
1942 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

Distributed Basis Pursuit
João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, and Markus Püschel

Abstract—Wepropose a distributed algorithm for solving the op-

timization problem Basis Pursuit (BP). BP finds the least -norm

solution of the underdetermined linear system and is used,

for example, in compressed sensing for reconstruction. Our algo-

rithm solves BP on a distributed platform such as a sensor network,

and is designed to minimize the communication between nodes.

The algorithm only requires the network to be connected, has no

notion of a central processing node, and no node has access to the

entire matrix at any time. We consider two scenarios in which

either the columns or the rows of are distributed among the

compute nodes. Our algorithm, named D-ADMM, is a decentral-

ized implementation of the alternating direction method of multi-

pliers. We show through numerical simulation that our algorithm

requires considerably less communications between the nodes than

the state-of-the-art algorithms.

Index Terms—Augmented Lagrangian, basis pursuit (BP), dis-

tributed optimization, sensor networks.

I. INTRODUCTION

B asis pursuit (BP) is the convex optimization problem [1]

subject to (BP)

where the optimization variable is
is the norm of the vector , and is a ma-

trix with more columns than rows: . In words, BP seeks
the “smallest” (in the norm sense) solution of the underdeter-
mined linear system . To make sure that has at
least one solution, we require the following.
Assumption 1: is full rank.
BP has recently attracted attention due to its ability to find the

sparsest solution of a linear system under certain conditions (see
[2] and [3]). In particular, BP is a convex relaxation of the com-
binatorial and nonconvex problem obtained by replacing the
norm in (BP) by the pseudonorm , which counts the
number of nonzero elements of . Note that the linear system

Manuscript received July 14, 2011; revised December 11, 2011 and De-
cember 12, 2011; accepted December 15, 2011. Date of publication December
30, 2011; date of current version March 06, 2012. The associate editor
coordinating the review of this manuscript and approving it for publica-
tion was Prof. Jean-Christophe Pesquet. This work was supported by the
FCT Grant CMU-PT/SIA/0026/2009, PTDC/EEA-ACR/73749/2006, and
SFRH/BD/33520/2008 (through the Carnegie-Mellon/Portugal Program man-
aged by ICTI) from Fundação para a Ciência e Tecnologia and also by ISR/IST
Plurianual funding (POSC program, FEDER). This work was also supported
by the NSF through award 0634967.
J. F. C. Mota is with the Instituto de Sistemas e Robótica (ISR), Instituto

Superior Técnico (IST), Technical University of Lisbon, Portugal. He is also
with the Department of Electrical and Computer Engineering, Carnegie-Mellon
University, Pittsburgh, PA 15213 USA (e-mail: joaomota@cmu.edu).
J. M. F. Xavier and P. M. Q. Aguiar are with the Instituto de Sistemas

e Robótica (ISR), Instituto Superior Técnico (IST), Technical University of
Lisbon, Portugal.
M. Püschel is with the Department of Computer Science, ETH Zurich,

Switzerland.
Digital Object Identifier 10.1109/TSP.2011.2182347

Fig. 1. Row partition and column partition of into blocks. We assume
there are nodes and the th node stores . In the row partition a block is a
set of rows, while in the column partition a block is a set of columns.

has a unique -sparse solution, i.e., a solution whose
norm is , if every set of columns of is linearly indepen-
dent.
BP belongs to a set of optimization problems that has appli-

cations in many areas of engineering. Examples include signal
and image denoising and restoration [1], [2], compression, fit-
ting and approximation of functions [4], channel estimation and
coding [3] and compressed sensing [5], [6] (for more applica-
tions see for example, [7], [2], and the references therein). In
particular, in the recent field of compressed sensing, BP plays a
key role in the reconstruction of a signal.
Notice that Assumption 1 holds with probability one if the en-

tries of are independent and identically distributed (i.i.d.) and
drawn from some (nondegenerate) probability distribution, as
commonly seen in compressed sensing [5]. Also in compressed
sensing, there are several strategies to deal with noisy observa-
tions, i.e., when the observation vector is corrupted with noise.
These include solving variations of (BP), namely BPDN [1] and
LASSO [8].
Problem Statement and Contribution: Consider a network

(e.g., a sensor network) with compute nodes, and partition the
matrix into blocks. Our goal is to solve BP in a distributed
way. By distributed we mean that there is no notion of a central
processing node and that the th node has only access to the
block of during the execution.
We partition into blocks in two different ways, which we

call row partition and column partition, visualized in Fig. 1. In
the row partition, the block contains rows of , which
implies . In the column partition,
contains columns of , which implies .
In summary: given a network, we solve BP in a distributed

way, either in the row partition or in the column partition.
For the network we only require the following.
Assumption 2: The given network is connected and static.
Connected means that for any two nodes there is a path con-

necting them. Static means that the network topology does not
change over time.
We propose an algorithm to solve this problem and show

through extensive simulations that it improves over previous
work (discussed below), by reducing the total number of
communications to achieve a given solution accuracy. The
number of communications in distributed algorithms is an
important measure of performance. For example, it is well

1053-587X/$26.00 © 2011 IEEE

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1943

known that communicating with the neighboring nodes is the
most energy-consuming task for a wireless sensor [9]; as a
consequence, many energy-aware algorithms and protocols
for wireless sensor networks have been proposed [10]. An
energy-aware algorithm minimizes the communications and/or
allows the nodes to become idle for some time instants. On
distributed supercomputing platforms, on the other hand,
computation time is the main concern. In this case, the com-
putational bottleneck is again the communication between the
nodes, and thus algorithms requiring less communications have
the potential of being faster.
Before we discuss related work, we provide possible applica-

tions of our algorithm.
Application: Row Partition. Given a network of intercon-

nected sensors, we try to capture an ultra-wide band but spec-
trally sparse signal, represented in vector form as . For
simplicity, we assume the th sensor only stores one row of
, i.e., . Each sensor only captures some time samples
at a rate far below the Nyquist rate, using for example a random
demodulator [11], [8]. One can represent each measurement as
the number . Under certain conditions ([5], [6], [12]), it is
possible to recover by solving (BP) with
and . Further details about the matrix and
the vector can be found in [8]. Since each vector is asso-
ciated with a sensor, this corresponds to our row partition case.
This scenario applies, for example, to sparse event detection in
wireless networks [13], and to distributed target localization in
sensor networks [14].
Application: Column Partition. The work in [15] introduces a

method of speeding up seismic forward modeling in geological
applications. The goal is to find the Green’s functions of some
model of a portion of the earth’s surface. Given a set of sources
and a set of receivers, from the knowledge of both the emitted
and the received signals, the Green’s function of the model, rep-
resented by , has to be found. The authors of [15] propose to
solve this problem when all sources emit at the same time and
the receivers capture a linear superposition of all signals. The
approach is then to solve BP, where a set of columns of is
associated with a source. Note that a distributed solution makes
sense because the sources are physically far apart.
As another example for the column partition, we interpret BP

as finding a sparse representation of a given signal with respect
to a dictionary of atomic signals (columns of). It is common
to assume that the dictionary (the matrix) contains several
families of functions, e.g., Fourier, DCT, wavelets, to become
overcomplete. Suppose that we are given processors, each of
which is tuned to perform computations for a certain family of
functions. In this case, solving BP in a column partition frame-
work would arise naturally.
Algorithms for Solving BP and Related Work: Since BP can

