
Distributed Bees Algorithm for Task Allocation in 
Swarm of Robots 

Aleksandar Jevtic Alvaro Gutiérrez Diego Andina 

and Mo Jamshidi 

Abstract—In this paper, we propose the distributed bees 
algorithm (DBA) for task allocation in a swarm of robots. 
In the proposed scenario, task allocation consists in assigning 
the robots to the found targets in a 2-D arena. The expected 
distribution is obtained from the targets' qualities that are 
represented as scalar values. Decision-making mechanism is 
distributed and robots autonomously choose their assignments 
taking into account targets' qualities and distances. We tested the 
scalability of the proposed DBA algorithm in terms of number 
of robots and number of targets. For that, the experiments 
were performed in the simulator for various sets of parameters, 
including number of robots, number of targets, and targets' 
utilities. Control parameters inherent to DBA were tuned to test 
how they affect the final robot distribution. The simulation results 
show that by increasing the robot swarm size, the distribution 
error decreased. 

Index Terms—Multirobot systems, scalability, swarm 
intelligence, task allocation. 

I. INTRODUCTION 

IN applications that are too risky or too demanding for 

humans, or where a fast response is crucial, multirobot 

systems can play an important role thanks to their capability to 

cover the area. Possible applications are planetary exploration, 

urban search and rescue, monitoring, surveillance, cleaning, 

maintenance, among others. In order to successfully perform 

the tasks, robots require a high degree of autonomy and a good 

level of cooperation. The set of robots should behave like a 

team and not merely as a set of entities. 

In scenarios that require area coverage, dozens, hundreds, 

or even thousands of robots can be used. Such a large group of 

robots, if organized in a centralized manner, could experience 

information overflow that can lead to the overall system 

failure. For this reason, the communication between the robots 

can be realized through local interactions, either directly with 

one another or indirectly via environment. The large group of 

robots acting in such a manner is referred to as swarm [1]. 

As a result of the growing interest in coordination of multi-

robot systems, multirobot task allocation (MRTA) has become 

an important research topic. The goal is to assign the tasks 

to the robots in a way that, through cooperation, the global 

objective is achieved more efficiently. In the scenario proposed 

in this paper, tasks are represented by targets defined by their 

qualities and their location in the robot arena. We developed 

a simulator that implements a multiforaging scenario, and 

the experimental setup addresses the issue on how to, in a 

distributed way, assign the robots to the found targets with a 

expected distribution determined from the targets qualities. 

Scalability in its most general form is defined as how 

well a solution to some problem will work when the size of 

the problem increases. In the context of mobile multirobot 

systems, scalability refers to the overall system's performance 

if the number of robots increases in relation to the number 

of tasks at hand [2]. The resulting effect on the system's 

performance can be determined in terms of metrics associated 

with a particular platform or an operating environment, which 

in our work refers to dispatching a robot to a remote site 

marked as a target. 

For a swarm of robots engaged in a multiforaging scenario 

we propose using the distributed bees algorithm (DBA) [3] 

inspired by the foraging behavior of colonies of bees in 

nature. When they find a food source, the scout bees return 

to the hive and perform a famous "waggle dance" in order 

to recruit other bees. The information about the richness and 

location of the source is passed using direct communication. 

Some models of the cooperative behavior of bee colonies 

with centralized communication or no communication have 

already been proposed [4]-[6]. In order to avoid the centralized 

concept of the beehive dance floor, our robots were designed 

to use broadcast communication to inform other robots in the 

range about the estimated location and the quality of the found 

target. 

The objective of the proposed algorithm is to assign the 

robots in a swarm to the found targets in such a way that the 

final distribution is proportional to the targets' qualities. The 

targets with associated qualities represent a distributed "food" 

that requires a usually nonuniform distribution of robots in 

the area. The algorithm has been previously validated through 

experiments with real robots [3]. This paper presents the 

analysis of the proposed algorithm's scalability in a simulated 



environment. The simulations were performed for various sets 

of parameters, including number of robots, number of targets 

and targets' quality values. Control parameters inherent to 

the DBA were tuned to test how they affect the final robot 

distribution. 

The rest of this paper is organized as follows. Section II 

provides a summary of the related work. In Section III, we 

give a problem statement and describe a general mechanism 

for distributed task allocation in multiforaging domain. In this 

section, we present a mathematical model of the proposed 

DBA algorithm. In Section IV, we define the simulation 

environment and propose the experimental evaluation for the 

multirobot system's scalability. We present the experimental 

results and their statistical analysis, and give a discussion of 

the approach and the results. Finally, in Section V we make 

the conclusions. 

