
Machine Learning (2020) 109:813–852

https://doi.org/10.1007/s10994-019-05859-2

Distributed block-diagonal approximation methods
for regularized empirical risk minimization

Ching-pei Lee1 · Kai-Wei Chang2

Received: 25 July 2018 / Revised: 8 September 2019 / Accepted: 6 November 2019 /

Published online: 18 December 2019

© The Author(s) 2019

Abstract

In recent years, there is a growing need to train machine learning models on a huge volume
of data. Therefore, designing efficient distributed optimization algorithms for empirical risk
minimization (ERM) has become an active and challenging research topic. In this paper, we
propose a flexible framework for distributed ERM training through solving the dual problem,
which provides a unified description and comparison of existing methods. Our approach
requires only approximate solutions of the sub-problems involved in the optimization process,
and is versatile to be applied on many large-scale machine learning problems including
classification, regression, and structured prediction. We show that our framework enjoys
global linear convergence for a broad class of non-strongly-convex problems, and some
specific choices of the sub-problems can even achieve much faster convergence than existing
approaches by a refined analysis. This improved convergence rate is also reflected in the
superior empirical performance of our method.

Keywords Distributed optimization · Large-scale learning · Empirical risk minimization ·
Dual method · Inexact method

1 Introduction

With the rapid growth of data volume and model complexity, designing scalable learning
algorithms has become increasingly important. Distributed optimization techniques, which
distribute the computational burden across multiple machines, have shown early success on
this path. This type of approaches are particularly useful when the optimization problem

Editor: Bart Baesens.

B Kai-Wei Chang
kw@kwchang.net

Ching-pei Lee
leechingpei@gmail.com

1 Department of Mathematics and Institute for Mathematical Sciences, National University of
Singapore, Singapore, Singapore

2 Department of Computer Science, University of California Los Angeles, Los Angeles, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05859-2&domain=pdf
http://orcid.org/0000-0001-5365-0072

814 Machine Learning (2020) 109:813–852

involves massive computation or when the dataset is stored across multiple computational
nodes. However, the communication cost and the asynchronous nature of distributed compu-
tation challenge the design of efficient optimization algorithms in the distributed environment.

In this paper, we study distributed optimization algorithms for training machine learning
models that can be represented by the regularized empirical risk minimization (ERM) frame-
work. Given a set of training data, {X i }l

i=1, X i ∈ Rn×ci , ci ∈ N, where l, n > 0 are the
number of instances and the dimension of the model respectively, regularized ERM models
solve the following optimization problem:

min
w∈Rn

f P (w):=g(w) +
l
∑

i=1

ξi

(

X T
i w
)

. (1)

In the literature, g and ξi are called the regularization term and the loss term, respectively.
We assume that f P is a proper and closed convex function that can be extended-valued and
the solution set of (1) is nonempty. Besides, we specifically focus on linear models, which
have been shown successful in dealing with large-scale data thank to their efficiency and
interpretability.1

The definition in problem (1) is general and covers a variety of learning problems, includ-
ing binary classification, multi-class classification, regression, and structured prediction. To
unify different learning problems, we encode the true labels (i.e., yi ∈ Yi) in the loss term
ξi and the input data X i . For some learning problems, the space of X i is spanned by a set
of variables whose size may vary for different i . Therefore, we represent X i as an n × ci

matrix. For example, in the part-of-speech tagging task, where each input sentence consists
of a sequence of words, ci represents the number of words in the i-th sentence. We discuss in
details the loss terms for different learning problems in Sect. 6. Regarding the regularization
term, common choices include the squared-ℓ2 norm, the ℓ1 norm, and the elastic net that
combines both (Zou and Hastie 2005).

In many applications, it is preferable to solve the dual problem whose optimization might
be easier. The dual problem of (1) is

min
α∈Ω

f (α):=g∗(Xα) +
l
∑

i=1

ξ∗
i (−αi), (2)

where

X :=[X1, . . . , Xl], α:=

⎡

⎢

⎣

α1
...

αl

⎤

⎥

⎦
,

αi ∈ Rci is the dual variable vector associated with X i , for any function h(·), h∗(·) is the
convex conjugate of h(·):

h∗(w):= max
z∈dom(h)

zT w − h(z), ∀w,

and as g∗ is finite everywhere in our setting (see Assumption 1 and the description that
follows), the domain Ω is

Ω:=
l
∏

i=1

−dom(ξ∗
i) ⊆ R

∑l
i=1 ci .

1 Linear models allow developers to interpret the value of each feature from the learned model parameters.

123

Machine Learning (2020) 109:813–852 815

The goal of solving the dual problem (2) is still getting a solution to the original primal
problem (1). It can be shown easily by Slater’s condition that when f P is convex, strong
duality between (1) and (2) holds, which means that any pair of primal and dual optimal
solutions (w∗,α∗) satisfies

f P
(

w∗) = − f
(

α∗) .

Despite optimization methods for the dual ERM problem (2) on a single machine have
been widely studied [see, for example, the survey paper Yuan et al. (2012)], adapting them
to a distributed environment is not straightforward due to the following two reasons. First,
most existing single-core algorithms for dual ERM are inherently sequential and hence hard
to parallelize. Second, in a distributed environment, inter-machine communication is usually
the bottleneck for parallel optimizers and a careful design to reduce the communication
cost is essential. For example, we may prefer an algorithm with faster convergence even
if it takes longer time at each iteration when it induces fewer communication rounds and
consequentially reduces overall communication overhead.

In this paper, we propose a distributed learning framework for solving (2). At each iteration,
it minimizes a sub-problem consisting of the sum of a second-order approximation of g∗(Xα)

and the original ξ∗(−α). We study how to choose the approximation to let the proposed
approach enjoy not only fast theoretical and empirical convergence rate but low communi-
cation overhead. After solving the sub-problem, we conduct a line search that requires only
negligible computational cost and O(1) communication to ensure sufficient function value
decrease. With this line search procedure, our algorithm achieves faster empirical perfor-
mance compared with existing approaches.

By utilizing relaxed conditions, even if the subproblem is solved only approximately, our
method is able to achieve global linear convergence for many problems whose dual objective
is not strongly convex, including support vectors machines (SVM) (Boser et al. 1992; Vapnik
1995) and structured support vector machines (SSVM) (Tsochantaridis et al. 2005; Taskar
et al. 2004). In other words, our algorithm takes only O(log(1/ǫ)) iterations, or equivalently,
rounds of communication, to obtain an ǫ-accurate solution for (2).2

Our analysis then shows that this result implies that obtaining an ǫ-accurate solution for the
original ERM problem (1) also takes only O(log(1/ǫ)) iterations. We further show that when
the choice of the sub-problem properly extracts information from the Hessian of g∗(Xα),
the convergence can be significantly accelerated to reduce the required iteration and there-
fore the running time. Besides, our general framework generalizes existing approaches and
hence facilitates the discussion of the differences between the proposed distributed learning
algorithms and the existing ones for (2).