be recast as a linear program (LP) [4], any algorithm that solves
LPs can also solve BP. Among the many algorithms solving LPs
[16], most cannot be readily adapted to our distributed scenario.
For example, the (distributed) simplex algorithm [17], [18] can
solve LPs only in complete networks, i.e., those with a link be-
tween any pair of nodes. In this paper, we aim to solve BP for
every connected network topology.
In recent years, some approaches have been proposed for

solving general optimization problems, including BP, in dis-
tributed networks. For example, [19] proposes a method based

on subgradient algorithms, but these are known to converge
very slowly. Other approaches to distributed optimization com-
bine the method of multipliers (MM) with the nonlinear Gauss-
Seidel (NGS) method or with Jacobi algorithms [20]. For ex-
ample, [21] uses MM together with a Jacobi-type algorithm
named diagonal quadratic approximation (DQA) to solve, in a
distributed way, convex problems constrained by linear equa-
tions. Using a suitable reformulation of (BP), this method can be
applied to our problem statement. In [22] we analyzed how well
MM together with NGS solves BP in the row partition scenario;
and in [23] we used a fast gradient algorithm in both loops. The
algorithm we propose here has just one loop and requires con-
siderably fewer iterations to converge than all the previous ap-
proaches.
Fast algorithms solving BP in a nondistributed way include

spgl1 [24], fpc [25], LARS [26], C-SALSA [27], and NESTA
[28]. These are faster than distributed algorithms but require
that and are available at the same location. In contrast, a
distributed algorithm can solve problems that can only fit into
the combined memory of all the nodes.
The work in [29] is closest related to ours. It solves the Basis

Pursuit Denoising (BPDN) [1] (a noise-robust version of BP),
which also produces sparse solutions of linear systems. The
algorithm is called D-Lasso and can be adapted to solve our
problem. Our simulations show that the algorithm we propose
requires systematically less communications than D-Lasso.
Our algorithm is based on the alternating direction method of

multipliers (ADMM). The work in [30] also uses ADMM in a
distributed scenario, but is only applicable to networks where all
the nodes connect to a central node. Our algorithm, in contrast,
is designed for decentralized scenarios (no central node) and
applies to any connected network.
Our type of matrix partitioning has been considered before in

the context of distributed algorithms for linear programs [17],
[18] and in regression of distributed data [31].

II. ROW PARTITION

In this section, we partition the matrix by rows:

where each block contains a subset of rows of
such that . The vector is partitioned
similarly: . We assume that and are
available only at the th node of a connected network with
compute nodes. We model the network as an undirected graph

, where is the set of nodes and
is the set of edges. We represent the edge con-

necting nodes and by or is the total number
of edges. See Fig. 2 for an example graph. If is an edge,
then node and node can exchange messages with each other.
The set of neighbors of node is written as , and its degree
is .
Graph Coloring: We assume that a proper coloring

of the graph is available. This means that
each node is labeled with a number , which we call
color, such that no adjacent nodes (i.e., neighbors) have the

1944 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

Fig. 2. Example of a connected network with . The set of edges is
.

same color. The minimum number of colors required for a
proper coloring of a graph is its chromatic number .
Coloring a graph with colors or just computing is
NP-hard for [32]. Several distributed algorithms for
coloring a graph exist [33]–[36]. For example, [33] determines
a coloring with colors, where ,
using iterations. If more
colors are allowed, for example , then
iterations suffice [36]. In this paper we assume that a proper
coloring with colors is given.
Problem Reformulation: To solve BP in a distributed way we

first rewrite (BP) to make the row partition explicit

(1)

The variable is coupling the problem. To decouple, we replace
with copies of . The th copy is denoted with . To ensure
the necessary global consistency condition
, we enforce the equivalent (since the network is connected)

constraint for each edge of the network:

(2)

The optimization variable is . Note
that (2) can be written more compactly as

(3)

where is the identity matrix, and is the Kronecker
product. The matrix is the node-arc incidence matrix
of the graph: each edge corresponds to a column in
with the th and th entries equal to 1 and , respectively.
Algorithm for Bipartite Graphs: We first consider a simple

case: is bipartite and hence . The generalization to
any connected graph will be straightforward. Bipartite graphs
include trees and grid graphs.
Without loss of generality, assume nodes 1 to have color 1

and the remaining have color 2. Then, (3) can be written as

(4)

where and is parti-
tioned as . We propose the alternating
direction method of multipliers (ADMM, briefly described in
Appendix A) to solve (4). The augmented Lagrangian of (4),
dualizing only the last constraint, is

(5)

where , and

for . Note that, since nodes in each are not neighbors
between themselves, is diagonal (with in the th di-
agonal entry). Hence

(6)

where and gives 1 if
and otherwise. We decomposed the dual variable

into , where is associated with
the constraint .
Equations (5) and (6) show that minimizing with

respect to (w.r.t.) yields optimization problems that can
be executed in parallel; similarly, minimizing it w.r.t. yields

parallel optimization problems. Algorithm 1 shows the
application of ADMM to our problem. We name our algorithm
Distributed ADMM (D-ADMM).

Algorithm 1: D-ADMM for bipartite graphs

Initialization: for all , set and

1: repeat
2: for all [in parallel] do
3: Set and find

4: Send to
5: end for
6: Repeat 2–5 for all , replacing by
7: for all [in parallel] do

8: end for
9:
10: until some stopping criterion is met

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1945

The optimization problem in step 3 results from minimizing
the augmented Lagrangian w.r.t. . To derive it,
note that (6) enables us to rewrite as

The th entry of is if and 0 otherwise.
Therefore, . Picking

for any and minimizing w.r.t.
yields the optimization problem in step 3. Appendix B describes
an efficient method for solving this problem.
Algorithm 1 shows that nodes with the same color operate

in parallel, whereas nodes with different colors cannot. In other
words, the nodes from have to wait for the computation of the
nodes from and vice-versa. However, at the end of each itera-
tion, every node will have communicated once (sending
and receiving) with all its neighbors.
Regarding the dual variable , its components do not appear

explicitly in Algorithm 1. The reason is that node only requires
for its optimization problem.

According to the canonical form of ADMM, we have to update
, for each edge as

(7)

Inserting (7) into the expression of we obtain the update of
step 7.
The following theorem establishes the convergence of Algo-

rithm 1.
Theorem 1: Assume the given graph is bipartite. Then, for all
, the sequence produced by Algorithm 1 converges to
a solution of (BP).

Proof: We have already seen that when the graph is bi-
partite (BP) is equivalent to (4). We now show that (4) satis-
fies the conditions of Theorem 4 in Appendix A. Let

, for . Clearly, and are real-
valued convex functions. Assumption 1 on the rank of the ma-
trix implies that (BP), and thus (4), is always solvable. Also,
the non-dualized equations in (4) define polyhedral
sets.
Nowwe have to prove that the matrices and

have full column rank, i.e., that and have full column
rank.We have seen that and are diagonal matrices
because the nodes within one class are not neighbors. Note that
the th entry of the diagonal of (or) is the degree
of the th node. Due to Assumption 2, there are no isolated
nodes and thus and are full-rank. The result then
follows because for any matrix .