II. RELATED WORK 

Multirobot systems offer the possibility of enhanced task 

performance, increased task reliability and decreased cost over 

more traditional single-robot systems. However, multirobot 

systems must be designed having these issues in mind. Re

search field of multirobot systems is not new and various 

architectures that differ in size and complexity have been pro

posed. Dudek et al. [7] provided a taxonomy that categorizes 

the existing multirobot systems along various axes, including 

size (number of robots), team organization (e.g., centralized 

versus distributed), communication topology (e.g., broadcast 

versus unicast), and team composition (e.g., homogeneous 

versus heterogeneous). 

Rather than characterize architectures, Gerkey and Mataric 

[8] categorized instead the underlying coordination problems 

with a focus on MRTA. They distinguish: single-task (ST) 

and multitask (MT) robots, single-robot (SR) and multirobot 

(MR) tasks, and instantaneous (IA) and time-extended (TA) 

assignment. The authors showed that many MRTA problems 

can be viewed as instances of well-studied optimization prob

lems in order to analyze the existing approaches, but also to 

use the same theory in the synthesis of new approaches. In 

order to estimate a robot's performance, they defined utility 

that depends on two factors, namely expected quality of task 

execution and expected resource cost. Given a robot R and a 

task T one can define QKT and CRT as the quality and cost, 

respectively, expected to result from the execution of T by R. 
The resulting nonnegative utility measure is as follows: 

( QRT - CRT, if R is capable of executing 

T and QRT > CRT (1) 

0, otherwise. 

This, however, is not a strict definition of utility which is 

a flexible measure of performance and can entail arbitrary 

computation. The only constraint on utility estimators is that 

they must each produce a single scalar value that can be 

compared for the purpose of assigning robots for tasks. The 

problem that we address in this paper is categorized as a 

"single-task robots, multirobot tasks, instantaneous assignment 

(ST-MR-IA)," which Gerkey and Mataric proposed to be 

solved as a set partitioning problem. However, this requires the 

combined utilities of all the robots to be known in advance, 

which is not the case. The method we propose is described in 

detail in Section III. 

What follows is a survey of various multirobot system 

architectures that have been proposed for solving different 

problems. We tend to use the above mentioned taxonomies 

to categorize them. 

One of the common approaches for solving the ST-SR 

and ST-MR problems is a market-based approach which uses 

auctioning mechanism for task allocation. Mataric et al. [9] 

proposed four different strategies for dynamical task allocation 

in two different emergency-handling scenarios. The robots 

bid for tasks and decisions are made by auctioning. The 

authors concluded that there is no overall best strategy and 

that the success of a strategy is task-related. Michael et al. 
[10] proposed a market-based approach for robots formation 

control. They associated multiple tasks with predefined spatial 

locations that define a formation. 

A thorough overview of market-based approaches for 

MRTA was given by Dias et al. [11]. A common drawback 

of these approaches is the underlying auctioning mechanism 

which requires all the bids from the robots to be gathered at 

one auctioning point. The main advantage of the method we 

propose is that, although it imposes certain communication 

cost for sending the information of the found targets, the robots 

make decisions autonomously and in a distributed manner. 

This is not the case with market-based approaches that feature 

a partial distribution, where robots are divided into subteams 

that take decisions in a centralized manner. For this reason, 

scalability in market-based approaches is often limited by 

the computation and communication needs that arise from 

increasing auction frequency, bid complexity, and planning 

demands. 

Environment exploration and mapping are common appli

cations for multirobot systems. Franchi et al. [12] proposed 

a sensor-based random graph method for cooperative robot 

exploration. They addressed the issue of system's performance 

with respect to exploration time and traveled distance. The 

authors showed that by adding more robots the system could 

scale-up, but its performance was highly dependent on the 

initial team deployment, giving better results when the robots 

started grouped in a cluster than if scattered in the environ

ment. Another approach proposed by Burgard et al. [13] treats 

the unknown environment exploration as a ST-SR problem, 

where individual robots select a new target location based 

on its distance and utility. Although the experimental results 

show the advantages of collaboration, the proposed centralized 

approach cannot be applied if not all robots can communicate 

with each other. 

