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Abstract
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1 Introduction

A re-encryption protocol (a form of proxy cryptography [3, 21]) produces a ciphertext encrypted
under one key from a ciphertext encrypted under another but without plaintext becoming available
during intermediate steps. This rules out first decrypting the message and then encrypting it using
another key.

The re-encryption protocol in this paper is designed for use by distributed services, each com-
prising a set of servers that work together to implement some service semantics unless a significant
fraction of the servers become compromised. Here, secret sharing [27, 2] is typically employed
to split the service private key among the servers, and threshold cryptography [5, 13] is used for
cryptographic operations involving that private key. Instances of this architecture are found in
COCA [31], e-vault [19], ITTC [29], Omega [26], and SINTRA [6].

Re-encryption is particularly useful in connection with distributed services because, in such
systems, no single server can be trusted to have unencrypted secrets. So, for example, a re-
encryption protocol would be employed if a secret stored by a service A is being moved to some
other service B, where each service stores its secrets encrypted under a different service public
key. Our interest in the problem arose in connection with building an infrastructure to support
publish/subscribe communications. In this application, a number of administrative domains each
operated its own distributed service with separate cryptographic keys, and the need to securely
transfer items between domains led to design the re-encryption protocol of this paper.

Blinding [8] is the core for our re-encryption protocol. An ElGamal encrypted [16] secret at
service A is blinded by a random blinding factor, then decrypted using A’s private key, and finally
both encrypted using B’s public key and un-blinded using the original random blinding factor. A
new distributed blinding protocol allows distributed services to perform the blinding and un-blinding;
this distributed blinding protocol employs a new cryptographic building block called verifiable dual
encryption to create proofs that, without disclosing the plaintext, certify two ciphertexts created
under different public keys are (with high probability) for the same plaintext. We believe that both
the distributed blinding protocol and the verifiable dual encryption protocol have uses outside of
re-encryption protocols.

Since assumptions invariably translate into vulnerabilities (and opportunities for attackers), we
eschew assumptions about execution speed and message delivery delays. So we instead adopt the
asynchronous model of computation, which has no assumptions about timings. But deterministic
solutions to the consensus problem cannot exist in such settings [18], and that creates challenges
for the protocol designer who nonetheless must implement any required server coordination. In
the protocols contained herein, selection and agreement on a blinding factor is avoided by instead
computing multiple equivalent candidates along with a unique label for each; the labels allow a
server to choose one of the blinding factors and have any subsequent computations by its peers be
consistent with this choice.

The rest of the paper is organized as follows. Section 2 describes the system model. In Sec-
tion 3, ElGamal encryption is reviewed and re-encryption by blinding is explained. Our distributed
blinding protocol is the subject of Section 4. Section 5 discusses alternative re-encryption schemes
and other related work. Appendix A sketches proofs for our protocol.

2 System Model

Consider a distributed service S comprising n servers, where each server has a unique public/private
key pair with the public key known to the other servers, service public key KS is widely known,
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and service private key kS is distributed among the servers according to an (n, f) secret sharing
scheme.1 Consequently, servers can communicate with each other securely and the service can,
using threshold cryptography, perform decryption and generate digital signatures provided at least
f + 1 servers cooperate.

We also make the following assumptions about the environment:

Compromised Servers: Servers are either correct or compromised. A compromised server might
stop, deviate arbitrarily from its specified protocols (i.e., Byzantine failure), and/or disclose
information stored locally. At most f of the n servers are compromised, where 3f + 1 = n
holds.2

Asynchronous System Model: There is no bound on message delivery delay or server execution
speed.

So an adversary can control the behavior of and obtain all information available to as many as
�(n − 1)/3� of the servers. Also, an adversary could conduct denial-of-service attacks that delay
messages or slow down servers by arbitrary finite amounts. As customary, the capability of the
adversary is limited to that of a probabilistic polynomial-time Turing machine.

3 ElGamal Re-encryption Using Blinding

ElGamal public key encryption is based on large prime numbers p and q such that p = 2q + 1. Let
Gp be a cyclic subgroup (of order q) of Z

∗
p = {i | 1 ≤ i ≤ p − 1}, and let g be some generator of Gp.

Any k ∈ Z
∗
q can be an ElGamal private key, and then K = (p, q, g, y) with y = gk mod p is

the corresponding public key. To simplify notation, modular calculations will henceforth be left
implicit. Thus, “mod p” is omitted when computing exponentiations and discrete logarithms, and
“mod q” is omitted when performing computation on exponents.

An ElGamal ciphertext E(m) for plaintext m ∈ Gp is a pair (gr,myr) with r uniformly and
randomly chosen from Z

∗
q. Ciphertext E(m) = (a, b) is decrypted by computing b/ak, since (for

some r)

b/ak = myr/(gr)k = m(gk)r/(gr)k = m.

Where needed, we write E(m, r) to indicate the value of r used in computing E(m) and we write
E(m) to denote the set {E(m, r) | r ∈ Z

∗
q} of all possible ciphertexts for m.

For E(m1) = (a1, b1), E(m2) = (a2, b2), and E(m) = (a, b), define the following operations:

E(m)−1 ≡ (a−1, b−1)

m′ · E(m) ≡ (a,m′b)

E(m1) × E(m2) ≡ (a1a2, b1b2)

The following properties then hold:

ElGamal Inverse: E(m)−1 ∈ E(m−1).
1By limiting the visibility of server public keys to only servers comprising this service, clients and other services

are shielded from changes to these keys (including proactive refresh of private key shares) and shielded from changes
to the composition of the service itself.