Theorem 1 also shows that after Algorithm 1 terminates,
every node will know a solution of BP.
Algorithm for General Graphs: We now generalize Algo-

rithm 1 to arbitrary graphs with . The generalization
is straightforward, but we cannot guarantee convergence as in
Theorem 1. However, in our extensive experiments, shown later,
the resulting algorithm never failed to converge.
Let be a graph with a proper coloring and let be

the number of colors. Let be the set of nodes that have color

. Without loss of generality, suppose the nodes are
numbered the following way:

. This
enables a partition of the matrix as ,
making (3) equivalent to

(8)

where is the variable, and for
. From the proof of Theorem 1 we know that each

matrix has full row rank. Thus, we can apply the general-
ized ADMM to solve (8) (see Appendix A). That leads to the
following algorithm.

Algorithm 2: D-ADMM for general graphs

Initialization: for all , set and

1: repeat
2: for do
3: for all [in parallel] do

4: and find

5: Send to
6: end for
7: end for
8: for all [in parallel] do

9: end for
10:
11: until some stopping criterion is met

Algorithm 2 is a straightforward generalization of Algorithm
1. Now there are classes of nodes and all the nodes in one
class “work” in parallel, but the classes cannot work at the same
time. Consequently, if we consider the time to solve one instance
of the problem in step 4 as one unit, one (outer) iteration in
Algorithm 2 takes units.
In the bipartite case the coordination between the nodes was

straightforward: node only works after it has received from
all its neighbors. Here, according to the canonical format of Al-
gorithm 2, all the nodes in one class should work at the same
time. Since these nodes are not neighbors, neither there is a
central node to coordinate them, in practice node works after
having received ’s from all its neighbors of lower color.
An alternative way to see this is to transform the undirected
graph of the network into a directed graph, as shown in Fig. 3.
The graph in Fig. 3(b) is constructed from the graph in Fig. 3(a)
by assigning a direction to each edge if the color

1946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

Fig. 3. (a) Undirected network with and with classes
. (b) Directed graph constructed from (a) by assigning

a direction to each link: from smallest color node to the largest color node.

of is smaller than the color of , and otherwise. Then,
each node only starts working after having received the ’s
from all its inward links. In practice, this procedure can reduce
the overall execution time since each node does not need to wait
for its “color time.” As described in step 5 (and in contrast to
what Fig. 3(b) may suggest), each node sends to all its
neighbors in each iteration.
As stated earlier, we have no proof of convergence for Algo-

rithm 2, only practical evidence.

III. COLUMN PARTITION

In this section, we adapt the algorithm for the row partition
to the column partition case:

Each block contains a subset of columns of
such that . The block is only

available at the th node of an arbitrary connected network, and
the vector is known by all the nodes.
Duality: Pros and Cons: In Section II we saw an algorithm

that solves BP with a row partition. Here, we want to reutilize
that algorithm for BPwith a column partition. The first approach
to that is to consider the dual problem of (BP)

(9)

where the dual variable is , and is the vector of
all ones. For a derivation of (9), see for example, [37, Section
1.3.3]. The matrix now appears in the constraints of (9) as
, i.e., we can partition the constraint matrix in (9) by rows.

The problem is that there is no straightforward way to recover
a solution of (BP) from a solution of (9). Hence we need an
alternative approach.
Regularizing BP: Consider the following regularized version

of (BP):

(10)

where is a small positive number. While (BP) may have mul-
tiple solutions, (10) just has one, due to the strict convexity of its

objective.When is small enough, (10) selects the least -norm
solution of (BP).
Theorem 2: There exists such that the solution of (10)

is a solution of (BP) for all .
The proof of this theorem is based on exact regularization

results for linear programming [38], [39]. To prove it, recast
(BP) as a linear program [1], regularize it, and then rewrite the
resulting problem as (10). Consequently, we recover a solution
of (BP) if (10) is solved for a sufficiently small . The benefit
of solving (10) is that it is immediate to recover the solution
of (10) from its dual solution. We are unaware of any strategy
for choosing without first solving (BP). We will thus adopt a
trial-and-error strategy.
Dual Problem: We use duality because the dual problem of

(10) will have terms involving . Since is partitioned by
columns, will be partitioned by rows. Therefore, the algo-
rithm for the row partition will be applicable with some minor
modifications.
The dual problem of (10) is

(11)

where the dual function is
, and the dual variable. To keep

the notation consistent with the previous section, we recast (11)
as a minimization problem:

(12)

where

(13)

The objective of the inner optimization problem of (13) has a
unique minimizer for each , since it is strictly convex. Let
denote the solution of this problem, for a fixed . Strong duality
holds for (10) because its objective is convex and its constraints
linear [4, Sect. 5.2.3], [40, prop. 5.2.1]. Therefore, after we find
a solution to the dual problem (12), a (primal) solution of
(10) is available as . This follows directly from the KKT
conditions [4, Sect. 5.5], [40, prop. 5.1.5], and we express it in
the following theorem.
Theorem 3: Let solve (11). Then, solves (10).
Adapting the Algorithm: Now we focus on solving (12). Let
be partitioned analogous to , i.e., , where

. Note that can be decomposed as the sum of
functions: where

(14)

can only be computed at node because is only known there.
We can then rewrite (12) as

Notice that can be easily computed at node , since the
optimization problem defining it has a closed form solution. We
now apply the same procedure as in Section II: we clone the

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1947

variable into several ’s, and constrain the problemwith
, for all . This yields

(15)

where the variable is . Note the
similarity between (15) and (3). Having a proper coloring of the
graph, the generalized ADMM is applicable:

Algorithm 3: D-ADMM for general graphs (column
partition)

Initialization: for all , set and

1: repeat
2: for do
3: for all [in parallel] do

4: and find

5: Send to
6: end for
7: end for
8: for all [in parallel] do

9: end for
10:
11: until some stopping criterion is met

Algorithm 3 is similar to Algorithm 2 except for some
minor modifications: the size of the variable to be transmitted
is smaller (instead of transmitting , now the nodes
transmit), and the optimization problem to be
solved at each node (see step 4) is slightly different. Since that
problem is unconstrained and its objective is differentiable, we
can solve it directly with the Barzilai-Borwein algorithm [41]
(see Appendix B for more details).
Another difference to Algorithm 2 is that after the algorithm

finished (finding an optimal vector), node will not know the
entire solution to (10), but only a portion of it, , as
the solution to the optimization problem defining in (14).
In case we want the entire solution to be available in all
nodes, just a few additional communications are required be-
cause is expected to be sparse; furthermore, a spanning
tree can be used to spread the ’s over the network.
We remark that if the graph is bipartite, then Algorithm 3 is

proven to converge to an optimal solution of (10) and, if is
small enough, to a solution of (BP). An important issue is the
possible ill-conditioning provoked by a small value of . In fact,
a very small value for may lead to difficulties in finding
in step 4. Note that this is the only step where appears. In our
simulations, explained in Section V, we used and this
value allowed us to compute solutions to BP with a very large
precision, without incurring into numerical problems.