Decentralized coordination of robots has various advantages 

over more traditional centralized approaches. It can be applied 

to reduce the communication burden on multirobot system 

[14], especially for large teams of robots. In some applications 

communication can be difficult to implement or no commu

nication exists at all. Joordens and Jamshidi [15] proposed a 

decentralized coordination for a swarm of underwater robots 

which is based on consensus control. Another decentralized 



strategy for dynamical allocation of tasks that requires no 

communication among robots was proposed by Berman et al. 
[16]. But often, as in case of multirobot area coverage [17], the 

decentralized coordination and distributed decision-making is 

applied having one goal in mind, that the global objective is 

achieved more efficiently. 

A. Bio-Inspired Coordination of Multirobot Systems 

Robot swarms are multirobot systems that typically consist 

of a large population of simple robots interacting locally with 

one another and with their environment [18]. These systems 

draw inspiration from animal swarms in nature but their 

design is not constrained by biological plausibility. Their main 

feature is decentralized coordination which results in a desired 

behavior that emerges from the rules of local interactions. 

The self-organizing properties of animal swarms such as 

insects have been studied for better understanding of the 

underlying concept of decentralized decision-making in na

ture [19], but it also gave a new approach in applications 

to multiagent system engineering and robotics. Bio-inspired 

approaches have been proposed for multirobot division of 

labor in applications such as exploration and path formation 

[20], multisite deployment [21], or cooperative transport and 

prey retrieval [22], [23]. 

The bottom-up design topology inherent to bio-inspired 

multirobot systems provides them with one or more of the 

following features, such as being autonomous, scalable, robust 

and adaptive to changes in their environment. On the other 

hand, the collective behavior has emergent properties that give 

them the ability to produce unpredictable patterns. One way 

of dealing with the unpredictability issue is statistical analysis 

through experiments, as proposed in this paper. 

B. Scalability 

Task allocation scenarios include a set of tasks that may 

have different priorities and require one or more robots to 

be assigned to their execution. A very important property of 

multirobot systems is the ability to scale-up with respect to the 

number of robots or the number of tasks at hand. However, 

scalability of multirobot systems and multiagent systems in 

general has been analyzed from various perspectives including 

the total number of agents involved, the size of the commu

nication data, the number of rules the agents operate with, or 

the agents' diversity [2]. 

In order to evaluate the scalability of a given multirobot 

system we need to identify a performance metrics. Various 

MRTA methods exist but, to the best of our knowledge, 

a comprehensive analysis tool for the scalability of such 

methods has not been given. Some mathematical models that 

have been proposed could serve as guidelines in multirobot 

system design, but different scenarios to which these systems 

are applied usually do not permit us to maintain within the 

proposed framework. 

Lerman et al. [24] proposed a mathematical model for 

MRTA in dynamical environments. The authors assumed that 

robots were able to observe tasks in order to discriminate their 

types, but also to discriminate the tasks that other robots were 

assigned to. Robots had limited sensing capabilities and could 

not directly communicate. The lack of communication made 

the system more robust to failures, but also more susceptible to 

noise from the sensors, and requires more time for exploration 

of available tasks. 

Top-down design methodologies apply the classical control 

theory for performance estimation of distributed agent-based 

systems. While it is possible to establish bounds on the system 

behavior and provide performance guarantees, they heavily 

rely on the available bandwidth for robot communication and 

they are more sensitive to noise. The need for resources 

becomes even a bigger issue as the number of robots increase. 

There is therefore a very natural tendency to apply bottom-

up methodologies which produce autonomous, scalable and 

adaptable systems requiring minimal communication [25]. 

Broadcast communication provides quick propagation of 

tasks' information within the multirobot system but extensive 

use of communication channel can affect the system's scalabil

ity. Previously described market-based approaches suffer from 

a large requirement in terms of communication bandwidth 

as they use broadcast messages to auction for the tasks. 

Farinelli et al. [26] proposed a mechanism based on token 

passing for cooperative object retrieval, which scales up for 

reliable sending of broadcast messages. The authors made a 

comparison of their method with market-based approaches and 

the ones based on iterative broadcast communication. Their 

results show that the ability of the system to adjust to the 

available communication bandwidth provides guarantees for 

better performance. 