2The protocols are easily extended to cases where 3f + 1 < n holds.
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Figure 1: Re-encryption using blinding.

ElGamal Juxtaposition: m′ · E(m, r) = E(m′m, r).

ElGamal Multiplication: E(m1, r1) × E(m2, r2) ∈ E(m1m2) if r1 + r2 ∈ Z
∗
q.

Note that side condition r1 + r2 ∈ Z
∗
q in ElGamal Multiplication is easily checked without

knowledge of r1 or r2. This is because

(a, b) = E(m1, r1) × E(m2, r2) = (gr1+r2 ,m1m2y
r1+r2),

so by checking that a �= 1 holds, we conclude r1 + r2 �= 0 which, by closure of group Z
∗
q, implies

that r1 + r2 ∈ Z
∗
q holds as well.

In those rare instances where r1 + r2 = 0 holds, plaintext m1m2 is disclosed. This is not a
concern for our protocols, because ElGamal Multiplication is used only in connection with random
factors that are being multiplied to obtain a (random) encrypted blinding factor; new values can
thus be requested whenever r1 + r2 = 0 is found to hold.3 Our protocols omit such details, leaving
implicit the checking of this side condition and any additional communications required to fetch
suitable ElGamal encrypted values.

Blinding and Un-blinding with ElGamal

Let ES(m) denote plaintext m encrypted according to the public key KS of a service S and let
DS(c) denote ciphertext c decrypted with the corresponding private key. Figure 1 summarizes how
a service A performs re-encryption using blinding and un-blinding. Each arrow is labeled by an
operation (above) and its parameters (below). So we see that EA(m) is first blinded using EA(ρ),
where ρ is a random blinding factor; that result is decrypted to obtain mρ; and finally mρ is
unblinded using EB(ρ).

Figure 2 gives the actual protocol for re-encryption using blinding. Step 4 works because, letting
EB(ρ) be EB(ρ, r) we have:

(mρ) · (EB(ρ, r))−1

= (ElGamal Inverse)
(mρ) · EB(ρ−1,−r)

= (ElGamal Juxtaposition)
EB(mρρ−1,−r)

3The obvious denial of service attack of repeatedly requesting new values is prevented by accompanying such a
request with evidence E(m1, r1) and E(m2, r2).
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1. Pick a random blinding factor ρ ∈ Gp; compute EA(ρ) and EB(ρ).

2. Compute blinded ciphertext EA(mρ) := EA(m) × EA(ρ).

3. Employ threshold decryption to obtain blinded plaintext mρ from blinded ciphertext EA(mρ)
computed in step 2.

4. Compute EB(m) := (mρ) · EB(ρ)−1.

Figure 2: Re-encryption protocol executed by service A.

= (Cancellation)
EB(m,−r)

∈ (definition of EB(m))
EB(m)

The possibility of compromised servers makes choosing ρ and computing EA(ρ) and EB(ρ) in step 1
tricky to implement. A distributed blinding protocol to accomplish this task is the subject of the
next section.

4 Distributed Blinding Protocol

We start by giving a protocol for a relatively benign environment; modifications for tolerating
malicious attacks are then incorporated. This form of exposition, though perhaps a bit longer,
elucidates the role played by each element of the protocol.

Given two related ElGamal public keys KA = (p, q, g, yA) and KB = (p, q, g, yB) with the
same parameters p and g, the distributed blinding protocol must satisfy the following correctness
requirements.

Randomness-Confidentiality: Blinding factor ρ ∈ Gp is chosen randomly and kept confidential
from the adversary.

Consistency: The protocol outputs a pair of ciphertexts EA(ρ) and EB(ρ) for blinding factor ρ.

4.1 Defending Against Failstop Adversaries

Replace Compromised Servers assumption by:

Failstop Adversaries: Compromised servers are limited to disclosing locally stored information
or halting prematurely.4 Assume at most f out of n servers are compromised, where 3f+1 = n
holds.

Now to compute a confidential blinding factor ρ, it suffices to calculate
∏

i∈I ρi, where I is a set of
at least f + 1 servers and each server i ∈ I generates a random contribution ρi. Confidentiality of
ρ follows because, with at most f compromised servers, one server in I is not compromised. This
correct server picks a contribution that is random and unknown to the adversary; and the Failstop
Adversaries assumption means all compromised servers necessarily select contributions that are
independent of choices made by the correct servers.

4Thus, a failstop adversary is equivalent to an honest but curious server that can halt.
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1. Coordinator Cj initiates the protocol by sending to every server in A an init message.

Cj −→ A : id , init

2. Upon receipt of an init message from Cj, a server i:

(a) Generates an independent random number ρi.

(b) Computes encrypted contribution (EA(ρi), EB(ρi)).

(c) i −→ Cj : id , contribute, i, EA(ρi), EB(ρi)

3. Upon receipt of contribute messages from a set I comprising f + 1 servers in A:

(a) Cj computes: EA(ρ) = ×i∈IEA(ρi) and EB(ρ) = ×i∈IEB(ρi).