IV. OTHER ALGORITHMS

In this section we overview other methods that solve BP in
a truly distributed way. We only cover the row partition case
because corresponding algorithms for the column partition can
always be derived as shown in the previous section.
We divide the algorithms into two categories according to the

number of (nested) loops they have: single-looped and double-
looped. D-ADMM is single-looped and, in each iteration, every
node transmits a vector of size to its neighbors.
Performance Measure: Communication Steps: We say that

a communication step has occurred after all the nodes finish
communicating their current estimates to their neighbors. All
single-looped algorithms have one communication step per iter-
ation. The double-looped algorithms have one communication
step per iteration of the inner loop. In all algorithms, the size
of the transmitted vector is . Another feature common to all
algorithms is that in every iteration (or in every inner iteration,
for the double-looped algorithms) each node has to solve the
optimization problem in step 4 of Algorithm 2 (or Algorithm 3,
for the column partition). This means that the algorithms have a
common ground for comparison: if each iteration (or inner itera-
tion, for the double-looped algorithms) involves one communi-
cation step and all the nodes have to solve a similar optimization
problem (same format, same dimensions, but possibly different
parameters), then the number of iterations (or the sum of inner
iterations) becomes a natural metric to compare the algorithms.
We will then compare the algorithms by their number of com-
munication steps, which is equal to the number of iterations in
the single-looped algorithms and to the sum of inner iterations
in the double-looped algorithms. Note that less communication
steps can be expected to produce significant energy savings in
scenarios such as sensor networks [9].
Although data is transmitted in every communication step,

the quantity of the transmitted data might actually decrease with
the iterations. The reason is because the solution to BP is sparse
and, at some point, the nodes’ estimates start being sparse, al-
lowing a possible compression of the transmitted data (e.g., just
transmit the nonzero entries).
We start with describing the single-looped algorithms.
Subgradient: Nedić and Ozdaglar were the first to propose

a subgradient-based algorithm to solve general convex opti-
mization problems in a completely distributed way [42]. How-
ever, they only addressed unconstrained optimization problems,
which is not our case. Instead, we will use the method proposed
in [19], which generalizes [42] to problems with private con-
straints in each node. That is, [19] solves

minimize

subject to

where each is convex and each is a closed convex set.
This method combines consensus algorithms [43] with subgra-
dient algorithms [40, Ch. 6], and for each node , it takes the
form

(16)

1948 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

where are positive weights such that

, the sequence is square sum-
mable but not summable, and is the projection of the point
onto the set .

The vector is a subgradient of at the point

.
We apply (16) directly to (1), where we see as

; in other words, we set .
We choose for the step-size sequence. In our
case, since the network is static (Assumption 2), the weights
are constant: for every for ,
and 0 otherwise. The implementation of (16) in a network is now
straightforward: first, node transmits to its neighbors and
receives from them; then, it updates its variable with (16).
These two steps are repeated until convergence.
While (16) is proven to be robust to link failures, its conver-

gence speed is too slow in practice.
D-Lasso: As mentioned in Section I, Bazerque and Gi-

annakis [29] proposed a distributed algorithm that solves a
problem similar to ours. Here, we adapt it to solve BP. The
starting point is problem (2), which by introducing a new
variable for each edge , is reformulated as

(17)

This problem is solved with ADMM by dualizing its last two
constraints. We consider the problem partitioned in terms of the
variable and . In short,
ADMM minimizes the augmented Lagrangian of (17) w.r.t.
and then minimizes it w.r.t. , using the new value of . The
minimization w.r.t. has a closed form solution. After some
manipulations, the algorithm for an arbitrary node is:

Algorithm 4: D-Lasso

Initialization: for all , set and

1: repeat
2: for all [in parallel] do
3: set and find

4: Send to , and receive
5: end for
6: for all [in parallel] do

7: end for
8:
9: until some stopping criterion is met

Although D-Lasso and D-ADMM (Algorithm 2) have a sim-
ilar format, they are different. For example, D-Lasso is syn-
chronous and D-ADMM asynchronous, and the parameters of

the optimization problem each node solves are different in both
algorithms. Also, D-ADMM is proven to converge for bipar-
tite graphs only, while D-Lasso is proven to converge for any
connected graph. In the next section, we will see that, in prac-
tice, D-ADMM converges in less iterations than D-Lasso, de-
spite their common underlying algorithm.
We now move to the double-looped algorithms.
Double-Looped Algorithms: All double-looped algorithms

we will see have the same theoretical foundation, but use
different subalgorithms. Namely, all solve the following dual
problem of (3):

(18)

where is the augmented dual function

(19)

where , and is a positive parameter.
The algorithms have an outer loop that solves (18), and an inner
loop that solves the optimization problem in (19).
We consider three distributed, double-looped algorithms [22],

[21], [23] to solve (18), and thus (3) because strong duality
holds. While [22] and [23] were designed to solve BP, [21] was
designed to solve more general problems. We thus have to adapt
the latter to our problem. The algorithms described in [22], [21],
[23] will be denoted respectively by method of multipliers and
nonlinear Gauss-Seidel (MM/NGS), method of multipliers and
diagonal quadratic approximation (MM/DQA), and double Nes-
terov (DN).
All algorithms solve (18) with an iterative scheme in the outer

loop. As in D-ADMM, the dual variable consists of several
variables associated with the edges . It can be
shown that the dual function in (19) is differentiable and
that its gradient is Lips-
chitz continuous with constant [44]. The vector

solves the optimization problem in
(19) for a fixed . The algorithm for solving this inner problem
will be the inner loop and is considered later. These nice prop-
erties of enable the edge-wise application of the gradient
method [40, Sect. 1.2]

(20)

or the edge-wise application of Nesterov’s method [45]

(21)

to solve (18). Nesterov’s method is proven to be faster than the
gradient method.When we use the gradient method (20) to solve
a dual problem, where duality here is seen in the augmented
Lagrangian sense, the resulting algorithm is called method of
multipliers (MM) [40, p. 408]. While MM/NGS and MM/DQA
use MM for their outer loop, DN uses (21).
So far, we assumed that a solution of the optimization

problem in (19), for a given , was available. Nevertheless,
solving this problem in a distributed way is more challenging

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1949

TABLE I
ALGORITHMS FOR COMPARISON IN THE SIMULATIONS

than solving (18) (when is readily available). The reason
is that we cannot decouple the term
into a sum of functions, each one depending only on .
Both MM/NGS and MM/DQA use an iterative method that
optimizes the objective of (19) w.r.t. one block variable ,
while keeping the other blocks fixed. More concretely, let

denote the objective of (19) when is fixed.
MM/NGS uses the nonlinear Gauss-Seidel (NGS) method [20,
Sect. 3.3.5] [46]

...

(22)

where . It can
be proven that any limit point of the sequence generated by
(22) solves problem (19); see [46] and [37]. Each optimization
problem in (22) is solved at one node. It turns out that these are
equivalent to the problem in step 4 of Algorithm 2. Note that the
nodes in (22) cannot operate in parallel, akin to the algorithmwe
propose here. MM/DQA, on the other hand, solves the problem
in (19) with a parallel scheme called diagonal quadratic approx-
imation (DQA)

...

(23)

where . For a proof that (23) solves (19) see [21] and
[37]. The difference between (22) and (23) is that the latter al-
lows all the nodes to operate in parallel, and after the minimiza-
tion step, each node combines the solution of the optimization
problem it has just solved with the previous estimate of the so-
lution: . Note that a communication step has to occur after
each iteration.
Regarding DN, wemade somemodifications to the inner loop

of the method proposed in [23], so that we could get an algo-
rithm comparable with what we propose here.