Recently, Zheng et al. (2017) proposed an accelerated method for solving the dual ERM
problem in a distributed setting. Their techniques derived from Shalev-Shwartz and Zhang
(2016) is similar to the Catalyst framework for convex optimization (Lin et al. 2015). In
essence, at every iteration, their approach adds a term κ‖w − z‖2

2/2 to (1) and approximately
solves the dual problem of the modified primal problem by an existing distributed optimiza-
tion algorithm for (2). The solution is then used to generate z for the next iteration. Like
the Catalyst framework that can be combined with any convex optimization algorithm, the
acceleration technique in Zheng et al. (2017) can also be incorporated with our distributed
learning algorithm. Specifically, we can apply our proposed algorithm to solve the modified
dual problem in the procedure mentioned above. Therefore, to simplify the discussion, we

2 Given any optimization problem minx∈X f (x) whose minimum is attainable and denoted by f ∗, we call
x ∈ X an ǫ-accurate solution for this problem if f (x) − f ∗ ≤ ǫ.

123

816 Machine Learning (2020) 109:813–852

focus on comparing methods that solve the original optimization problem (2), and accelera-
tion approach discussed in Zheng et al. (2017) and other studies not designed for distributed
learning (e.g., Lin et al. 2015; Shalev-Shwartz and Zhang 2016) are not in the scope of this
study.

Different from approaches that consider the theoretical communication efficiency only,
our goal is to design a practical distributed training algorithm for regularized ERM with
strong empirical performance in terms of the overall running time. Therefore, we propose an
algorithm that is both computation and communication efficient by designing a second-order
method, in which the approximated Hessian can be computed without lengthy rounds of
communication. We show that this approach is also extremely communication-efficient in
theory by taking the approximated Hessian as a preconditioner that can significantly improve
the condition number of the problem.

Special cases of the proposed framework were published earlier as conference and work-
shop papers (Lee and Roth 2015; Lee et al. 2015). In the journal version, we unify the results
and extend the previous work to a general setting that covers a much broader class of prob-
lems, and provide thorough theoretical and empirical analyses. We show that either when
the sub-problem is solved exactly or approximately at every iteration, our approach enjoys
fast linear convergence, and the convergence rate behaves benignly with respect to the inex-
actness. We also provide a new analysis showing why the selected sub-problem can greatly
improve the convergence speed than existing general analyses.

Contributions We propose a general framework for optimizing the dual ERM problem (2)
when the data are stored on multiple machines. Our contributions are summarized in the
following.

1. Our framework is flexible, allowing different choices of sub-problem formulations, sub-
problem solvers, and line search approaches. Furthermore, approximate sub-problem
solutions can be used. As a result, many existing methods can be viewed as special cases
of our framework.

2. We provide detailed theoretical analysis, showing that our framework converges linearly
on a class of problems broader than the strongly convex ones, even when the sub-problem
is solved only approximately. Our analysis not only shows fast convergence of the pro-
posed algorithm, it also provides sharper convergence guarantees for existing methods
that can fit into our framework.

3. We further give an analysis through change of norm to show that under specific sub-
problem choices, our algorithm can achieve much faster convergence than existing
approaches. Our analysis gets around the dependency on the condition number defined
by the Euclidean norm and can therefore obtain faster rates than existing approaches.

4. The proposed approach is also empirically communication- and computation-efficient.
Our empirical study shows that it outperforms existing methods on real-world large-scale
datasets.

Notations We use the following notations.

ξ(X T w):=
l
∑

i=1

ξi (X T
i w), ξ∗(−α):=

l
∑

i=1

ξ∗
i (−αi), G∗(α):=g∗(Xα).

For any positive integer m, any vector v ∈ Rm , and any I ⊆ {1, . . . , m}, v I denotes the
sub-vector in R|I | that contains the coordinates of v indexed by I . We use ‖ · ‖ to denote the
Euclidean norm, and when given a symmetric positive semidefinite matrix A, we denote the
seminorm induced by it as

123

Machine Learning (2020) 109:813–852 817

‖x‖A:=
√

xT Ax .

Assumptions We consider the following setting in this paper. First, we assume the training
instances are distributed across K machines, where the instances on machine k are {X i }i∈Jk

.
In our setting, Jk are disjoint index sets such that

K
⋃

k=1

Jk = {1, . . . , l}, Ji ∩ Jk = φ, ∀i 	= k.

Without loss of generality, we assume that there is a sequence of non-decreasing non-negative
integers

0 = j0 ≤ j1 ≤ . . . ≤ jK = l

such that

Jk = { jk−1 + 1, . . . , jk} , k = 1, . . . , K .

We do not make any further assumption on how those instances are distributed across
machines. That is, the data distributions on different machines can be different. Second,
the problem is assumed to have the following properties.

Assumption 1 The loss function ξi are convex and there exists σ > 0 such that the regularizer
g in the primal problem (1) is σ -strongly convex. Namely,

g(αw1 + (1 − α)w2) ≤ αg(w1) + (1 − α)g(w2) − σα(1 − α)

2
‖w1 − w2‖2,

∀w1,w2 ∈ Rn, ∀α ∈ [0, 1]. (3)

Moreover, the convex function f P (w) is proper and closed, and (1) has a non-empty solution
set.

Since g is σ -strongly convex, g∗ is differentiable and has (1/σ)-Lipschitz continuous gra-
dient (Hiriart-Urruty and Lemaréchal 2001, Part E, Theorem 4.2.2). Therefore, G∗ has
(‖X T X‖/σ)-Lipschitz continuous gradient. This also indicates that even if g is extended-
valued, g∗ is still finite everywhere, hence the only constraint on the feasible region is from
the domain of ξ∗, namely α ∈ Ω .

Organization The paper is organized as follows. We give an overview of the proposed frame-
work in Sect. 2. Implementation details and convergence analysis are respectively discussed
in Sects. 3 and 4. We summarize related studies for distributed ERM optimization in Sect. 5
and discuss applications of the proposed approach in Sect. 6. We then demonstrate the empir-
ical performance of the proposed algorithms in Sect. 7 and discuss possible extensions and
limitations of this work in Sect. 8. The conclusions and final remarks are in Sect. 9.