(b) Cj −→ A : id , finished, EA(ρ), EB(ρ)

Figure 3: Failstop Adversary Distributed Blinding Protocol

Ciphertext EA(ρ) can thus be obtained by calculating ×i∈IEA(ρi), due to ElGamal Multiplica-
tion.5 Similarly, ciphertext EB(ρ) can be obtained by calculating ×i∈IEB(ρi). So a service A can
satisfy the confidentiality requirement for blinding factor ρ if each server i outputs as its encrypted
contribution the ciphertext pair (EA(ρi), EB(ρi)).

To solicit encrypted contributions and then combine them into EA(ρ) and EB(ρ), we postulate
a coordinator Cj and (unrealistically) assume the server j executing Cj is never compromised:6

Correct Coordinator: Coordinator Cj is correct.

We then have the distributed blinding protocol in Figure 3. There, we write

i −→ j : m to specify that a message m is sent by i to j

i −→ A : m to specify that a message m is sent by i to every server com-
prising service A

and id identifies the instance of the protocol execution; id contains, among other things, the
identifier for the coordinator.

Coping with Faulty Coordinators. To eliminate the Correct Coordinator assumption, the
protocol must tolerate coordinator disclosure of locally stored information or premature halting.
Disclosure causes no harm, because the only locally stored information is the encrypted contribu-
tions from servers; to compute the blinding factor from these encrypted contributions, the adversary
would have to know the private key of service A or service B. A coordinator halting would prevent
protocol termination, but this is easily tolerated by using f +1 different coordinators instead of just
one. With f + 1 coordinators, at least one will be correct and will complete the protocol. And if
more than one coordinator is correct, then multiple blinding factors will be produced, which causes
no difficulty.

5Use of ElGamal Multiplication to conclude EA(ρ) = EA(ρ1, r1)×EA(ρ2, r2)× · · · ×EA(ρf+1, rf+1) requires that
r1 + r2 + · · ·+ rf+1 ∈ �∗

q hold. As before, this can be checked by seeing whether the first component of EA(ρ) equals
1 and soliciting new contributions if it does.

6This assumption is relaxed later in this section.
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Employing multiple coordinators does imply a performance penalty. In the worst case, run-time
costs are inflated by a factor of f , since as many as f of the coordinators are superfluous. This
cost, however, can be reduced by delaying when f of the coordinators commence their execution.
Since our protocol is designed for an asynchronous system, execution of coordinators can be delayed
without adversely affecting correctness. So, one server acts as the designated coordinator and the
others become coordinators only if the designated coordinator fails to complete execution within a
specified period of time.

4.2 Defending Against Malicious Attacks

Relax the Failstop Adversaries assumption, returning to the original Compromised Servers assump-
tion, and three noteworthy forms of misbehavior become possible.

• Servers choosing contributions that are not independent.

• The encrypted contribution from each server i not being of the form (EA(ρi), EB(ρ′i)) where
ρi = ρ′i.

• Servers and coordinators not following the protocol in other ways.

This section describes corresponding defenses.

Randomness-Confidentiality. Randomness-Confidentiality for the protocol of Figure 3 hinges
on the contribution from at least one server being confidential and independent from contributions
of all the others. It suffices to focus on a single run if, when engaging with different coordinators, a
correct server selects random contributions that are independent. Unfortunately, even here a single
compromised server can falsify the premise that its contribution is independent from the contri-
butions of all other servers. That compromised server simply selects its contribution after seeing
encrypted contributions from all other servers, exploiting the malleability of ElGamal encryption
and choosing a contribution that cancels out the encrypted contributions from the other servers.

Specifically, a compromised server proceeds as follows to ensure that ρ̂ becomes the blinding
factor generated by the protocol. Suppose

{(EA(ρi), EB(ρi)) | 1 ≤ i ≤ f}

is the set of encrypted contributions received from the f other servers at the start of step 3 in
Figure 3. After receiving these, the compromised server generates two ciphertexts EA(ρ̂) and
EB(ρ̂) and constructs as its encrypted contribution:

(
EA(ρ̂)×(×f

i=1EA(ρi))−1, EB(ρ̂)×(×f
i=1EB(ρi))−1

)
(1)

Due to ElGamal Multiplication and ElGamal Inverse, the second factor in each element of this en-
crypted contribution will cancel the encrypted contributions from the other servers, so the resulting
blinding factor is ρ̂.

An obvious defense is to prevent servers that have not published an encrypted contribution from
learning the encrypted contributions of others. So we modify the protocol of Figure 3 accordingly.
Instead of sending an encrypted contribution to the coordinator, each server sends a commitment,
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which is a cryptographic hash (e.g., SHA1) of that encrypted contribution. And only after the co-
ordinator has received 2f +1 commitments does it solicit encrypted contributions from the servers.7

Waiting for 2f +1 commitments is necessary to ensure the coordinator will ultimately receive f +1
encrypted contributions, since as many as f of the servers sending the 2f + 1 commitments could
be compromised.

Encrypted Contribution Consistency. A compromised server might create an encrypted con-
tribution that is not of the form (EA(ρi), EB(ρ′i)) where ρi = ρ′i holds. Such inconsistent encrypted
contributions cause the Consistency requirement for our distributed blinding protocol to be violated.
Decrypting EA(ρi) and EB(ρ′i) would be one way to check for inconsistent encrypted contributions,
but having that plaintext would also undermine maintaining the confidentiality of ρ. So our pro-
tocol instead employs a new cryptographic building block called verifiable dual encryption that
checks whether ρi = ρ′i holds given two ElGamal ciphertexts EA(ρi) and EB(ρ′i).