TABLE II
SCENARIOS FOR ROW PARTITION EXPERIMENTS

DN: In [23], BP is recast as a linear program by increasing
the size of the variable to . The result is that the problem
defining the dual function has a differentiable objective with
a Lipschitz continuous gradient, and thus Nesterov’s method
is directly applicable. However, the size of the variable trans-
mitted in each communication step is . Here, we do not re-
cast BP as an LP. As seen before, the dual problem (18) is
solved with Nesterov’s method (21) in the outer loop. Now, to
solve the optimization problem in (19), Nesterov’s method is
not applicable because the objective is not differentiable. How-
ever, that objective can be written as the sum of a nondiffer-
entiable function with a differentiable
one . The gradient of
w.r.t. is . There-
fore, to compute , each node needs only to communi-
cate with its neighbors. The gradient is Lipschitz con-
tinuous with constant , where denotes the
maximum eigenvalue of the graph Laplacian. FISTA [47] is an
algorithm that adapts Nesterov’s method to this scenario. It op-
erates the following way:

Algorithm 5: FISTA (for node)

Initialization: choose

1: repeat
2:

3:

4:

5:
6: until some stopping criterion is met

This modification to [23] allows us to compare the resulting
algorithm with ours, because the size of the variable is now .
Furthermore, the problem in step 3 is equivalent to the one in
step 4 of Algorithm 2.
Tuning Parameter : Note that all algorithms (except the

subgradient) share the same tuning parameter , because all are
based on an augmented Lagrangian reformulation. It is known
that influences the convergence rate of augmented Lagrangian
methods. Albeit there are self-adaptive schemes to update
during the algorithm [30], [48], [49], making the algorithms less
sensitive to , we were not able to implement these schemes in a
distributed scenario. We will hence assume is constant during
the execution of the algorithms.
Execution Times in Wireless Networks: In contrast with all

the algorithms described here (except MM/NGS), D-ADMM
assumes a coloring scheme based on which the nodes operate
asynchronously. Suppose all the algorithms are implemented

1950 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

TABLE III
NETWORK MODELS FOR THE EXPERIMENTS

on an ideal network, where packet collisions do not occur, i.e.,
two neigboring nodes can transmit messages at the same time
without causing interference at the reception. If a communica-
tion step by D-ADMM takes time units, then a communi-
cation step by the other algorithms takes units, where
is the number of colors we used for the network (we are ig-
noring the optimizations that can be made from the procedure
described in Fig. 3). Therefore, although D-ADMM requires
less communication steps, as shown next, it might actually take
longer than competing algorithms. However, in a real wireless
network, packet collisions occur and medium-access (MAC)
protocols have to be implemented to avoid them. Hence, syn-
chronous algorithms cannot operate synchronously in wireless
networks. The execution time of an algorithm, among other fac-
tors, is highly dependent on the MAC protocol. Comparing ex-
ecution times is thus beyond the scope of this paper.

V. EXPERIMENTAL RESULTS

In this section we compare our algorithm against the prior
work discussed in the previous section and listed in Table I. We
focus on the row-partitioned case since the algorithm for the
column partition is derived from it. We start describing how the
data and the networks were generated, and how the experiments
were carried out. In the first type of experiments we compare all
the algorithms on moderate-sized networks (around 50 nodes)
and conclude that D-ADMM and D-Lasso are the “fastest” al-
gorithms. In the second type of experiments we compare only
these two algorithms in a more thorough way for the same net-
works, and we also see how their performance varies as the net-
work size increases (from 2 nodes to 1024 nodes). Finally, we
address the column partition case.
Experimental Setup: We considered five distinct scenarios

with different dimensions and different types of data, shown in
Table II. The data (matrix and vector)
was taken from the Sparco toolbox [50], except in scenario 1,
where we used a 500 2000 matrix with i.i.d. Gaussian entries
with zeromean and variance . In each scenario, each node
stores rows of . We ensured that is
an integer by considering two values for : 50 and 64, chosen
depending on the scenario.
In the following, denotes the solution of BP obtained by

the Sparco toolbox, or in scenario 1, the one obtained by CVX
[51], solving BP as a linear program. Note that due to the di-
mensions of the matrices and their randomness/structure, is
guaranteed to be unique with overwhelming probability.
For each scenario we ran all algorithms for the seven different

networks shown in Table III. For each network in Table III we

TABLE IV
TYPES OF EXPERIMENTS

generated two networks: one with 50 nodes (used in scenarios
with), the other with 64 nodes (used in scenarios with

). The parameters of the networks were chosen so that
the generated network would be connected with high proba-
bility. Only for network 4, we did not get a connected
network at first, so we changed the parameters to (3, 0.8). If the
generated network had self-connections or multiple edges be-
tween the same pair of nodes, we would remove them. We also
generated 10 networks with nodes , all fol-
lowing the model of network 3. These are used in the type II
experiments (explained later).
The Erdős-Rényi model [52] has one parameter , which

specifies the probability of any two nodes in the network being
connected. The Watts-Strogatz model [53] has two parameters:
the number of neighbors and the rewiring probability . First
it creates a lattice where every node is connected with other
nodes; then, every link is rewired, or not, with probability . If
a rewiring occurs in link , then we pick node or (with
equal probability) and connect it with other node in the network,
chosen uniformly. The Barabasi-Albert model [54] starts with
one node; at each step, one node is added to the network and is
connected to one of the nodes already in the network. However,
the probability of the new node “choosing” to connect to the
other nodes is not uniform: it is proportional to the nodes’
degrees such that the new node has a greater probability of
connecting to the nodes with larger degrees. The geometric
model [55] deploys nodes randomly (uniformly) in the unit
square; then, two nodes are connected if their distance is less
than . Finally, the Lattice model has no randomness. For
nodes, it generates a rectangular grid graph in the plane such
that the shape is as square as possible (5 10 for and
8 8 for). Each node has four neighbors except for the
borders. This lattice network is the only one guaranteed to be
bipartite, and thus Algorithm 2 is only guaranteed to converge
for this network.
We used an heuristic from theMatgraph toolbox [56] to find a

coloring for these networks. It is then possible that the number of
colors is larger than . We checked that the optimal solution
of two colors was found for the Lattice model.
Results: As mentioned before, we keep the parameter fixed

during the execution of the algorithms (except for the subgra-
dient method, which has no). We picked in two different
ways, yielding two types of experiments, shown in Table IV.
In type I, was always the same for all scenarios and all net-
works: for D-ADMM (Algorithm 2) and for D-Lasso
(Algorithm 4), and or the double-looped algorithms
MM/NGS,MM/DQA, andDN. These values were chosen based
on some pre-testing. In the type II experiments, given a fixed
scenario and network, we execute each algorithm for several ’s

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1951

Fig. 4. Type I experiments: number of communication steps to reach accuracies of 1% and % as a function of the network (see Table III). (a) Scenario 1. (b)
Scenario 2. (c) Scenario 3. (d) Scenario 4. (e) Scenario 5.