The code for reproducing the experimental results in this paper is available at http://github.
com/leepei/blockERM.

2 A block-diagonal approximation framework

As g∗ is differentiable from Assumption 1, the KKT optimality conditions imply that for any
pair of primal and dual optimal solutions (w∗,α∗),

123

http://github.com/leepei/blockERM
http://github.com/leepei/blockERM

818 Machine Learning (2020) 109:813–852

w∗ = ∇g∗(Xα∗). (4)

Although (4) holds only at the optima, we take the same formulation to define w(α) as the
primal iterate associated with any α for the dual problem (2):

w(α):=∇g∗(Xα). (5)

Our framework is an iterative descent method for solving (2). Starting with an arbitrary
feasible α0, it generates a sequence of feasible iterates {α1,α2, . . . } ⊂ Ω with the property
that f (αi) ≤ f (α j) if i > j . Each iterate is updated by a direction ∆αt and a step size
ηt ≥ 0.

αt+1 = αt + ηt∆αt , ∀t ≥ 0. (6)

The term ξ∗ in (2) is separable in α and hence can be optimized directly in a coordinate-
wise manner. However, the term G∗ is often complex and difficult to optimize. Therefore, we
approximate it using a quadratic surrogate based on the fact that G∗ is Lipschitz-continuously
differentiable.

Putting them together, given the current iterate αt , we solve

∆αt ≈ arg min
∆α

Qαt

Bt
(∆α),

Qαt

Bt
(∆α):=∇G∗(αt)T ∆α + 1

2
(∆α)T Bt∆α + ξ∗(−αt − ∆α)

(7)

to obtain the update direction ∆αt , where Bt for each t is some symmetric matrix selected
to approximate ∇2G∗(αt) (note that since ∇G∗ is Lipschitz continuous, G∗ is twice-
differentiable almost everywhere so we at least have the generalized Hessian), and there
is a wide range of choices for it, depending on the scenario. Note that it is usually hard to
solve (7) to optimality unless Bt is diagonal. Therefore, we consider only attaining approx-
imate solutions for (7). We will discuss the selection of Bt in Sect. 3. The general analysis
in Sect. 4 shows that as long as the objective of (7) is strongly convex enough (in the sense
that the strong convexity parameter is large enough), even if Bt is indefinite and (7) is solved
only roughly, ∆αt will be a descent direction. On the other hand, when Bt approximates
∇2G∗(αt) well as in our choice, the analysis in Sect. 4.4 shows that the convergence speed
can be highly improved, making the algorithm communication-efficient.

Regarding the step size ηt , we investigate two line search strategies. The first is the exact
line search strategy, in which we minimize the objective function along the update direction:

ηt = arg min
η∈R

f (αt + η∆αt). (8)

However, this approach is not practical unless (8) can be solved easily. Therefore, in general,
we apply a backtracking line search strategy using a modified Armijo rule suggested by
Tseng and Yun (2009). Given β, τ ∈ (0, 1), our procedure finds the smallest integer i ≥ 0
such that η = β i satisfies

f (αt + η∆αt) ≤ f (αt) + ητΔt , (9)

where

Δt :=∇G∗(αt)T ∆αt + ξ∗(−αt − ∆αt) − ξ∗(−αt), (10)

and takes ηt = η. Notice that as we are approximating the Hessian, similar to Newton and
quasi-Newton methods, our backtracking always starts from trying the unit step size η = 1.

123

Machine Learning (2020) 109:813–852 819

3 Distributed implementation for dual ERM

In this section, we provide technical details on how to apply the algorithm framework dis-
cussed in Sect. 2 in a distributed environment. In particular, we will discuss the choice of Bt

in (7) such that the communication overhead can be reduced. We will also propose a trick to
make line search efficient.

For the ease of algorithm description, we denote the i-th column of X by xi , and the
corresponding element of α by αi . We also denote the number of columns of X , which is
equivalent to the dimension of α, by

N :=
l
∑

i=1

ci .

The index sets corresponding to the columns of the instances in Jk are denoted by J̃k ⊆
{1, . . . , N }, k = 1, . . . , K . We define

π(i) = k, if i ∈ J̃k . (11)

3.1 Update direction

In the following, we discuss how to select Bt such that the objective of (7) is (1) strongly
convex, (2) easy to optimize with low communication cost, and (3) a good approximation of
(2).

In our assumption, the k-th machine stores and handles only X i and the corresponding
αi for i ∈ Jk . In order to reduce the communication cost, we need to pick Bt in a way such
that (7) can be decomposed into independent sub-problems, of which each involves only data
points stored on the same machine. In such a way, each sub-problem can be solved locally
on one node without any inter-machine communication. Motivated by this, Bt should be
block-diagonal (up to permutations of the instance indices) such that

(Bt)i, j = 0, if π(i) 	= π(j), (12)

where π is defined in (11).
The ideal choice for Bt is to set it to be the Hessian matrix Hαt of G∗(αt):

Hαt :=∇2G∗(αt) = X T ∇2g∗ (Xαt
)

X .

This choice leads to the proximal Newton methods that enjoys rapid convergence in both
theory and practice. However, the Hessian matrix is usually dense and does not satisfy
the condition (12), incurring significant communication cost in the distributed scenario we
consider here.

Therefore, we consider a block-diagonal approximation H̃αt instead.

(

H̃αt

)

i, j
=
{

(Hαt)i, j if π(i) = π(j),

0 otherwise.
(13)

Note that since

∇2
i, j G

∗ (Xαt
)

= xT
i ∇2g∗ (Xαt

)

x j ,

if each machine maintains the whole vector of Xαt , entries of (13) can be decomposed into
parts such that each one is constructed using only data points stored on one machine. Thus, the

123

820 Machine Learning (2020) 109:813–852

sub-problems can be solved separately on different machines without communication. The
Hessian matrix may be only positive semi-definite. In this case, when ξ∗(−α) is not strongly
convex, neither is problem (7), and the sub-problem can therefore be ill-conditioned. To
remedy this issue, we add a damping term to Bt to ensure strong convexity of problem (7)
when needed.

To summarize, our choice for Bt in distributed environments can be represented by the
following formulation.

Bt = at
1 H̃αt + at

2 I , for some at
1, at

2 ≥ 0. (14)

The values of at
1 and at

2 depend on the problem structure and the applications. In most cases,
we set at

2 = 0, especially when it is known that either ξ∗(−α) is strongly convex, or H̃αt

is positive definite. For at
1, practical results (Pechyony et al. 2011; Yang 2013) suggest that

at
1 ∈ [1, K] leads to good empirical performance, while we prefer at

1 ≡ 1 as it is a closer
approximation to the Hessian.