Verifiable dual encryption is based on the non-interactive zero-knowledge proof, which we refer
to as DLOG, for the equality of two discrete logarithms, as first proposed by Chaum and Pederson [9].
Given a, g, X = ga, Y , and Z = Y a, DLOG(a, g,X, Y, Z) shows that8 a = logg X = logY Z without
disclosing a. (The protocols for DLOG are given in Appendix A.2.)

Consider an encrypted contribution (EA(ρi), EB(ρ′i)) where

EA(ρi) = (δ1, γ1) = (gr1 , ρiy
r1
A )

EB(ρ′i) = (δ2, γ2) = (gr2 , ρ′iy
r2
B ).

corresponding to encryption using ElGamal public keys KA = (p, q, g, yA) and KB = (p, q, g, yB).
We can show ρi = ρ′i holds by proving

γ1/γ2 = gkAr1−kBr2 (2)

because if ρi = ρ′i holds then

γ1/γ2 = (ρiy
r1
A )/(ρ′iy

r2
B ) = (ρi/ρ

′
i)(g

kAr1/gkBr2) = gkAr1−kBr2 .

Since gkAr1−kBr2 = g(kA+kB)(r1−r2)gkAr2/gkBr1 holds, equation (2) is satisfied if the following three
conditions hold:

G12 = gkAr2 (3)
G21 = gkBr1 (4)

γ1/γ2 = g(kA+kB)(r1−r2)G12/G21 (5)

Recall, a server that generates ciphertexts EA(ρi) and EB(ρ′i) knows both r1 and r2, and thus
is able to generate a verifiable dual encryption proof, denoted VDE(EA(ρi), EB(ρ′i)), by constructing
DLOG proofs for the conditions defined by equations (3) though (5).

VDE(EA(m), EB(m)) is obtained by showing:
7Here, we use the random oracle model [1], which has limitations [7]. A non-malleable [15] commit protocol

(e.g., [12]) might be the basis for a scheme that ensures (informally speaking) server contributions are un-related with
respect to any polynomial time relation. However, a non-malleable commit protocol would not by itself suffice, because
this ensures the encrypted contributions are unrelated but not that the contributions themselves are unrelated. A
non-malleable proof of plaintext knowledge [22] might be needed.

8Note, all operations are in domain �p.
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Pr1: DLOG(r2, g, gr2 , yA, G12) proves that G12 = yr2
A = (gkA)r2 holds. Therefore, condition (3)

is satisfied.
Pr2: DLOG(r1, g, gr1, yB , G21) proves that G21 = yr1

B = (gkB )r1 holds. Therefore, condition (4)
is satisfied.

Pr3: DLOG(r1 − r2, g, gr1−r2 , yAyB , (γ1/γ2)(G21/G12)) proves that

(γ1/γ2)(G21/G12) = (yAyB)r1−r2 = (gkA+kB)r1−r2 = g(kA+kB)(r1−r2)

holds and therefore condition (5) is satisfied.

Thus, it suffices that every server i attach VDE(EA(ρi), EB(ρi)) when sending encrypted contribution
(EA(ρi), EB(ρi)) to the coordinator. The coordinator, in turn, only uses encrypted contributions
that are accompanied by valid proofs—at least f + 1 will be, because at least f + 1 servers are
correct out of the 2f + 1 from which the coordinator received commitments.

Constraining Malicious Coordinators. It only remains to deal with compromised servers and
coordinators that cause disruption by taking overt action. In a distributed system, such action is
limited to sending messages.

We dealt above with two attacks that servers might launch through interaction with coordi-
nators: (i) revealing encrypted contributions prematurely and (ii) sending inconsistent encrypted
contributions. Compromised coordinators have corresponding attacks, and a compromised coordi-
nator might:

• cause some servers to reveal encrypted contributions before other (presumably compromised)
servers have selected theirs,

• fabricate an encrypted value for the blinding factor rather than computing that value from
f + 1 encrypted server contributions.

For these and all attacks that involve sending bogus messages, we employ a single, general
defense: each message sent is made self-verifying as in COCA [31], so that a receiver of the message
can check whether the message is valid, based solely on message contents. A valid message is, by
definition, one that is consistent with the sender following the protocol. Thus, if messages that
are not valid are ignored then attacks involving bogus messages become indistinguishable from lost
messages.

A message is made self-verifying by attaching evidence that establishes its plausibility. In
general, it suffices that any message produced by a protocol step be signed by the sender and
include as evidence all messages that served as the inputs to that protocol step, where these
included messages are themselves self-verifying. For example, returning to the attacks mentioned
above for compromised coordinators, messages might be made self-verifying as follows.

• The message requesting servers to reveal their encrypted contributions would be signed by
the coordinator and include signed messages from 2f + 1 servers containing the commitment
for that server’s encrypted contribution.

• The message conveying (EA(ρ), EB(ρ)) would be signed by the coordinator and also contain

– signed messages from 2f + 1 servers containing the hash of that server’s encrypted
contribution,

– signed messages from f + 1 servers containing their encrypted contributions and corre-
sponding valid verifiable dual encryption proofs.
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1. Coordinator Cj initiates protocol instance id with an init message:

Cj −→ A : 〈id , init〉Cj

2. Upon receipt of a valid init message, a server i:

(a) Generates an independent random value ρi.