III. DISTRIBUTED TASK ALLOCATION 

A. Problem Definition 

Based on the described taxonomy, our multirobot system 

can be categorized as homogeneous and distributed, using 

broadcast communication. We address a problem of single-

task robots, multirobot tasks and instantaneous assignment 

(ST-MR-IA). The task allocation scenario we study considers 

the environment that contains a number of tasks that could be 

of same or different importance and robots that are equally 

capable of performing each task but can only be assigned to 

one at any given time. More specifically, the tasks are targets 

with their associated qualities. The quality of a target is an 

application-specific scalar value that may represent target's 

priority or complexity, where a higher value requires more 

robots to be allocated. For example, it could represent the 

richness of the mineral or water source on a planet that we 

want to harness, the amount of garbage to be collected in a 

public space, or the number of injured people in a need for 

assistance in urban search and rescue scenario. In this paper, 

we do not consider how these values are obtained. 

The proposed scenario is presented under the following 

assumptions. 

1) All the targets are made available to all the robots. This 

is done by setting the broadcast communication range of 

the robots to cover the entire arena. 

2) Robots take decisions once all the targets in the arena 

are found, unless they were the ones that found a target 



in which case they are automatically allocated to that 

target. The total number of targets is preset in robots' 

internal memory and it depends on the experimental 

setup. 

3) Reallocation to another target is not allowed. 

These assumptions are taken for simplicity; otherwise, it 

would be difficult to analyze the performance of the system 

due to the unpredictability of the robots' distribution prior to 

target allocation. 

Consider a population of N robots to be allocated among 

M targets. Let Q e {qi,..., qu\ denote the set of normalized 

qualities of all available targets. We denote the number of 

robots on the target i e {1, . . . ,M} by «¿, a nonnegative 

integer. The population fraction allocated to target i is /¿ = 

rii/N, which represents the target's relative frequency, and 

the vector of population fraction is f = [ / i , . . . , /M]T- The 

expected distribution is the set of desired population fractions 

for each target, f
d
 = [ff,..., / ¿ ]

r
, where ff = q¿. The 

usage of fractions rather than integers is practical for scaling, 

but it also introduces a distribution error as the fractions 

can take only certain values that are defined by the swarm 

size. 

A relevant concept from set theory could be used to observe 

this as a set partitioning problem. A family X is a partition of 

a set E if and only if the elements of X are mutually disjoint 

and their union is E 

xeX 

(2) 

[j=E. 
xeX 

However, for the proposed scenario the system optimization 

based on the maximum utility cannot be applied because the 

combined utilities of the robots are unknown as robots have no 

knowledge of the decisions taken by other robots. Therefore, 

we propose the DBA. 

B. Distributed Bees Algorithm 

When a robot receives information about the targets it 

calculates the utilities with respect to those targets. The utility 

depends on the target's quality value and the related cost, i.e. 

the robot's distance from the target. This is the basic concept 

behind the DBA that was introduced in [3], but here it is 

described in details. 

1) Costs: The cost of a target i for robot k is calculated 

as the Euclidean distance between the robot and the target in 

a 2-D arena 

4 = V(XÍ - xú2 + (yi - yú2 (3) 

where (x¿, y¿) and (xk, yk) represent target's and robot's coor

dinates in the arena, respectively. 

However, to calculate the utility we use the target's visibility 

defined as the reciprocal value of the distance 

*=w (4) 

2) Qualities: The quality is a scalar value that represents 

priority, or the complexity of the target. Normalized qualities 

are calculated as fractions of the sum of qualities of all 

available targets 

Qi ,~ 
1i = ^M n ( 5 ) 

Z^=i <¿j 

where Q¿ is a quality of the target i. In real-world scenarios, 

the quality of a region of interest is an estimated value that is as 

a result of sensor-readings or a previously acquired knowledge. 

3) Computing Utilities: The utility of a robot as proposed 

in (1) depends on both, cost and quality of the chosen target. 

We define the utility as a probability that the robot k is 

allocated to the target i, and it is calculated as follows: 

k = Wi ( 6 ) 

where a and B are control parameters that allow us to bias the 

decision-making mechanism toward the quality of the solution 

or its cost, respectively (a, B > 0; a, B e 3t). From (6) it is 

easy to show that 

M 

i=\ 

4) Decision-Making: The underlying decision-making 

mechanism of the DBA algorithm adopts the roulette rule, also 

known as the wheel-selection rule. That is, every target has an 

associated probability with which it is chosen from a set of 

available targets. Once all the probabilities are calculated as 

in (6), the robot will choose a target by "spinning the wheel." 