In solving (7) with our choice (14) and at
1 	= 0, each machine needs the information of

Xαt to calculate both (Bt) J̃k , J̃k
and

∇
J̃k

G∗ (αt
)

= X T

:, J̃k
∇g∗ (Xαt

)

. (15)

Therefore, after updating αt , we need to synchronize the information

vt := Xαt =
K
∑

k=1

∑

j∈Jk

X jα
t
j

through one round of inter-machine communication. Synchronizing this n-dimensional vector
across machines is more effective than transmitting either the Hessian or the whole X together
with αt . However, we also need update direction for line search; therefore, instead of vt+1,
we synchronize

Δvt := X∆αt =
K
∑

k=1

∑

j∈Jk

X jΔαt
j (16)

over machines and then update vt+1 locally on all machines by

vt+1 = vt + ηtΔvt

after the step size ηt is determined. Details of the communication overhead will be discussed
in Sects. 3.6 and 4.

3.2 Line search

After the update direction ∆αt is decided by solving (7) (approximately), we need to conduct
line search to find a step size satisfying condition (9) to ensure sufficient function value
decrease. On the right-hand side of (9), the first term is available from the previous iteration;
therefore, we only need to evaluate (10). From (15), this can be calculated by

Δt = ∇g∗ (vt
)T

Δvt +
(

ξ∗ (−αt − ∆αt
)

− ξ∗ (−αt
))

. (17)

We require only O(1) communication overhead to evaluate the ξ∗ functions in Eq. (17), and
no additional computation is needed because the information of ξ∗(−αt −∆αt) is maintained

123

Machine Learning (2020) 109:813–852 821

Algorithm 1: Distributed backtracking line search

Input: α,∆α ∈ RN , β, τ ∈ (0, 1), f (α) ∈ R, v = Xα, Δv = XΔα

Form a partition { Ĵk }K
k=1 of {1, . . . , n}

Calculate Δt in parallel: ⊲ O(1) communication

Δt =
K
∑

k=1

⎛

⎝∇
Ĵk

g∗ (vt
)T

Δvt

Ĵk
+
∑

j∈Jk

ξ∗
j

(

−α j + ∆α j

)

− ξ∗
j

(

−α j

)

⎞

⎠ .

η ← 1
Calculate f (α + η∆α) using v and ηΔv ⊲ O(1) communication

while f (α + η∆α) > f (α) + ητΔt do

η ← ηβ

Calculate f (α + η∆α) using v and ηΔv ⊲ O(1) communication

end

Output: η, f (α + η∆α)

when solving (7). Furthermore, because each machine has full information of Δvt , vt , and
hence g∗(vt), the first term in (17) can be calculated in a distributed manner as well to reduce
the computational cost per machine. Thus, we can combine the local partial sums of all
terms in (17) as a scalar value and synchronize it across machines. One can also see from this
calculation that synchronizing Δvt is inevitable for computing the required values efficiently.

For the left-hand side of (9), the calculation of the ξ∗
i terms is distributed by nature as

discussed above. If g∗(v) is separable, its computation can also be parallelized. Furthermore,
in some special cases, we are able to evaluate g∗(v + ηΔv) using a closed-form formulation
cheaply. For example, when

g∗(v) = 1

2
‖v‖2 ,

we have

g∗ (v + ηΔv) = 1

2

(

‖v‖2 + η2 ‖Δv‖2 + 2ηvT Δv
)

. (18)

In this case, we can precompute ‖Δv‖2 and vT Δv, then the calculation of (18) with different
η requires only O(1) computation without any communication. For the general case, though
the computation might not be this low, by maintaining both v and Δv, the calculation of
g(v + ηΔv) requires no additional communication and at most O(n) computation locally,
and this cost is negligible as other parts of the algorithm incur more expensive computation.
The line search procedure is summarized in Algorithm 1.

The exact line search strategy is possible only when

∂ f (α + η∆α)

∂η
= 0

has an analytic solution. For example, when f is quadratic, we can compute

∂ f (α + η∆α)

∂η
= 0 ⇒ η = −∇ f (α)T ∆α

∆αT ∇2 f (α)∆α
, (19)

and then project η back to the interval {η | α + η∆α ∈ Ω}.

123

822 Machine Learning (2020) 109:813–852

3.3 Sub-problem solver on eachmachine

If Bt satisfies (12), (7) can be decomposed into K independent sub-problems:

min
∆α Jk

∇Jk
G∗(αt)T ∆α Jk

+ 1

2
∆αT

Jk
(Bt)Jk ,Jk

∆α Jk
+
∑

i∈Jk

ξ∗
i (−αt

i − ∆αi). (20)

Since all the information needed for solving (20) is available on machine k, the sub-problems
can be solved without any inter-machine communication.

Our framework does not pose any limitation on the solver for (7). For example, (7) can be
solved by (block) coordinate descent, (accelerated) proximal methods, just to name a few. In
our experiment, we use a random-permutation cyclic coordinate descent method for the dual
ERM problem (Hsieh et al. 2008; Yu et al. 2011; Chang and Yih 2013) as our local solver. This
method has been proven to be efficient in the single-core setting empirically; theoretically, it
is guaranteed to converge globally linearly (Wang and Lin 2014) and can outperform other
variants of coordinate descent on some cases (Lee and Wright 2019b; Wright and Lee 2017).
Other options can be adopted for specific problems or datasets under discretion, but such
discussion is beyond the scope of this work.

3.4 Output the best primal solution

The proposed algorithm is a descent method for the dual problem (2). In other words, it
guarantees that f (αt1) < f (αt2) for t1 > t2. However, there is no guarantee that the cor-
responding primal solution w calculated by (5) decreases monotonically as well.3 This is a
common issue for all dual methods. To deal with it, we keep track of the primal objectives of
all iterates, and when the algorithm is terminated, we report the model with the lowest primal
objective. This is known as the pocket approach in the literature of Perceptron (Gallant 1990).

3.5 Stopping condition

It is impractical to solve problem (2) exactly, as a model that is reasonably close to the opti-
mum can achieve similar or even identical accuracy performance compared to the optimum.
In practice, one can design the stopping condition for the training process by using the norm
of the update direction, the size of Δt , or the decrement of the objective function value. We
consider the following practical stopping criterion:

f (αt) + f P (w(αt)) ≤ ǫ
(

f
(

α0)+ f P
(

w
(

α0))
)

,

where ǫ ≥ 0 is a user-specified parameter. This stopping condition directly reflects the model
quality and is easy to verify as the primal and dual objectives are computed at every iteration.