(b) Computes encrypted contribution (EA(ρi), EB(ρi)) and corresponding commitment
κ(EA(ρi), EB(ρi)).

(c) Replies to Cj :

i −→ Cj : 〈id , commit, i, κ(EA(ρi), EB(ρi))〉i

3. Upon receipt of a set M of valid commit messages from a set I comprising 2f + 1 servers, Cj requests
the corresponding encrypted contributions.

Cj −→ A : 〈id , reveal, M〉Cj

4. Upon receipt from Cj of a valid reveal message R containing server i’s commitment, server i responds:

i −→ Cj : 〈id , contribute, i, R, (EA(ρi), EB(ρi)), VDE(EA(ρi), EB(ρi))〉i

5. Upon receipt of a set M ′ of valid contribute messages from a set I ′ ⊂ I of f + 1 servers, Cj :

(a) Computes EA(ρ) := ×i∈I′EA(ρi)

(b) Computes EA(mρ) := EA(m) × EA(ρ)

(c) Invokes at service A threshold decryption for EA(mρ) with M ′ included as evidence to make
the decryption request self-verifying; obtains mρ and evidence V id

mρ that the decryption result is
correct.

(d) Computes EB(ρ) := ×i∈I′EB(ρi)

(e) Computes EB(m) := (mρ) · (EB(ρ))−1

(f) Invokes at service A threshold signature protocol on (A, EA(m), B, EB(m)), with (mρ, V id
mρ)

included as evidence to make the request self-verifying; obtains 〈(A, EA(m), B, EB(m))〉A.

(g) Cj −→ A : 〈id , done, 〈(A, EA(m), B, EB(m))〉A〉Cj

Figure 4: Complete Re-encryption Protocol.

Putting it Together. Applying these defenses, we obtain the re-encryption protocol of Figure 4,
where 〈m〉i denotes a message m that is signed by i, and κ is a cryptographic hash function. Criteria
for validity of self-verifying messages used in the protocol are given in Figure 5. See Appendix A for
the proof that this protocol works correctly in environments satisfying the Compromised Servers
and Asynchronous System Model assumptions of §2.

5 Related Work

Ciphertext Transformation. Re-encryption protocols transform one ciphertext to another
without ever revealing the plaintext. We are not the first to study the problem.

Mambo and Okamoto [23] introduced the notion of proxy cryptosystems to support delegation
of decryption. In their scheme, A can endow B with the power to decrypt messages that have been
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type check

init The message is correctly signed.

commit The message is correctly signed.

reveal The message is (i) correctly signed and (ii) the messages it contains
in M are valid.

contribute The message is (i) correctly signed, (ii) includes a valid verifiable dual
encryption proof, and (iii) the encrypted contribution corresponds to
the commitment in the included reveal message.

Figure 5: Validity of Self-Verifying Messages

encrypted using public key KA but without disclosing to B corresponding private key kA. Delega-
tion is accomplished by A transforming a ciphertext encrypted under KA into another ciphertext
that B can decrypt; the transformed ciphertext is decrypted by using a proxy key that B receives
from A when the proxy is initially set up. This is in contrast to our scheme, where re-encryption
produces ciphertext under B’s public key.

Blaze, Bleumer, and Strauss [3] coined the term atomic proxy cryptography, which applies not
only to encryption but also to other cryptographic operations (such as identification and signature).
An atomic proxy encryption scheme involves an atomic proxy function, which converts ciphertexts
for decryption by a first key into ciphertexts for a second key. The atomic proxy function is public,
so any entity (even an untrusted one) can perform the transformation, making an encrypted message
available to holders of the second key. With our re-encryption protocol, a distributed service A,
which knows the first key (private key kA), converts the ciphertext to the second key. And because
A is a distributed service, the individual servers of A are not themselves trusted. Thus, a crucial
difference between atomic proxy encryption and our re-encryption protocol concerns where trust is
being placed.

Jakobsson’s Re-Encryption Scheme. Jakobsson’s quorum-controlled proxy re-encryption scheme [21],
like ours, gives a way for a distributed service A to transform EA(m) to EB(m) without disclosing
m to individual servers in A. The scheme leverages the observation that a ciphertext encrypted
using A’s public key can first be encrypted using B’s public key, after which decryption using A’s
private key yields a ciphertext under B’s public key.9 Because Jakobsson’s scheme also assumes
a distributed service, the encryption and decryption operations are performed jointly by servers,
with servers carrying out a partial encryption and a partial decryption (in parallel).

To ensure robustness of the scheme, a translation certificate is generated for (EA(m), EB(m)).
This certificate is a non-interactive proof showing that EA(m) and EB(m) are encryptions of the
same plaintext under public keys KA and KB respectively. Translation certificates are thus similar
in function to our verifiable dual encryption proofs. The mechanisms differ, however, in what private
information is known to a prover: For a translation certificate, the prover knows A’s private key and
the random number used in the encryption to generate EB(m); for verifiable dual encryption, the
prover does not know A’s private key but does knows both random numbers used in the encryption
to generate EA(m) and EB(m).