1952 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

Fig. 5. Type I experiments: errors along the iterations (communication steps)
of the algorithms for fixed scenarios and networks. (a) Scenario 1, network 4.
(b) Scenario 3, network 3.

and pick the one that yields the best result. For the type II exper-
iments, we only considered the best two algorithms: D-ADMM
and D-Lasso.
The two types of experiments reflect two different philoso-

phies in the assessment of algorithms that depend on parame-
ters: type I represents real-world applications (the parameters
are tuned for known data and are then used unchanged); type II
is more suited to assess the true capabilities of the algorithm.
Type I Experiments: Fig. 4 shows the results of the type I

experiments. The left-hand (respectively, right-hand) side plots
show, for each network, the number of communication steps
until each algorithm achieves a precision of 1% (respectively,

%) at a randomly selected node . This means we count
the number of communication steps until

or . We allowed a maximum number of commu-
nication steps.
In Fig. 4 we observe that the behavior of the algorithms in

all scenarios, except in scenario 3, is identical, so we will focus
only on scenarios 1 and 3. Fig. 4(a) shows that, for scenario
1, D-ADMM requires the least number of communications to
achieve both accuracies regardless the network. We can also
see that for this scenario MM/DQA, DN, and Subgradient al-
ways reached the maximum number of iterations before
achieving any of the prescribed accuracies. As stated before,
the behavior of the algorithms for the remaining scenarios (ex-
cept scenario 3) is very similar. In scenario 3, Fig. 4(c), we see a
different behavior: while D-ADMM required less communica-
tions than any of the -dependent algorithms, the Subgradient
required less communications to achieve the accuracy 1% for

Fig. 6. Type II experiments: number of communication steps to reach %
of accuracy or 3000 communication steps. (a) Scenarios 1 and 2, (b) Scenarios
3, 4, and 5.

networks 1, 2, and 6. However, if we let the algorithms con-
tinue executing, the Subgradient reaches the maximum number
of communications before achieving the % of accuracy, as
can be seen in the right-hand plot of Fig. 4(c). Note that the rel-
ative behavior of the remaining algorithms is roughly the same
for both accuracies.
In Fig. 5 we show how the error of the estimate at a random

node varies along the iterations, for each algorithm. Fig. 5(a)
shows the error for scenario 1 when the algorithms are exe-
cuted in network number 4. Notice that the number of commu-
nications to achieve accuracies of 1% and % agree with
the plots of Fig. 4(a), for example D-ADMM takes less than

communication steps to achieve a precision. Fig. 5(b)
shows the errors for scenario 3 when we use network 3 [cf.
with the plots of Fig. 4(c)]. Note the similarity of the curves
of D-ADMM and D-Lasso: they have the same shape but the
D-ADMM error is always smaller. This might happen because
both methods use the same internal algorithm, albeit applied to
different reformulations. Finally, note in Fig. 5(b) how the error
of the Subgradient evolves for scenario 3, network 3: the rate
of convergence is very fast at the beginning, but after the first
1000 iterations it becomes very slow. This agrees with what was
observed in Fig. 4(c).
Type II Experiments: For the type II experiments we only

considered the two best algorithms: D-ADMM and D-Lasso.
Fig. 6 shows for each network the number of communication
steps to reach an accuracy of %. We allowed for maxi-
mally 3000 communication steps (these were only achieved by
D-Lasso in scenario 3 for networks 3, 4, and 5, as can be seen in

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1953

Fig. 7. Type II experiments for row partition: number of communication steps
to reach 0.1% of accuracy as a function of the network size. The straight lines
represent a linear fit.

Fig. 6(b)). We observed that the best values of for D-ADMM
were always , or 1. For example, D-ADMM had
the best performance for for scenarios 1, 3, and 5 when
the networks were either 5 or 7. For instance, for scenario
1, network 5 D-ADMM took 462 communication steps (see
Fig. 6(a)), the same number observed in the type I experiments,
in right-hand plot of Fig. 4(a). Recall that was fixed at 1
for D-ADMM in the type I experiments. This also means that
in the type II experiments the number of communications for
D-ADMM decreased except for scenarios 1, 3, and 5 when the
networks were either 5 or 7. The same phenomenon happened
for D-Lasso: the optimal was 1 only in scenarios 1 and 5 for
the 5th network; and the optimal ’s were , or 1.
We conclude from Fig. 6 that D-ADMM requires less com-

munication steps than D-Lasso, independently of the scenario
or network type. Excluding the cases D-Lasso reached the max-
imum number of iterations, we see that in average D-ADMM
uses 51% of D-Lasso’s number of communications (11% of
standard deviation). The largest difference occurred in scenario
3, network 6, where D-ADMM used 35% of the communica-
tions D-Lasso used; this number was 78% for scenario 4, net-
work 1, the smallest difference that occurred.
Fig. 7 shows another type II experiment: we fixed the sce-

nario and network type: Scenario 3, Watts-Strogatz with pa-
rameters (4,0.6); and observed how the number of communi-
cation steps varies as the size of the network increases. The
number of nodes varied from 2 (each node stores 512 rows) to
1024 (each node stores 1 row) and was always a power of 2.
D-ADMM and D-Lasso stopped after reaching 0.1% of accu-
racy. As shown by the gray straight lines in Fig. 7, the commu-
nication steps in both algorithms increases approximately lin-
early in a log-log plot. The model we used to compute those
lines was , where is the number of
communication steps, the number of nodes, and and are
the parameters to be found for each line. The minimum least
squares error yielded for D-ADMM and

for D-Lasso. Therefore,
for D-ADMM and for D-Lasso, showing a
less-than-linear increase of the communication steps with the
number of nodes, for both algorithms. Also, the difference be-
tween the lines’ offsets reveals that D-Lasso took in average

Fig. 8. Type II experiments for the column partition: number of communication
steps to reach % of accuracy. (a) Scenarios 1 and 2. (b) Scenarios 3, 4,
and 5.

2.5 times more communications than D-ADMM. The average
number of colors was 4.6, which means that in a collision-free
network D-ADMM would be 1.8 times slower than D-Lasso.
Again, the optimal ’s were , or 1, but we noticed a
curious pattern on both algorithms: the optimal value for de-
creased as the size of the network increased.
Results for the Column Partition: For the column partition

we only executed type II experiments. While the scenarios
were the same as before (Table II), we changed the networks:
they now have 10 nodes (for scenarios 1, 2, and 4) or 8 nodes
(for scenarios 3 and 5). All nodes thus store the same number
of columns, i.e., the number of columns is divisible by the
number of nodes . The model for generating these networks
is the same as in Table III. In all experiments we set the regu-
larization parameter to , a value that always allowed
the recovery of the solution of BP, as we will see.
Fig. 8 shows the plots with the results of the type II

experiments. As before, D-ADMM always required less
communication steps to achieve a % of accuracy. In
particular, D-ADMM used in average 42% of the communi-
cations D-Lasso used; the standard deviation was 10%. The
largest difference in the number of communications occurred
in scenario 2, network 4, where D-ADMM only used 28% of
the communications that D-Lasso used. The smallest difference
was 72% and it occurred in scenario 5, network 5. We mention
that, in contrast with the row partition, there were cases in
which the optimal value for was and 10 (cf. Table IV),
the “boundary” values of the set of ’s we used. Therefore, we
might improve the results if we try a wider range of ’s.

1954 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

VI. FINAL REMARKS AND CONCLUSION

We proposed an algorithm for solving BP in two distributed
frameworks. In one framework, the BP matrix is partitioned by
rows, with its rows distributed over a network with an arbi-
trary number of nodes; in the other framework, it is the columns
of the matrix that are distributed. The only requirement on the
topology of the network through which the nodes communi-
cate is connectivity (and we also assume that this topology does
not change along the algorithm). Therefore, our algorithms can
be applied to several scenarios, ranging from sensor networks,
where the communication network is usually sparse, to super-
computing platforms, characterized by dense networks.
We simulated our algorithms for several types of data and

networks and conclude that they always require less commu-
nications than competing algorithms. This is paramount in en-
ergy-constrained environments such as sensor networks.