The overall distributed procedure for optimizing (2) discussed in this section is described
in Algorithm 2.

3 We will show in Sect. 4 that the primal objective converges R-linearly, but there is no guarantee on monotonic
decrease.

123

Machine Learning (2020) 109:813–852 823

Algorithm 2: Distributed block-diagonal approximation method for the dual ERM prob-
lem (2).

Input: A feasible α0 for (2), ǫ ≥ 0
f̄ ← ∞, w̄ ← 0

Compute v0 =
∑K

k=1
∑

j∈Jk
X j α

0
j

and ξ∗(−α0) ⊲ O(n) communication

Compute f (α0) by v0 and ξ∗(−α0)

for t = 0, 1, 2, . . . do

Compute f P (w(αt)) by (5) ⊲ O(1) communication

if f P (w(αt)) < f̄ then

f̄ ← f P (w(αt)), w̄ ← w(αt)

end

if f (αt) + f P (w(αt)) ≤ ǫ(f (α0) + f P (w(α0))) then
Output w̄ and terminate

end

Decide at
1, at

2 ≥ 0 but not both 0
Each machine obtains ∆αt

Jk
by approximately solving (20) independently and in parallel using the

local data, with B decided by (14)

Communicate Δvt =
∑K

k=1

(

∑

j∈Jk
X j Δαt

j

)

⊲ O(n) communication

– Variant I: Conduct line search through Algorithm 1 to obtain ηt

– Variant II: ηt ← arg minη f (αt + η∆αt)

Each machine conducts in parallel: αt+1
Jk

← αt
Jk

+ ηt ∆αt
Jk

, vt+1 ← vt + ηt Δvt

end

3.6 Cost per iteration

In the following, we analyze the time complexity of each component in the optimization
process and summarize the cost per iteration of the proposed algorithm. For the ease of
analysis, we assume that the number of columns of X on each machine is O(N/K), and the
corresponding non-zero entries on each machine is O(#nnz/K), where #nnz is the number
of non-zero elements in X . We consider general ξ∗ and g∗ and assume that the evaluations
for g(w), g∗(v), and ∇g∗(v) all cost O(n).4 The part of ∇2g∗(v) is assumed to cost at most
O(n) (both for forming it and for its product with another vector), for otherwise we can
simply replace it with a diagonal matrix as an approximation. In practice, performing exact
line search is impractical unless the problem structure allows. Therefore, in the following, we
only analyze the backtracking line search strategy. We also assume without loss of generality
that the cost for evaluating one ξ∗

i is proportional to the dimension of the domain, namely
O(ci), so the evaluation of ξ∗ costs O(N/K) on each machine.

We first check the cost for forming the problem (7). Note that we do not explicitly
compute the values of Bt and ∇G∗(αt). Instead, we compute only ∇G(αt)T ∆αt , through
∇g∗(vt)T Δvt , and the part (∆α)T Bt∆α under the choice (14) is obtained through ‖∆α‖2

and (Δvt)T ∇2g∗(vt)Δvt . Therefore, for the linear term, we need to compute only ∇g∗(vt),
which costs O(n) under our assumption given that vt is already available on all the machines.
For the quadratic term, it takes the same effort of O(n) to get ∇2g∗(vt). Thus, forming the
problem (7) costs O(n) in computation and no communication is involved. Note that when

4 We do not consider special cases such as g(w) = ‖w‖2/2. In those cases, further acceleration can be derived
depending on the specific function structure.

123

824 Machine Learning (2020) 109:813–852

considering the local sub-problems (20), the cost remains O(n) as we just replace Δv with
the local part X :,Jk

α Jk
, which is still a vector of dimension n.

Next, the cost of solving (20) approximately by passing through the data for a constant
number of iterations T is O(T #nnz/K), as noted in most state-of-the-art single-core opti-
mization methods for the dual ERM (e.g., Hsieh et al. 2008; Yu et al. 2011). This part involves
no communication between machines as well.

For the line search, as discussed in Sect. 3.2, we first need to make Δvt available on all
machines. The computational complexity for calculating Δvt through (16) is O(#nnz/K),
and since the vector is of length n, it takes O(n) communication cost to gather information
from all machines. After Δvt is available on all machines and ∇g∗(vt) is obtained, we
can calculate the first term of (17). This step costs O(n/K) and O(1) in computation and
communication, respectively. The term related to ξ∗ is a sum over N individual functions
and therefore costs O(N/K). Thereafter, summing them up requires a O(1) communication
that can be combined with the communication for obtaining ∇g∗(vt)T Δvt . Given vt and
Δvt , for each evaluation of f under different η, it takes O(n) to compute vt + ηΔvt and
evaluate the corresponding g∗. For the part of ξ∗, it costs O(N/K) and O(1) in computation
and communication as it is a sum over N individual functions. In total, each backtracking
line search iteration costs O(n + N/K) computation and O(1) communication.

Finally, from (5), the vector w(αt) is the same as the gradient vector we need in (7), so
there is no additional cost to obtain the primal iterate, and evaluating the primal objective
costs O(n) for g(w(αt)) and O(#nnz/K) for X T w(αt) in computation. Thus the cost of
the primal objective computation is O(#nnz/K + n). It also takes O(1) communication to
gather the summation of ξi over the machines.

By assuming that each row and each column of X has at least one non-zero entry (for
otherwise we can simply remove that row or column), we have n + N = O(#nnz). In
summary, each iteration of Algorithm 2 costs

O

(

#nnz

K
+ n +

(

N

K
+ n

)

× #(line search)

)

in computation and

O (n + #(line search))

in communication. Later, we will show in Sect. 4 that the number of line search iterations is
upper-bounded by a constant. Therefore, the overall cost per iteration is O(#nnz/K + n) in
computation and O(n) in communication.

4 Analysis

Our analysis consists of four parts. The first three parts consider a general scenario and
provide worst-case convergence guarantees of the proposed algorithm. The last part considers
a special choice of Bt [see (13)], which leads to a better convergence rate when the learning
objective satisfies certain conditions. Specifically, we first consider the situation when the
sub-problem (7) is solved to optimality every time. We demonstrate that when the objective
function satisfies the Kurdyka-Łojasiewicz inequality (Łojasiewicz 1963, 1993; Kurdyka
1998)5, the proposed algorithm converge globally linearly. Next, we show that even if the

5 The Kurdyka-Łojasiewicz inequality is much weaker than strong convexity; therefore, our analysis is
general.

123

Machine Learning (2020) 109:813–852 825

sub-problem is solved only approximately, global linear convergence is still retained under
the same condition. Then, based on the relation (5), we show that as long as the dual objective
converges globally linearly, so does the primal objective. Finally, we investigate the choice
of Bt and provide an explanation on why the special choice of (14) (in particular with at

1 > 0
and at

2 small) improves the convergence rate and therefore the communication complexity.
Throughout this section, we assume that either of the following holds.

