as a function of the
probability of link failure. For each topology, we compute
the decay factor for several values of β, including the value
which is optimal for each graph when there are no commu-
nication failures. This value is given by the following [8],

β∗ =
2

λ(L) + λ(L)
,

where λ(L) and λ(L) are the second smallest and the
largest eigenvalues of the Laplacian matrix of the graph,
respectively.

A. Decay Factors for Tori
Figures 1 and 2 give the decay factors for a ring network

with 9 nodes and a 2-dimensional discrete torus with 25
nodes. For each topology, we compute the decay factors
using the maximum β that guarantees convergence, β :=

1
dmax

, the optimal β, and a smaller β := 1
2dmax

. For the
ring network, the maximum β is 0.5, the optimal β is
approximately 0.4601, and the smaller β is 0.25. For the
2-dimensional torus, the maximum β is 0.25, the optimal
β is approximately 0.2321 and the smaller β is 0.125. We
elect to use small networks because the difference between
the optimal β and maximal β is more noticeable.

As expected, in both networks, when there are no link
failures, the decay factor is smallest for the optimal β.
Surprisingly, for the maximum β, the decay factors decrease
for small probabilities of failure. We conjecture that the
failures reduce the effective fractions of values that are
sent across each edge over a large number of rounds. As
the probability of failure increases, the effective fraction
decreases to approach the optimal β, and thus the algorithm
performance actually improves. The decay factor continues
to decrease until the failure probability reaches approxima-
tely 0.1 and then steadily increases. For the case where
β := 1

2dmax
, the edge weight is less than the optimal, and so

introducing failures only increases the decay factor. These
results demonstrate that there is a relationship between the
failure probability and the choice of β, and therefore it seems
possible to select a β that optimizes performance for a given
failure probability.

B. Decay Factors for Random Graphs
We also compute the decay factors for two random graph

topologies. Fig. 3 shows results for an Erdős-Rényi (ER)
random graph [16] of 50 nodes, where each pair of nodes is
connected with probability 0.25. The graph has 287 edges
and a maximum node degree of 20. The maximum β is

1
2dmax

= 1
20 . The optimal β is approximately 0.0724. We

also show a β that is less than optimal, β := 1
2dmax

= 1
40 .

Fig. 4 shows results for a scale free network of 50 nodes
generated using the BA Model [17]. The distribution of node
degrees obeys a power law, such as has been observed in the
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Fig. 1. Decay Factor for Various Link Failure Probabilities in a 9 Node
Ring Network
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Fig. 2. Decay Factor for Various Link Failure Probabilities in a 25 Node
2-Dimensional Torus

Internet, with a maximum node degree of 25. The graph
has 394 edges. The maximum β is 1

25 . The optimal β is
approximately 0.0787. We also show a β that is less than
optimal, β := 1

50 .
Again, in both networks, the optimal β yields the smallest

decay factor when there is zero probability of edge failure.
However, unlike in the ring and 2-dimensional networks, the
maximum β does not result in a performance improvement
for small failure probabilities.

It has been shown that there is an assignment of fractions,
or weights, to graph edges that will yield the smallest decay
factor [8]. In tori networks, this assignment is equivalent to
assigning the optimal β to every edge. In arbitrary networks,
the optimal edge weight assignment may not have equal
weights on every edge. We believe that in a random network
with the maximum β value, introducing edge failures with
uniform probability does not give any performance impro-
vement because the effective fraction associated with each
edge is decreased uniformly. Thus, the addition of failures
does not change the effective edge weights in a manner that
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Fig. 3. Decay Factor for Various Link Failure Probabilities in a 50 Node
ER Graph
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Fig. 4. Decay Factor for Various Link Failure Probabilities in a 50 Node
Scale Free Graph

approaches the optimal weight assignment.

V. CONCLUSIONS

We have presented an analysis of a distributed average
consensus algorithm in networks with stochastic communi-
cation failures. We have shown that the convergence rate of
the consensus algorithm can be characterized by the largest
eigenvalue of a Lyapunov-like matrix recursion, and we have
developed expressions for the multiplicative decay factor in
the asymptotic limits of small failure probability and large
networks. We have also shown that the decay factor can

be computed using a simulation-free method. Using this
method, we have computed the decay factors for various
network topologies for increasing failure probabilities. These
computations indicate that there is a relationship between the
network topology, the algorithm parameter β, and the pro-
bability of failure that is more complex than intuition would
suggest. In particular, we show that for certain network
topologies, communication failures can actually improve
algorithm performance.

As the subject of current work, we are investigating the
extension of our model and analysis to incorporate commu-
nication failures that are spatially and temporally correlated.
Such extensions will allow us to study more realistic network
conditions such as network partitions and node failures.
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