It should be noticed that the resulting robots' distribution 

depends on their initial distribution in the arena, i.e. their 

distances from each target prior to target allocation. Therefore, 

robots' utilities will differ with respect to the same target if 

their distances from that target are not equal. Since a combined 

robots utility cannot be computed due to a distributed nature of 

the proposed algorithm, the quality of the targets is used as the 

only measure for the expected robots' distribution. Although 

the overall cost efficiency of the swarm is not analyzed in this 

paper, target's visibility as used in (6) makes closer targets 

more attractive to robots. 

IV. EXPERIMENTAL EVALUATION 

In the following, we describe the simulation environment 

and experimental setup, and we report the simulation results 

in order to analyze the scalability of the proposed system. 

A. Simulator 

Our simulation platform is a fast, specialized multirobot 

simulator for the e-puck robots described in [27]. It is a 

simple and effective simulator implementing 2-D kinematics. 

A screenshot of the simulator is shown in Fig. 1. In our 

simulations, the e-puck is modeled as a cylindrical body of 

3.5 cm in radius that holds eight infrared (IR) proximity 

sensors distributed around the body, three ground sensors on 

the lower-front part of the body and a range and bearing 



TABLE I 

PARAMETERS DESCRIBING THREE ARENAS USED IN EXPERIMENTS 

Area dimensions [m
2] 

Number of robots 

Experiment duration [time steps] 

Time step duration [s] 

Initial area radius [m] 
Number of targets 

Target radius [m] 

Target 1 location (x, y) [m] 

Target 2 location (x, y) [m] 

Target 3 location (x, y) [m] 

Target 4 location (x, y) [m] 

Target 1 quality (q\) 
Target 2 quality fe) 

Target 3 quality (#3) 

Target 4 quality (#4) 

Arena 1 

1.5 x 2.125 

10 20 40 

400 400 400 

0.1 

0.4 0.4 0.4 
2 

0.09 

(-0.45, 0.75) 

(0.45, -0.75) 

N/A 

N/A 

0.5 

0.5 

N/A 

N/A 

60 

300 

0.4 

100 

200 

0.5 

Arena 2 

1.5 x 2.125 

10 20 40 

400 400 400 

0.1 

0.4 0.4 0.4 
4 

0.09 

(-0.45, 0.75) 

(0.45, -0.75) 

(-0.45, -0.75) 

(0.45, 0.75) 

0.25 

0.25 

0.25 

0.25 

60 

300 

0.4 

100 

200 

0.5 

Arena 3 

1.5 x 2.125 

10 20 40 

400 400 400 

0.1 

0.4 0.4 0.4 
4 

0.09 

(-0.45, 0.75) 

(0.45, -0.75) 

(-0.45, -0.75) 

(0.45, 0.75) 

0.1 

0.2 

0.3 

0.4 

60 

300 

0.4 

100 

200 

0.5 

* Targets have a form of a circle. Without loss of generality, their radius and location were intuitively chosen. 

Fig. 1. Simulator screenshot. Experimental setup included 40 robots engaged 
in search for four targets of different qualities represented by different grey-
level intensity. Robots are programmed for obstacle avoidance, when robot 
detects an obstacle its color changes from black to blue to mark his new state. 
Once the robot has taken a new direction, its color goes back to black. 

communication sensor. IR proximity sensors have a range of 

5 cm, while the communication range of the E-puck Range 

6 Bearing module was set to cover the whole arena. For the 

three types of sensors, real robot measurements were sampled 

and the data was mapped into the simulator. Furthermore, 

uniformly distributed noise was added to the samples in order 

to effectively simulate different sensors; ±20% noise is added 

to the IR sensors and ±30% to the ground sensors. In the range 

and bearing sensor, noise is added to the range (±2.5 cm) and 

bearing (±20°) values. A differential drive system made up 

of two wheels is fixed to the body of the simulated robot. 

At each time step (100 ms), the robot senses the environment 

and actuates. The robot speed has been limited to 6 cm/s when 

moving straight and 3 cm/s when turning. 

B. Experimental Setup 

Three different experimental setups have been chosen to 

compare and study performance and scalability of the pro

posed DBA algorithm. The setups were carried out in the 

same arena where the number of robots, number of targets 

and targets' quality values were changed as shown in Table I. 