Assumption 2 The function ξ is differentiable and its gradient is ρ-Lipschitz continuous for
some ρ > 0. That is,

‖∇ξ(z1) − ∇ξ(z2)‖ ≤ ρ‖z1 − z2‖, ∀z1, z2.

Assumption 3 The function ξ is L-Lipschitz continuous for some L > 0.

|ξ(z1) − ξ(z2)| ≤ L‖z1 − z2‖, ∀z1, z2.

These assumptions on ξ are less strict than requiring each sub-component ξi to satisfy
certain properties.

4.1 Convergence analysis when sub-problems are solved exactly

We assume the following condition based on the Kurdyka-Łojasiewicz (KL) inequality
(Łojasiewicz 1963, 1993; Kurdyka 1998) holds.

Assumption 4 The objective function in the dual problem (2) satisfies the Kurdyka-
Łojasiewicz inequality with exponent 1/2 for some μ > 0. That is,

f (α) − f ∗ ≤
minŝ∈∂ f (α) ‖ŝ‖2

2μ
=

mins∈∂ξ∗(−α) ‖∇G(α) + s‖2

2μ
,∀α ∈ Ω. (21)

where f ∗ is the optimal objective value of the dual problem (2), and ∂ξ∗(−α) is the set of
sub-differential of ξ∗ at −α.

The following lemma shows that Assumption 2 implies Assumption 4.

Lemma 1 Consider the primal problem (1). If Assumption 2 holds, then the dual problem

satisfies (21) with μ = 1/ρ.

We start from showing that the update direction is indeed a descent direction and Algo-
rithm 1 terminates within a bounded number of steps.

Lemma 2 If Bt is chosen so that the smallest eigenvalue of Bt is no smaller than some

constant C1 (which can be nonpositive) for all t , and Qαt

Bt
is C2-strongly convex for some

C2 > 0 for all t and C1 + C2 > 0, then the update direction obtained by solving (7) exactly

is a descent direction, and Algorithm 1 terminates in finite steps, with the generated step size

lower bounded by

ηt ≥ min

(

1,
β(1 − τ)σ (C1 + C2)

∥

∥X T X
∥

∥

)

,∀t .

In contrast to most Newton-type methods such as Tseng and Yun (2009), Lee et al. (2014)
that require Bt to be positive definite, the conditions required in Lemma 2 are weaker, as
even if Bt is not positive definite, Qαt

Bt
can be strongly convex when Assumption 2 holds.

123

826 Machine Learning (2020) 109:813–852

As our framework is more general, we allow a broader choice of Bt . In Lemma 2, consider
the choice of Bt in (14), since H̃αt is positive semidefinite, we have that C1 = at

2. For C2, if
Assumption 2 holds, then since ξ∗ is (1/ρ)-strongly convex, we have that C2 = C1 + 1/ρ,
and otherwise C2 = C1.

Now, we are ready to show the global linear convergence of the proposed algorithm 2 for
solving (2).

Theorem 1 If Assumption 4 holds, there exists C3 > 0 such that ‖Bt‖ ≤ C3 for all t , and

the conditions in Lemma 2 are satisfied for all iterations for some C2 and C1 ≤ C3, then

the sequence of dual objective values generated by Algorithm 2 converges Q-linearly to the

optimum, with a rate of

f (αt+1) − f ∗

f (αt) − f ∗

≤ 1 − μ (C1 + C2) τ

μ (C1 + C2) τ + 2
(

‖X T X‖2

σ 2 + C2
3

) min

{

1,
β (1 − τ) σ (C1 + C2)

‖X T X‖

}

,∀t .

4.2 Convergence analysis when sub-problems are solved approximately

In practice, when Bt is not diagonal, the sub-problem (7) is usually solved by an iterative
solver and it is time consuming to obtain an exact solution. In this subsection, we show
that Algorithm 2 still converges linearly with inexact sub-problem solutions. Our analysis
is based on that in Lee and Wright (2019a), Peng et al. (2018) to assume that (7) is solved
γ -approximately for some γ ∈ [0, 1), defined below.

Definition 1 We say that Δαt solves (7) γ -approximately for some γ if

Qαt

Bt
(∆αt) − min

∆α
Qαt

Bt
(∆α) ≤ γ

(

Qαt

Bt
(0) − min

∆α
Qαt

Bt
(∆α)

)

. (22)

We will show that linear convergence can be obtained as long as the problem (2) is convex
and the quadratic growth condition holds.

Assumption 5 The function f in the dual problem (2) satisfies the quadratic growth condition
with some μ > 0. That is, let A be the solution set, then

f (α) − f ∗ ≥ μ

2
min
α∗∈A

‖α − α∗‖2,∀α. (23)

Notice that (Bolte et al. 2017, Theorem 5) has shown that (23) and (21) are equivalent when
f is convex. Here we use this equivalent condition for the ease of the convergence proof.

We are now able to present the convergence results of the inexact version of our algorithm.

Lemma 3 If Bt is chosen so that the smallest eigenvalue of Bt is no smaller than some

constant C1 (can be nonpositive) for all t , Qαt

Bt
is C2-strongly convex for some C2 > 0 for all

t , and (1 + √
γ)C1 + (1 − √

γ)C2 > 0, then the update direction obtained by solving (7) at

least γ -approximately for some γ ∈ [0, 1) is a descent direction, and Algorithm 1 terminates

in finite steps, with the generated step size lower bounded by

ηt ≥ min

(

1,
β(1 − τ)σ

((

1 + √
γ
)

C1 +
(

1 − √
γ
)

C2
)

∥

∥X T X
∥

∥

(

1 + √
γ
)

)

. (24)

123

Machine Learning (2020) 109:813–852 827

Theorem 2 If Assumption 5 holds, there exists C3 > 0 such that both ‖Bt‖ ≤ C3 and the

conditions in Lemma 3 are satisfied for all t for some C1 ∈ [0, C3], C2, and γ ∈ [0, 1), then

the dual objective sequence generated by Algorithm 2 converges Q-linearly as follows.

f
(

αt+1
)

− f ∗

f (αt) − f ∗

≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 − τμ
4C3

min

{

1 − γ,
β(1−τ)σ

(

(1−γ)C1+(1−√
γ)

2
C2

)

‖X T X‖

}

, if μ ≤ 2C3,

1 − τ
(

1 − C3
μ

)

min

{

1 − γ,
β(1−τ)σ

(

(1−γ)C1+(1−√
γ)

2
C2

)

‖X T X‖

}

, else.

