Distributed Backlog-Driven Power Control in Wireless Networking

Aditya Dua and Nick Bambos

Information Systems Laboratory

Department of Electrical Engineering

Stanford University

LANMAN 2007

Monday, June 11, 2007

Introduction

- Transmit power control in wireless networks
 - Mitigates multiple access interference
 - Conserves battery life in mobile terminals
- Distributed power control for ad hoc networks
 - Classical algorithm by Foschini & Miljanic'93
 - Fully distributed, but not backlog aware
 - PCRA by Bambos & Kandukuri'00
 - Backlog aware, but assumes unresponsive interference
- This talk ... distributed, backlog aware power control, responsive to interference
 - Focus on stochastic control aspects

System Model

Centralized Power Control

- Buffer draining problem
 - Can incorporate Markovian arrivals
- Backlog costs per time slot (convex)
- Objective Minimize total backlog
 cost incurred in draining queues
- Power assignment based on
 - Backlog information
 - SINRs from previous time slot
- Stochastic shortest path problem
 - Dynamic programming

Centralized Power Control ...

Snapshot of optimal policy (Oracle)

x increase o maintain + decrease

- Provable structural properties
- Load balancing effect
 - Opportunistic behavior
- What is missing?
 - Distributed decision making
 - Scalability
- Oracle is a benchmark for performance evaluation

Distributed Power Control

- Coupling induced by broadcast nature of wireless medium
- Analysis / implementation does not scale with number of links
- Decouple study every link in isolation
- Capture interaction through power cost
 - Penalty for "stressing" the shared wireless environment
 - Introduces power vs. backlog tradeoff

Distributed Power Control ...

- Solve three different buffer draining problems for single link under the assumptions:
 - Interference will always decrease BACK (back-off)
 - Interference will always increase AGGR (aggressive)
 - Interference will stay fixed STAT (static)
- Objective Minimize total backlog cost plus power cost incurred in draining queue
- Dynamic programming formulation
- One look up table for each problem

The BDD Power Control Algorithm

- Compute 3 look up tables BACK, AGGR, and STAT offline at each link
- Given current backlog and interference from previous time slot

• Choose action from table
$$\begin{cases} BACK & w.p. & \beta_1 \\ AGGR & w.p. & \beta_2 \\ STAT & w.p. & 1 - \beta_1 - \beta_2 \end{cases}$$

- > Observe interference (*i*) in current time slot
 - Update step

i↓	β_1 \uparrow	$\beta_2 \downarrow$
i ↑	$\beta_1 \downarrow$	β_2 \uparrow
i↔	$\beta_1 \downarrow$	$\beta_2 \downarrow$

> β_1 = Fraction of time interfering links back off – interpret as probability

The BDD Power Control Algorithm ...

Generalizes to multiple links

- > Only aggregate interference from other links matters
 - Conceptually, other links behave as one mega link
- > Can adapt to changes in topology through β_1 and β_2
 - No need to re-compute look up tables as other links come and go
- Look up tables re-computed only when self link gain changes
 - Reasonable under slow mobility

Performance Evaluation

Parameter	Value
Simulation length	10000 time slots
Channel gains	$G_{11} = G_{22} = 1, G_{12} = G_{21} = \frac{1}{2}$
Success probability mapping	$s(\gamma) = 1 - exp(-\gamma)$
Number of transmit power levels	L = 8
Backlog costs (Oracle and BDD)	$\phi(b) = b$
Power costs (BDD only)	$\zeta(I_1 - I_2) = I_1 - I_2$

Performance Evaluation ...

Bernoulli traffic

Markov modulated Bernoulli traffic (bursty)

- > 20-30 % gain in throughput over power control with fixed SINR targets
- Similar results for other traffic types (e.g., Poisson)
- Performance of BDD and Oracle similar

July 9, 2007

Performance Evaluation ...

Convergence Bernoulli – $p_1 = 0.8$, $p_2 = 0.4$

Power vs. Backlog tradeoff Bernoulli – $p_1 = 0.6$, $p_2 = 0.6$

July 9, 2007

Conclusions

- Centralized power control Oracle
 - Load balancing effect
- Distributed power control BDD
 - Decouple links for analysis capture interaction through "power costs"
 - More generally applicable (e.g., buffer management for media streaming)
 - Mimics load balancing effect
 - Scalable
- Ongoing work multilink simulations, theoretical aspects, protocol aspects

Thank You !

Contact: {dua,bambos}@stanford.edu

Introduction ...

- > A distributed PC algorithm FM'93
 - Fixed SINR targets
 - Infinitely backlogged sources
 - "Fights" the interference
- Another distributed PC algorithm BK'00
 - Probability of success function of SINR
 - Backlog aware
 - Assumes unresponsive interference
 - "Befriends" the interference
- This talk ... distributed, backlog aware power control, responsive to interference
 - Focus on structural / control aspects