9More precisely, given A’s public key (p, q, g, yA) and B’s public key (p, q, g, yB), consider a ciphertext EA(m,r) =

(gr, myr
A). Encrypting myr

A using B’s public key produces (gr′
, myr

Ayr′
B ), and subsequent decryption using A’s private

key yields myr′
B . Note that (gr′

, myr′
B ) = EB(m, r′) is a ciphertext of m under B’s public key.
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In Jakobsson’s scheme, the translation certificate is not created locally by a single server—as
our verifiable dual encryption proofs are—but instead constructed using a distributed protocol,
because EB(m) is generated through a distributed threshold decryption scheme. This increases
the complexity of the protocol and requires a synchronous model of computation. Whether the
distributed protocol could be adapted to work in the less restrictive Asynchronous System Model
of this paper is an open question. Furthermore, whereas the distributed protocol to generate
Jakobsson’s translation certificate and the threshold decryption protocol must be executed on
service A, our scheme also supports shifting execution of the distributed blinding protocol to service
B.10 This shift is appealing for load balancing and for reducing the likelihood of denial-of-service
attacks against A.

Proactive Secret-Sharing. A premise of our work is that encryption is being used to store
secret information securely. An alternative is to use secret sharing [2, 27]. Rather than storing
EA(m) on servers comprising A, now shares of m are distributed among those servers.

• To retrieve secret information stored in this manner, a client establishes secure links to the
servers and retrieves enough shares to reconstruct the secret. Verifiable secret sharing [10,
17, 25] allows correctness of the shares to be checked.

• To transmit the secret information from a service A to a service B, a new, independent
sharing of the secret information is constructed and distributed among the servers comprising
B. Proactive secret sharing (PSS) protocols [20] are easily adapted to solve this problem, as
shown in [14, 30].

The PSS-based solution does have advantages. Our re-encryption protocol is restricted to a
particular public key cryptosystem (ElGamal) whereas the PSS-based solution imposes no such
restrictions. Also, the PSS-based solution does not involve threshold cryptographic operations,
thereby avoiding a complicated and expensive computation that is required with our re-encryption
protocol.

The PSS-based solution, however, requires secure communication links between each server in
A and every server in B, so individual server public keys must be known outside of each service.
Periodic refresh of server keys now becomes problematic. Our re-encryption protocol requires
only that service public keys be known and, therefore, refresh is transparent outside the service.
(Refreshing the service’s private key shares does not change the service public key.)

Furthermore, in the presence of a mobile adversary [24], the PSS-based solution would require
use of proactive secret sharing, periodically refreshing shares of all secret information the service
stores. A service that stores a lot then incurs a significant recurring overhead. Our re-encryption
protocol only involves one set of secret shares—the service private key—and thus the overhead of
defending against mobile adversaries is considerably lower. In fact, it was this cost, in connection
with the design of a publish/subscribe service, that prompted us to design a re-encryption protocol.
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10If service B is to execute distributed blinding protocol and send the results to A, then, at the end of the distributed
blinding protocol, B must initiate a threshold signature protocol to sign output (EA(ρ), EB(ρ)); a correct server in
B will participate in signing only if the output is verified against a set of at least f + 1 valid contribute messages.
Servers in A, which knows B’s service public key, can then verify the signature and be assured that (EA(ρ), EB(ρ))
is generated correctly by the distributed blinding protocol.
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A Correctness Proofs

A.1 Properties of ElGamal Operations

ElGamal Multiplication: E(m1, r1) × E(m2, r2) ∈ E(m1m2) if r1 + r2 ∈ Z
∗
q.

Proof: If r1 + r2 ∈ Z
∗
q then, by definition, E(m1m2, r1 + r2) ∈ E(m1m2) holds, so it suffices

to prove E(m1, r1) × E(m2, r2) = E(m1m2, r1 + r2):

E(m1, r1) × E(m2, r2) = (gr1gr2 ,m1y
r1m2y

r2)
= (gr1+r2,m1m2y

r1+r2)
= E(m1m2, r1 + r2).

�

ElGamal Inverse: E(m)−1 ∈ E(m−1).

Proof: If r ∈ Z
∗
q holds then so does −r ∈ Z

∗
q and, by definition, E(m−1,−r) ∈ E(m−1) holds.

So it suffices to prove that E(m, r)−1 = E(m−1,−r) holds for every r ∈ Z
∗
q:

E(m, r)−1 = (g−r,m−1y−r) = E(m−1,−r).

�

ElGamal Juxtaposition: m′ · E(m, r) = E(m′m, r).

Proof: m′ · E(m, r) = (gr,m′myr) = E(m′m, r). �

A.2 Correctness of the DLOG protocol

We prove completeness, soundness, and zero-knowledge of the DLOG proof under the random oracle
model [1]. DLOG is specified by:

Public input: (p, q, g,X, Y, Z), a cryptographic hash function H
Prover P ’s private input: a = logg(X)

Prover P :

1. Select s ∈R Zq. Compute U := gs and Q := Y s.
2. Compute h := H(g,X, Y, Z,U,Q) using the hash function H.
3. Compute w := s + ha.
4. Publish DLOG(g,X, Y, Z) = (U,Q,w) as the proof.