(25)

4.3 Convergence of the primal objective usingw(˛)

Next, we show the convergence rate of the primal problem (1) based on the above linear
convergence results for the dual problem. Our analysis here needs neither Assumption 4 nor
Assumption 5 to hold. The following theorem is obtained from the duality gap guarantees of
the algorithms in Bach (2015), Shalev-Shwartz and Zhang (2012), through taking the dual
iterates generated by Algorithm 2 and their corresponding primal iterates in (5) as the initial
point for their algorithms.

Theorem 3 For any ǫ > 0 and any ǫ-accurate solution α for (2), the w obtained through (5)
is:

1. (ǫ(1 + ρ‖X T X‖/σ))-accurate for (1), if Assumption 2 holds, or

2. (max{2ǫ,
√

8ǫ‖X T X‖L2/σ })-accurate for (1), if Assumption 3 holds.

By noting that log
√

1/ǫ = log(1/ǫ)/2, we get the following corollary.

Corollary 1 If we apply Algorithm 2 to solve a regularized ERM problem that satisfies either

Assumption 2 or Assumption 3, and the dual objective at the iterates αt converges Q-linearly

to the optimum, then the primal objective evaluated at the iterates wt obtained from the dual

iterates αt via (5) converges R-linearly to the optimum at the rate given by Theorem 2.

4.4 Convergence improvement by using the specific choice of Bt

Our analysis so far does not consider the effect of the specific choices of (14) in the quadratic
approximation. These results provided a worst-case guarantee that ensure the proposed
algorithms are provably efficient even for ill-conditioned problems. In the following, we
demonstrate that in most cases, the choice of Bt in (14) leads to a better convergence rate
because it leverages the curvature information of the original problem to improve the problem
condition.

In particular, we assume the following.

Assumption 6 In (2), the smooth term G∗ is L B-Lipschitz continuously differentiable with
respect to the seminorms induced by the matrices Bt defined in (14) around the point αt :

G∗ (α) ≤ G∗ (αt
)

+ ∇G∗(αt)T
(

α − αt
)

+ L B

2
‖α − αt‖2

Bt
,

∀α ∈ Ω close enough to αt ,∀t . (26)

123

828 Machine Learning (2020) 109:813–852

The objective function f has quadratic growth with factor μB with respect to the same
seminorms:

f (α) − f ∗ ≥ μB

2
min
α∗∈A

∥

∥α − α∗∥
∥

2
Bt

,∀t,∀α ∈ Ω. (27)

Without loss of generality, we assume μB ≤ 2.

The assumption states that using the matrix Bt defined in (14) gives a better problem
condition under the norm change (note that ‖X T X‖/(μσ) is the condition number of the
dual problem under the Euclidean norm). The Lipschitz continuity part is only needed locally
as in our convergence proof, this constant is only used for the step size bound, which is for the
local behavior in the region between the current and the next iterates. When G∗ is quadratic,
i.e., when g(·) = ‖ · ‖2/2 in (1), Bt becomes a fixed matrix if at

1 and at
2 are fixed over t , and

this seminorm definition is more intuitive and can be verified easily. In particular, in this case
∇2G(α) ≡ X T X , so

{

∇2G � K H̃α,∀α,

∇2G � ‖X T X‖I ,
(28)

where the first inequality is from the observation that

∥

∥

∥

∥

∥

l
∑

i=1

αi X i

∥

∥

∥

∥

∥

2

≤ K

K
∑

k=1

∥

∥

∥

∥

∥

∥

∑

i∈Jk

αi X i

∥

∥

∥

∥

∥

∥

2

. (29)

We can now show the improved convergence results. We start from that the preconditioner
can increase the step size.

Lemma 4 Given αt , if we use Bt defined in (14) to form the sub-problem (7), the sub-problem

is solved at least γ -approximately for some γ ∈ [0, 1), and Assumption 6 holds, then the

obtained update direction Δαt satisfies

Δt ≤ − 1

1 + √
γ

∥

∥Δαt
∥

∥

2
Bt

. (30)

Moreover, given β, τ ∈ (0, 1), Algorithm 1 produces a step size lower-bounded by

ηt ≥ min

{

1,
2β(1 − τ)

L B(1 + √
η)

}

.

If L B is much smaller than L , Lemma 4 provides a step size larger than what we had from
the general analysis. By utilizing the inequalities in (28) for an upper bound on L B , we can
see that usually a step size no smaller than at

1/K can be expected if at
1 ∈ [0, K].

Note that we can take the larger of the bound from Lemma 3 and that from Lemma 4, so
we are always guaranteed to have a bound that is no worse. We therefore assume without
loss of generality that the bound from Lemma 4 is the larger one.

We proceed on to the improved convergence speed on the dual problem.

Theorem 4 If Assumption 6 holds, and the conditions in Lemma 4 are satisfied for all itera-

tions, then the sequence of dual objective values generated by Algorithm 2 with Bt defined

123

Machine Learning (2020) 109:813–852 829

in (14) converges Q-linearly to the optimum, with the rate being

f
(

αt+1
)

− f ∗

f (αt) − f ∗ ≤ 1 − τμB(1 − γ)ηt

4
(31)

≤ 1 − τμB

2
min

{

(1 − γ)

2
,
β (1 − τ)

(

1 − √
γ
)

L B

}

. (32)

When L B/μB is much smaller than the condition number ‖X T X‖/(μσ) defined by the
Euclidean norm, which is usually the case as Bt approximates the Hessian closely, the rate in
(32) is significantly faster than the best possible rates in Theorems 1 and 2 obtained by making
the algorithm the proximal gradient method with a fixed step size. Finally, by combining
Theorem 4 and Theorem 3, we get a faster convergence rate for the primal objective as well.

Corollary 2 If we apply Algorithm 2 with Bt defined in (14) to solve a regularized ERM

problem that satisfies either Assumption 2 or Assumption 3, and Assumption 6 holds, then

the primal iterates w(αt) obtained from the dual iterates αt via (5) give primal objectives

that converge to the optimum R-linearly at the rate given by Theorem 4.