APPENDIX A
ALTERNATING DIRECTIONMETHOD OF MULTIPLIERS

Let and be two real-valued convex functions and and
two polyhedral sets. Let also and be two full column-rank
matrices, and consider the problem

(24)

with variables and . The alternating direction method of mul-
tipliers (ADMM) [30], [20] solves (24) by applying the method
of multipliers [40, p. 408] concatenated with one single loop of
the nonlinear Gauss-Seidel [40, p. 272]

(25)

(26)

(27)

where and is a tuning parameter.
In words, the augmented Lagrangian

is first minimized with respect to and then, keeping the value
of fixed at the just computed value , the augmented
Lagrangian is minimized with respect to . Thus, (25) and (26)
cannot be carried out simultaneously. After these minimization
steps, the dual variable is updated in a gradient-based way via
(27). The following theorem guarantees its convergence.
Theorem 4 ([30], [20], [57]): Let and

be convex over and , respectively. Let
and be polyhedral sets and let and two full

column-rank matrices. Assume (24) is solvable. Then,
1) converges to a solution of (24);
2) converges to a solution of the dual problem

where
and .

Furthermore, [58] recently proved that ADMM converges
with rate . This rate holds even if the quadratic term of

in (25) is linearized, which can many times simplify the
solution of that optimization problem. For more properties of
ADMM and its relation to other algorithms see [59], [60].
We now present a generalization of ADMM, which we call

“generalized ADMM.” The generalized ADMM solves

minimize

subject to

(28)

where is the variable, , the functions are
convex, are full column-rank matrices, and are polyhe-
dral sets. The generalized ADMM solves (28) with

...

...

This algorithm is then the natural generalization of (25)–(27).
It is not known yet if Theorem 4 also applies to the general-
ized ADMM. The latest efforts for doing that can be found in
[61]–[64]. In spite of this fact, we apply the generalized ADMM
in this paper and the resulting algorithm never failed to converge
in our simulations.

APPENDIX B
PROBLEM FOR EACH NODE: ROW PARTITION

In the distributed algorithm we propose, each node has to
solve, in each iteration, the problem

(29)

MOTA et al.: DISTRIBUTED BASIS PURSUIT 1955

where is the variable, and ,
and are given. We propose to solve (29) by solving its
dual problem

(30)

where the dual variable is and . To
compute the objective of this dual problem for a fixed , we need
to find the minimum of the function
for . Each one of these functions is strictly convex
due to , and hence it has a unique minimizer . It fol-
lows from Danskin’s theorem [40, prop. B25] that the objective
of (30) is differentiable with gradient , where

. By the optimal conditions for convex prob-
lems [40, prop. B24]

The unicity of the minimizers also implies that, once a
solution of (30) is known, the solution of (29) is given by

. To solve (30), we propose using the method in [41], a
very efficient Barzilai-Borwein (BB) algorithm. Per iteration,
BB consumes flops plus the flops necessary to compute
the gradient. Furthermore, BB is known to converge -super-
linearly for generic unconstrained optimization problems [65,
Th. 4].
As a final note, the number of iterations to solve (29) can

be drastically reduced by using warm-starts. This means that,
at iteration , node will solve (29) by starting the BB
algorithmwith the solution found in iteration . The solutions of
these two consecutive problems are expected to be close, since
only and changed, possibly just by a small quantity.

REFERENCES

[1] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by
basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[2] A. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Rev., vol. 51, no. 1, pp. 34–81, 2009.

[3] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[5] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[6] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[7] J. Tropp, “Just relax: Convex programming methods for identifying
sparse signals,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 1030–1051,
2006.

[8] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, 2008.

[9] I. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: A survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

[10] B. Krishnamachari, Networking Wireless Sensors. Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[11] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, “Be-
yond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE
Trans. Inf. Theory, vol. 56, no. 1, pp. 520–544, 2010.

[12] E. Candès and T. Tao, “Near-optimal signal recovery from random pro-
jections: Universal encoding strategies?,” IEEE Trans. Inf. Theory, vol.
52, no. 12, pp. 5406–5425, 2006.

[13] J. Meng, L. Husheng, and Z. Han, “Sparse event detection in wireless
sensor networks using compressive sensing,” in Proc. 43rd Ann. Conf.
Inf. Sci. Syst. (CISS), 2009.

[14] V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target localiza-
tion via spatial sparsity,” in Proc. 16th Eur. Signal Process. Conf. (EU-
SIPCO), 2008.

[15] J. Romberg, R. Neelamani, C. Krohn, J. Krebs, M. Deffenbaugh, and
J. Anderson, “Efficient seismic forward modeling using simultaneous
random sources and sparsity,” in Proc. Soc. Expl. Geophys. Ann.
Meeting, 2008.

[16] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization.
New York: Athena Scientific, 1997.

[17] C. Stunkel and D. Reed, “Hypercube implementation of the simplex al-
gorithm,” in Proc. 3rd Conf. Hypercube on Concurrent Comput. Appl.,
1989, vol. 2, pp. 1473–1482.

[18] H. Dutta and H. Kargupta, “Distributed linear programming and re-
source management for data mining in distributed environments,” in
Proc. IEEE Int. Conf. Data Mining Workshops, 2008, pp. 543–552.

[19] I. Lobel, A. Ozdaglar, and D. Feijer, Distributed Multi-Agent Opti-
mizationWith State-Dependent Communication Tech. Rep. LIDS Rep.
2834, 2010.

[20] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. New York: Athena Scientific, 1997.

[21] A. Ruszczynski, “Augmented Lagrangian decomposition for sparse
convex optimization,” Int. Inst. Appl. Syst. Anal., 1992.

[22] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed algorithms
for basis pursuit,” in Proc. 2nd Int. Workshop Signal Process. Adapt.
Sparse Structured Represent., Saint-Malo, France, 2009.

[23] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Basis pursuit in sensor
networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), 2011.

[24] E. Berg and M. Friedlander, “Probing the pareto frontier for basis pur-
suit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912, 2008.

[25] Z. Wen, W. Yin, and Y. Zhang, “A fast algorithm for sparse recon-
struction based on shrinkage, subspace optimization and continuation,”
SIAM J. Sci. Comput., vol. 32, no. 4, pp. 1832–1857, 2010.

[26] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-
gression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[27] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented
Lagrangian approach to the constrained optimization formulation of
imaging inverse problems,” IEEE Trans. Image Process., vol. 20, no.
3, pp. 681–695, 2011.

[28] S. Becker, J. Bobin, and E. Candès, NESTA: A Fast and Accu-
rate First-order Method for Sparse Recovery Calif. Inst. Technol.,
Pasadena, Tech. Rep., 2009.

[29] J. Bazerque and G. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1847–1862, 2010.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating method of mul-
tipliers,” Found. Trends in Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[31] S. Ram, A. Nedić, and V. Veeravalli, “A new class of distributed op-
timization algorithms: Application to regression of distributed data,”
Optimiz. Methods Software, pp. 1029–4937, 2010.

[32] M. Garey and D. Johnson, Computers and Intractability. New York:
W. H. Freeman, 1979.

[33] F. Kuhn and R. Wattenhofer, “On the complexity of distributed graph
coloring,” in Proc. 25th Ann. ACM Symp. Principles of Distrib.

Comput. (PODC’06), 2006.
[34] D. Leith and P. Clifford, “Convergence of distributed learning algo-

rithms for optimal wireless channel allocation,” in Proc. IEEE Int.
Conf. Decision Contr. (CDC), 2006, pp. 2980–2985.