Verifier V :

1. Compute h := H(g,X, Y, Z,U,Q)
2. Verify the proof by checking the validity of the following equations:

gw = UXh (6)

Y w = QZh. (7)

Lemma A.2.1 (DLOG Completeness) Given g, X = ga, Y , and Z = Y a, a correct prover can
always generate a DLOG proof that passes the verification (i.e., making Equations (6) and (7) hold).
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Proof Sketch: A correct prover always chooses s and w, such that w = s + ha holds. This ensures
equations (6) and (7) hold because UXh = gs(ga)h = gs+ha = gw and QZh = Y s+ha = Y w hold. �

Lemma A.2.2 (DLOG Soundness) If a DLOG(a, g,X, Y, Z) proof verifies then, with high probabil-
ity, a = logg X = logY Z holds.

Proof Sketch: Assume X = ga, Z = Y a′
, U = gs and Q = Bs′ all hold, where a �= a′ holds. For

equations (6) and (7) to hold, the prover must ensure that w = s+ha = s′+ha′ holds. But h is fixed
once a, a′, s, and s′ are fixed. The probability of finding an h such that both h = H(g,X, Y, Z,U,Q)
and h = (s − s′)/(a′ − a) hold is negligible. �

Lemma A.2.3 (DLOG Zero-Knowledge) DLOG(a, g,X, Y, Z) is a non-interactive zero-knowledge
algorithm in the random oracle model (following the definitions in [1, 11]) under the decision Diffie-
Hellman assumption [4].

Proof Sketch: A simulator with access to a random oracle O, but no access to a, can be constructed
as follows.

1. Select w, h ∈R Zq.

2. Compute U = gw/Ah and Q = Bw/Ch.

3. Let O(g,X, Y, Z,U,Q) = h and output (U,Q,w).

Note that each possible DLOG proof can be generated by the simulator. This is done by setting w
and h to be the corresponding values created in that DLOG proof in step 1. Therefore, an adversary
cannot distinguish a real DLOG(a, g,X, Y, Z) proof from one generated by the simulator. Because
the simulator does not know a, the adversary learns nothing about a from the DLOG proof. �

A.3 Correctness of the VDE protocol

The correctness of the VDE protocol builds on the results of §A.2. The proofs of this subsection
assume, in addition, that the three DLOG proof instances use independent hash functions so they
can be modeled by three independent oracles. This independence assumption can be discharged by
adding a different (but fixed) prefix to the data before applying the hash function.

Lemma A.3.1 (VDE Completeness) A server generating EA(ρi) and EB(ρi) can always construct
VDE(EA(ρi), EB(ρi)).

Proof Sketch: This follows from DLOG Completeness (Lemma A.2.1) for the three DLOG sub-proofs
comprising VDE(EA(ρi), EB(ρi)). �

Lemma A.3.2 (VDE Soundness) If VDE(X,Y ) verifies then, with high probability, X = EA(ρi)
and Y = EB(ρi) hold for some ρi.

Proof Sketch: This follows from DLOG Soundness (Lemma A.2.2) for the three DLOG sub-proofs in
VDE(EA(ρi), EB(ρi)). �

Lemma A.3.3 (VDE Zero-Knowledge) VDE is a non-interactive zero-knowledge algorithm in the
random oracle model under the decisional Diffie-Hellman assumption.
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Proof Sketch: Construct a simulator, using the simulators for the three DLOG proofs constructed
in DLOG Zero-Knowledge (Lemma A.2.3). This is possible because any DLOG-simulator is free to
choose its own w and h, compute U and Q, and set its random oracle accordingly without affecting
the other DLOG-simulators.

The resulting simulator is able to produce the same proof as in the real VDE proof without the
knowledge of ρi, r1, or r2, where ρi is the plaintext, and r1 and r2 are the random numbers used
for ElGamal encryption. �

A.4 Correctness of the re-encryption protocol

Correctness of the re-encryption protocol in Figure 4 is established by proving separate theorems
for Progress, Integrity, and Confidentiality. These proofs are based on the following assumptions.

• Hash functions used in different steps of the protocol or by different servers are different and
uncorrelated.

• Threshold decryption and threshold signature protocols terminate with correct results if and
only if correct evidence, as specified by the re-encryption protocol, is provided upon invoca-
tion.

• The adversary is unable to decrypt a ciphertext encrypted under A’s public key without
invoking the threshold decryption protocol in step 5(c).

• The adversary is unable to sign a message using A’s private key without invoking the threshold
signature protocol in step 5(f).

Although the protocol of Figure 4 was designed for networks with reliable links, it is easily aug-
mented to operate with unreliable, but fair, links.11 The modifications involve adding message
re-transmission along the lines discussed in [31].

Theorem A.4.1 (Progress) Assuming reliable links between correct servers, the re-encryption
protocol is guaranteed to terminate in step 5(g) of Figure 4 by sending to all servers in A a done
message that is signed by some coordinator Cj and that contains a tuple (A,EA(m), B,E) signed
by A for some E.

Proof Sketch: There are at least f + 1 coordinators, so at least one is correct. Thus, it suffices to
show that the protocol instance with a correct coordinator Cj completes step 5(g) in Figure 4.

The only steps where Cj could block are step 3 (waiting for 2f + 1 commit messages), step 5
(waiting for f +1 contribute messages), step 5(c) (invocation of threshold decryption), and step 5(f)
(invocation of threshold signature). We show that Cj will not block at any of these steps.