Additional experimental setup was created in order to analyze 

the effect of the control parameters a and B on the resulting 

distribution. Each experiment was repeated 50 times in order 

to perform a statistical analysis of the results. 

C. Simulation Results and Discussion 

In order to test the scalability of the proposed DBA with re

spect to the size of the swarm, the experiments were performed 

with 10, 20, 40, 60, and 100 robots for the experimental setup 

1, and 20, 40, 60, and 100 robots for the experimental setup 

2 and the experimental setup 3. The number of targets was 

also changed, from two in the experimental setup 1 to four 

in the experimental setup 2, in order to test the performance 

of the algorithm with respect to the number of targets. In 

the experimental setup 3, we used four targets with different 

quality values to show the adaptability of the swarm to a 

nonuniform distribution of the "food" in the environment. This 

is also the most realistic scenario. Finally, the experimental 

setup 4 was created to test how by changing the ratio of the 

control parameters a and B we can affect the resulting robots' 

distribution. 

As the algorithm performance metrics we define the mean 

absolute error (MAE) of the robots' distribution, which is 

given by 

1
 M 

MAE=—Y'\fi-fr
d\ (8) 

z = l 

where ff = q¡. 
As the name suggests, the mean absolute error is the 

average value of the absolute distribution error (per target) 

that is the result of discrepancy between the expected and the 

resulting robots' distribution. For each experimental setup and 

each swarm size described in Table I, 50 experiments were 

performed. The average and the maximum values of MAE 
obtained from the experiments are presented in Table II and 

graphically shown in Fig. 2. We can notice that the average 

MAE and maximum MAE values decrease as the size of the 
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Fig. 2. Box-plot comparison shows the robots' distribution mean absolute error {MAE) with respect to the swarm size, (a) Experimental setup 1. 
(b) Experimental setup 2. (c) Experimental setup 3. Each box-plot comprises observations ranging from the first to the third quartile. The median is indicated 
by a horizontal bar, dividing the box into the upper and lower parts. The whiskers extend to the farthest data points that are within 1.5 times the interquartile 
range. Outliers are shown with a plus symbol. The values were obtained from 50 experiments performed for each swarm size within each experimental setup. 
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Fig. 3. Bar-plot comparison of the expected (red) versus the obtained (blue) robots' distribution on two targets of same quality values, q\ = qi = 0.5. Fifty 
experiments were performed for each of the following swarm sizes, (a) 10 robots, (b) 40 robots, (c) 100 robots. 

TABLE II 

MEAN ABSOLUTE ERROR (MAE) OF THE ROBOTS' DISTRIBUTION 

Exp. setup 1 

Exp. setup 2 

Exp. setup 3 

Num. of Robots 

10 

20 

40 

60 

100 

10 

20 

40 

60 

100 

10 

20 

40 

60 

100 

Average MAE 
0.1140 

0.0820 

0.0555 

0.0482 

0.0461 

0.0941 

0.0720 

0.0500 

0.0475 

0.0313 

0.0979 

0.0790 

0.0526 

0.0478 

0.0343 

Maximum MAE 
0.4000 

0.3500 

0.2000 

0.1167 

0.1100 

0.1750 

0.1500 

0.1000 

0.0917 

0.0650 

0.2500 

0.1500 

0.0875 

0.0790 

0.0750 

* Parameters for each experimental setup are described in Table I. 
** The average MAE and the maximum MAE values were obtained 
from 50 experiments performed for the each swarm size within the each 
experimental setup. 

robot swarm increases regardless of the number of targets 

or their quality values. This was expected because of the 

probabilistic target allocation mechanism applied in (6). 

The effectiveness of the algorithm in terms of increased 

number of targets is shown in Figs. 3 and 4. The results show 

that the average and the maximum MAE values decreased 

for larger swarms in case of four targets of the same quality. 

It should be noticed that the allocation of ten robots to four 

targets produces an error that is the result of the cardinality of 

the robot swarm. It is not physically possible to partition the 

swarm in order to obtain the expected target allocation (2.5 

robots per target). 

Another inherent source of error results from the assumption 

that the robots that had found a target are not allowed to 

reallocate to another target, therefore they are not involved 

in the decision-making process. Also, it is assumed that 

the robots wait for a predetermined number of targets to 

be found before they make a decision, which can result in 

the same target being found by more than one robot. This 

fraction of the robot swarm also produces an error in the final 

distribution because they cannot reallocate to another target. 