[35] K. Duffy, N. Connell, and A. Sapozhnikov, “Complexity analysis of
a decentralized graph coloring algorithm,” in Proc. Inf. Process. Lett.,
2008.

[36] N. Linial, “Locality in distributed graph algorithms,” SIAM J. Comput.,
vol. 21, no. 1, pp. 193–201, 1992.

[37] J. Mota, “Distributed Algorithms for Sparse Approximation” M.S.
Thesis, IST, , Portugal, 2008 [Online]. Available: http://users.isr.ist.
utl.pt/~jmota/publications.html

[38] M. Friedlander, Exact Regularization of Linear Programs Univ. British
Columbia, Tech. Rep., 2006.

[39] O. Mangasarian and R. Meyer, “Nonlinear perturbation of linear pro-
grams,” SIAM J. Contr. Optimiz., vol. 17, no. 6, pp. 745–752, 1979.

[40] D. Bertsekas, Nonlinear Programming, 2nd ed. New York: Athena
Scientific, 1999.

1956 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

[41] M. Raydan, “The Barzilai and Borwein gradient method for the large
scale unconstrained minimization problem,” SIAM J. Optimiz., vol. 7,
no. 1, pp. 26–33, 1997.

[42] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Contr., vol. 54, no. 1, 2009.

[43] M. DeGroot, “Reaching a consensus,” J. Amer. Statist. Assoc., vol. 69,
no. 345, pp. 118–121, 1974.

[44] I. Konnov, Equilibrium Models and Variational Inequalities. New
York: Elsevier, 2007, vol. 210.

[45] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. New York: Kluwer Academic, 2003.

[46] P. Tseng, “Convergence of a block coordinate descent method for non-
differentiable minimization,” J. Optimiz. Theory Appl., vol. 109, pp.
475–494, 2001.

[47] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Image Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[48] B. He, H. Yang, and S. Wang, “Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities,” J.
Optimiz. Theory Appl., vol. 106, no. 2, pp. 337–356, 2000.

[49] S. Wang and L. Liao, “Decomposition method with a variable param-
eter for a class of monotone variational inequality problems,” J. Op-
timiz. Theory Appl., vol. 109, no. 2, pp. 415–429, 2001.

[50] E. Berg, M. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and Ö.
Yilmaz, Sparco: A Testing Framework for Sparse Reconstruction Dep.
Comput. Sci., Univ. British Columbia, Vancouver, Tech. Rep., 2007.

[51] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” .

[52] P. Erdős and A. Renyi, “On random graphs,” Publicationes Math., vol.
6, pp. 290–297, 1959.

[53] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ net-
works,” Nature, vol. 393, no. 6684, pp. 409–410, 1998.

[54] A. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, pp. 509–512, 1999.

[55] M. Penrose, Random Geometric Graphs. Oxford, U.K.: Oxford
Univ. Press, 2004.

[56] E. Scheinerman, “Matgraph: A graph theory toolbox for MATLAB,”
[Online]. Available: http://www.ams.jhu.edu/~ers/matgraph

[57] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “A proof of convergence
for the alternating direction method of multipliers applied to polyhe-
dralconstrained functions,” 2011 [Online]. Available: http://arxiv.org/
abs/1112.2295

[58] B. He and X. Yuan, “On the convergence rate of alternating
direction method,” [Online]. Available: http://www.optimization-on-
line.org/DB_HTML/2011/09/3157.html 2011

[59] P. Combettes and J. Pesquet, “Proximal splitting methods in signal pro-
cessing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. New York: Springer, 2010.

[60] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imaging and
Vision, vol. 40, no. 1, 2011.

[61] B. He, M. Tao, and X. Yuan, “Alternating direction method
with Gaussian back substitution for separable convex pro-
grammming,” [Online]. Available: http://www.optimization-on-
line.org/DB_HTML/2010/12/2871.html 2010

[62] B. He, M. Tao, and X. Yuan, “A splitting method for separate convex
programming with linking linear constraints,” [Online]. Available:
http://www.optimization-online.org/DB_HTML/2010/06/2665.html
2010

[63] B. He, M. Tao, M. Xu, and X. Yuan, “Alternating directions based con-
traction method for generally separable linearly constrained convex
programming problems,” [Online]. Available: http://www.optimiza-
tion-online.org/DB_HTML/2009/11/2465.html 2010

[64] B. He and X. Yuan, “Linearized alternating direction method
with Gaussian back substitution for separable convex pro-
gramming,” [Online]. Available: http://www.optimization-on-
line.org/DB_HTML/2011/10/3192.html 2011

[65] Y. Narushima, T. Wakamatsu, and H. Yabe, “Extended Barzilai-Bor-
wein method for the unconstrained minimization problems,” Pacific J.
Opt., vol. 6, no. 3, 2010.

JoãoMota received the M.S. degree in electrical and
computer engineering from the Instituto Superior
Técnico, Technical University of Lisbon, Lisbon,
Portugal, in 2008.
He is currently working toward the Ph.D. degree in

electrical and computer engineering, within the joint
program between Carnegie Mellon University, Pitts-
burgh, PA, and Instituto Superior Técnico, Lisbon.
His research interests include distributed optimiza-
tion and control, and sensor networks.

João Xavier (S’97-M’03) received the Ph.D. degree
in electrical and computer engineering from Instituto
Superior Técnico (IST), Lisbon, Portugal, in 2002.
Currently, he is an Assistant Professor with the

Department of Electrical and Computer Engineering,
IST. He is also a Researcher with the Institute of
Systems and Robotics (ISR), Lisbon. His current
research interests are in the area of optimization,
sensor networks, and signal processing on manifolds.

Pedro M. Q. Aguiar (S’95-M’00-SM’08) received
the Ph.D. degree in electrical and computer en-
gineering from the Instituto Superior Técnico,
Technical University of Lisbon, Lisbon, Portugal, in
2000.
He is currently an Assistant Professor with the

Instituto Superior Técnico, Technical University of
Lisbon, Lisbon, Portugal. He is also affiliated with
the Institute for Systems and Robotics, Lisbon, and
has been a Visiting Scholar with Carnegie-Mellon
University, Pittsburgh, PA, and a Consultant with

Xerox Palo Alto Research Center, Palo Alto, CA. His main research interests
are in image analysis and computer vision.

Markus Püschel (M’99-SM’05) received the
Diploma (M.Sc.) in mathematics and the Doctorate
(Ph.D.) degree in computer science, in 1995 and
1998, respectively, both from the University of
Karlsruhe, Germany.
Since 2010, he has been a Professor of Computer

Science at ETH Zurich, Switzerland. Prior to that
(from 2000 to 2010), he was a Professor of Electrical
and Computer Engineering at Carnegie Mellon Uni-
versity, Pittsburgh, PA, where he still has an adjunct
status. From 1998 to 1999, he was a Postdoctoral

Researcher with the Mathematics and Computer Science Department, Drexel
University, Philadelphia, PA. In 2009, he cofounded SpiralGen, Inc.
Dr. Püschel was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, the IEEE SIGNAL PROCESSING LETTERS, was a Guest Editor of
the PROCEEDINGS OF THE IEEE and the Journal of Symbolic Computation, and
served on various program committees of conferences in computing, compilers,
and programming languages. He is a recipient of the Outstanding Research
Award of the College of Engineering at Carnegie-Mellon and the Eta Kappa
Nu Award for Outstanding Teaching. He also holds the title of Privatdozent at
the University of Technology, Vienna, Austria.