• Cj never blocks at step 3 because there are at least 2f +1 correct servers in distributed service
A. These correct servers will respond to the init message sent by Cj in step 1, because that
init message will be valid. Therefore, due to reliable links, Cj will eventually receive at least
2f + 1 messages from correct servers, and these messages are guaranteed to be valid.

• Cj never blocks at step 5 because, for the 2f +1 servers that Cj receives the commit messages
from in step 3, at least (2f +1)−f = f +1 of these servers are correct. Due to Lemma A.3.1,
every of these servers is able to generate a VDE proof for its contribution and thus produce
a valid contribute message. Therefore, due to reliable links, Cj is guaranteed to receive valid
contribute messages from at least f + 1 servers.

11With unreliable but fair links, messages sent infinitely often are assumed delivered infinitely often.
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• The threshold decryption protocol in step 5(c) always returns because the coordinator always
provides M ′ as the evidence. Similarly, the threshold signature protocol in step 5(f) always
returns because the coordinator always provides the correct evidence. �

Theorem A.4.2 (Integrity) If the re-encryption protocol of Figure 4 sends

〈id , done, 〈(A,EA(m), B,E)〉A〉Cj

in step 5(g), then E ∈ EB(m) holds with high probability.

Proof Sketch: For a re-encryption protocol instance to reach step 5(g), some coordinator Cj (com-
promised or correct) must have received a set M ′ of valid contribute messages, where |M ′| = f + 1
holds. Otherwise, Cj would not be able to complete step 5(c) because the invocation of the thresh-
old decryption requires such an M ′ as input. Without completing step 5(c), Cj would not be able
to complete step 5(f) because invocation of the threshold signature protocol requires the output
from step 5(c) as evidence. Without executing step 5(f), an adversary is unable to produce a valid
signature using A’s private key.

If every encrypted contribution provided in M ′ is consistent (i.e., two ciphertexts are for the
same plaintext under KA and KB), then, due to ElGamal Multiplication, the purported EA(ρ)
computed in step 5(a) and the purported EB(ρ) computed in step 5(d) are consistent. Then, the
purported EB(m) computed in step 5(e) is indeed in EB(m):

(mρ) · (EB(ρ, r))−1

= (ElGamal Inverse)
(mρ) · EB(ρ−1,−r)

= (ElGamal Juxtaposition)
EB(mρρ−1,−r)

= (Cancellation)
EB(m,−r)

∈ (definition of EB(m))
EB(m)

Therefore, the only way to violate Integrity is to introduce into M ′ encrypted contributions
that are not consistent. However, every contribute message in M ′ must be valid, which implies
that the VDE proof attached verifies. Due to Lemma A.3.2, the probability of inconsistency for the
encrypted contribution is thus negligible. �

Theorem A.4.3 (Confidentiality) The re-encryption protocol of Figure 4 discloses no informa-
tion about the plaintext m under the random oracle model and the decision Diffie-Hellman assump-
tion.

Proof Sketch: It suffices to prove that if we are given transcript t for an execution of the re-
encryption protocol for m, then we can construct for any given m′ ∈ Gp a transcript t′ of the
re-encryption protocol for m′, and t′ is indistinguishable from t.12 We only provide the intuition
behind the construction here, rather than giving the formal details.

Let ρ be the blinding factor chosen in transcript t. Given m and m′, there exists ρ′ ∈ Gp, such
that mρ = m′ρ′ holds. Without loss of generality, assume that {ρi | 1 ≤ i ≤ f +1} are contributions

12Because the contributions picked by each correct server for different coordinators are independent, the construc-
tion, hence the proof, can be applied to every instance, one for each coordinator.
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selected in M ′ (step 5) of transcript t and that ρ1 is from a correct server c. Pick ρ′1, such that
ρ′1

∏
2≤i≤f+1 ρi = ρ′.

So, we construct a new transcript t′ where all servers do the same as in t except that server
c picks ρ′1 instead of ρ1. Server c changes its commitment in step 2 and its contribute message in
step 4 accordingly.

Under the random oracle model, the commitments for (EA(ρ1), EB(ρ1)) and (EA(ρ′1), EB(ρ′1))
are indistinguishable. Therefore, there exists a transcript t′ where the compromised servers whose
contributions are selected in step 5 behave the same as with the original transcript t in step 2.

We can ignore inputs from other compromised servers because these never influence results
revealed in the later steps of the protocol. This is guaranteed, because any contribute message with
no corresponding commit message in the reveal message in step 3 will not be included in M ′.

At step 4, server c reveals the new ciphertext (EA(ρ′1), EB(ρ′1)) and the corresponding VDE proof.
Because of the semantic security of ElGamal under decision Diffie-Hellman assumption [28] and
because of Lemma A.3.3, the new contribute message is indistinguishable from the original one in
t. Therefore, there exists a transcript t′ (with the already constructed prefix up to step 4), where
the coordinator (correct or compromised) constructs the same M ′ in step 5.

Again, the new transcript t′ for step 5 is indistinguishable from step 5 in t because of mρ = m′ρ′

and of the semantic security of ElGamal under decision Diffie-Hellman assumption.
Therefore, we can construct a transcript t′ for any given m′, so that it is indistinguishable to

the adversary from the given transcript for m. This proves that the re-encryption protocol reveals
nothing about m under the stated assumptions. �
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