The algorithm's performance is analyzed having these issues 

mind. 

In order to test the ability of the robot swarm to adapt 

to a nonuniform distribution of "food" in the environment, 

the experiments were performed for four different targets 

(experimental setup 3). The robots' distribution changed ac

cording to a new set of targets' quality values, as shown in 

Fig. 5. In the same figure we can also notice that the resulting 

robots' distribution, with respect to the expected distribution, 

is slightly in favor of the less valuable targets. This is another 

consequence of the robots that had found a target not being 

able to reallocate, and it is especially evident for smaller robot 

swarms. For example, let us consider a swarm of ten robots 

in search of four different targets, as shown in Fig. 5(a). If 
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Fig. 4. Bar-plot comparison of the expected (red) versus the obtained (blue) robots' distribution on four targets of same quality values, q\ = qi = qi = q\ 
0.25. Fifty experiments were performed for each of the following swarm sizes, (a) 20 robots, (b) 60 robots, (c) 100 robots. 
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Fig. 5. Bar-plot comparison of the expected (red) versus the obtained (blue) robots' distribution on four targets of different quality values, q\ = 0.1, qi = 0.2, 
#3 = 0.3, and q¿[ = 0.4. Fifty experiments were performed for each of the following swarm sizes, (a) 20 robots, (b) 60 robots, (c) 100 robots. 
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Fig. 6. Effects of the control parameters, a and /?, on the final robots' distribution. Target allocation was performed with 60 robots as described in the 
experimental setup 3 consisting of four targets with different quality values: q\ = 0.1, qi = 0.2, q^ = 0.3, and q¿[ = 0.4. The results of the robots' distribution 
per target is shown for the following values of a/fi ratio, (a) a/fi = 1. (b) a/fi = 2. (c) a/fi = 5. The values were obtained from 50 experiments for each 
scenario. 

in the random target search process two robots find the target 

with the associated quality value of 0.1, then the final relative 

frequency for this target cannot be less than 0.2 (2 out of 

10 robots) which is already above the expected value of 0.1. 

Although for the larger swarms the effect of the initial robot 

distribution becomes less relevant, it is always present. 

The control parameters, a and /J, were introduced in (6) 

to compensate for the biased distribution, but also to allow 

us to give more relevance to either the quality of the targets 

or the cost of reaching them. Therefore, in the experimental 

setup 4 we increased the a/f$ ratio to give more relevance 

to the quality value of the targets on the expense of their 

distances from the robots. The resulting robots' distributions 

per target for different values of the a//3 ratio are presented 

TABLE III 

EFFECTS OF CONTROL PARAMETERS ON ROBOTS' DISTRIBUTION 

a/p Ratio 

1 

2 

5 

Average MAE 
0.0478 

0.0525 

0.1415 

Maximum MAE 
0.1083 

0.1000 

0.2083 

* The values were obtained from 50 experiments performed on the swarm 
of 60 robots in search for four targets with different quality values 
(experimental setup 3). 

in Fig. 6. Results show that, by tuning the control parameters, 

the final robot distribution can change in favor of the more 

valuable targets but with an increase in the average MAE 
(see Table III). It is reasonable to expect that by decreasing 



the a/p ratio the cost efficiency of the robot swarm would 

improve in terms of the distance traveled, however, the MAE 
is also expected to increase. Further analysis of the effect of 

the control parameters will be a part of the future work. 

V. CONCLUSION 

Various applications for large multirobot systems require 

efficient task allocation in terms of individual and combined 

robots' utilities. The quality of the solution is analyzed using 

a defined performance metrics, which in our case was a 

mean absolute error of the resulting robots' distribution with 

respect to the qualities of the available targets in the robot 

arena. In case of large, autonomous, multirobot systems, the 

scalability and the ability to adapt to different environments are 

the features of utmost importance. Our experiments through 

simulation showed that the proposed DBA provides the robot 

swarm with scalability in terms of the number of robots and 

number of targets, but also with adaptability to a nonuniform 

distribution of the targets' qualities. 

The importance of the control parameters, a and /3, is that 

they provide a mechanism to adjust the robot swarm behavior 

depending on the task at hand and the available resources. In 

this paper, we changed the values of a and j3 in order to bias 

the resulting robots' distribution toward the more favorable 

targets. Future work will include the analysis of the effect 

of these parameters in terms of the task-allocation cost with 

respect to the distance traveled by the robots. 
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