5 Related works

The general convergence theory of the inexact version of our general framework in Sect. 2
follows from Lee and Wright (2019a), Peng et al. (2018) on the line of inexact variable metric
methods for regularized optimization. The analysis of the exact version, derived independent
of the theory in Lee and Wright (2019a), Peng et al. (2018), is applicable to a broader choice
of sub-problems, in the sense that indefinite Bt is allowed in the exact version.

On the other hand, our focus is on how to devise a good approximation of the Hessian
matrix of the smooth term that makes distributed optimization efficient. Works focusing on
this direction for dual ERM problems include (Pechyony et al. 2011; Yang 2013; Ma et al.
2017). Pechyony et al. (2011) discusses how to solve the SVM dual problem in a distributed
manner. This problem is a special case of (2); see Sect. 6.1 for more details. They proposed
a method called DSVM-AVE that iteratively solves (7) using the Bt defined in (14) with
at

1 ≡ 1, at
2 ≡ 0 to obtain the update direction, while the step size ηt is fixed to 1/K . Though

they did not provide theoretical convergence guarantee in Pechyony et al. (2011), with the
understanding the SVM dual problem is quadratic, our analysis in Lemma 4 and the bound
in (28) gives convergence guarantee for their choice.

In Yang (2013), the algorithm DisDCA is proposed to solve (2) under the assumption
that g is strongly convex. They consider the case ci ≡ 1 for all i , but the algorithm can
be directly generalized to ci > 1. DisDCA specifically uses the stochastic dual coordinate
descent (SDCA) method (Shalev-Shwartz and Zhang 2013) to solve the local sub-problems,
while the choice of Bt is picked according to the algorithm parameters. To solve the sub-
problem on machine k, each time SDCA samples one entry ik from Jk with replacement and
minimizes the local objective with respect to αik

. At each iteration of their algorithm, each
time machine k selects mk entries in uniform random to form the sub-problem, and let us
denote m:=

∑K
k=1 mk . The first variant of DisDCA, called the basic variant in Yang (2013),

sets Bt in (7) as

(Bt)i, j =
{

m
σ

xT
i x j if xi , x j are from the same Xk for some k sampled,

0 else,

123

830 Machine Learning (2020) 109:813–852

and the step size is fixed to 1. In this case, it is equivalent to splitting the data into l blocks,
and the minimization is conducted only with respect to the blocks selected. If we let I be the
indices not selected, then following the same reasoning for (29), we have

‖d‖2
∇2G∗(α)

≤ dT Bt d, ∀d such that d I = 0,∀α, (33)

where the equality holds when all X are identical, |I | = l − m, and d incurs the largest
possible eigenvalue of ∇2G∗(α) (which is equivalent to 1/σ as the Lipschitz parameter
suggests). Therefore, by (33) and the Lipschitz-continuous differentiability of G∗, it is not
hard to see that in this case minimizing Qα

Bt
directly results in a certain amount of function

value decrease. The analysis in Yang (2013) then shows that the primal iterates {wt } obtained
by substituting the dual iterates {αt } into (5) converges linearly to the optimum when all ξi

have Lipschitz continuous gradient and converges with a rate of O(1/ǫ) when all ξi are
Lipschitz continuous by using some proof techniques similar to that in Shalev-Shwartz and
Zhang (2012). As we noted in Sect. 4, this is actually the same as showing the convergence
rate of the dual objective and then relating it to the primal objective.

The second approach in Yang (2013), called the practical variant, considers

(Bt)i, j =
{

K
σ

xT
i x j if π(i) = π(j),

0 else,

and takes unit step sizes. Similar to our discussion above for their basic variant, Qα
Bt

in this
case is also an upper bound for the function value decrease if the step size is fixed to 1, and
we can expect this method to work better than the basic variant as the approximation is closer
to the real Hessian and the scaling factor is closer to one. Empirical results show that this
variant is as expected faster than the basic variant, despite the lack of theoretical convergence
guarantee in Yang (2013).

Both DSVM-AVE and the practical variant of DisDCA are generalized to a framework
proposed in Ma et al. (2017) that discusses the relation between the second-order approx-
imation and the step size. In particular, their theoretical analysis for fixed step sizes starts
from (28) and the Lipschitz continuous differentiability of G∗ to form safe upper bounds for
the function value decrease. They considered solving (7) with Bt defined as

(Bt)i, j =
{

a
σ

xT
i x j if π(i) = π(j),

0 else,
(34)

and showed that for a ∈ [1, K], a step size of a/K is enough to ensure convergence of the
dual objective, similar to our result in Lemma 4. As we discussed above for Pechyony et al.
(2011) and Yang (2013), this choice can be proven to ensure objective value decrease. Unlike
DisDCA which is tied to SDCA, their framework allows arbitrary solver for the local sub-
problems, and relates how precisely the local sub-problems are solved with the convergence
rate. If we ignore the part of local precision, the convergence rates of their framework shown
in Ma et al. (2017) is similar to that of Yang (2013) for the basic variant of DisDCA. This work
therefore provides theoretical convergence rates similar to the basic variant of DisDCA for
bothDSVM-AVE and the practical variant of DisDCA, and their experimental results shows that
the practical variant of DisDCA is indeed the most efficient. Notice that despite empirically
bettering the proximal gradient method, these works all provide convergence rates no better
than it. Fortunately, as these methods can be seen as special cases of our methods, with
our analysis in Sect. 4.4, we can explain why they are all faster than the proximal gradient
method. Our analysis in Sect. 4.4 is, up to our best knowledge, a novel result that shows

123

Machine Learning (2020) 109:813–852 831

how improved convergence speed can be obtained when the second-order approximation is
selected properly.

When we use the Bt considered by those works in (7), the major algorithmic difference
is that we do not take a pre-specified safe step size. Instead, we dynamically find a possibly
larger step size that, according to (31), can provide more function decrease than directly
applying the lower bound in Lemma 4. We can see that the choice of a = 1 in (34) gives too
conservative the step size, while the choice of a = K might make the quadratic approximation
in (7) deviate from the real Hessian too far. In particular, assuming ∇2g ≡ I , the case of a = 1
makes the Frobenius norm of the difference between ∇2G∗ and Bt the smallest, while other
choices increase this value. This suggests that using a = 1 should be the best approximation
one can get, but even directly using ∇2G∗ might not guarantee decrease of the objective
value. Our method thus provides a way to deal with this problem by adding a low-cost line
search step. Moreover, by adding Assumption 5 that holds true for most ERM losses (see
discussion in the next section), we are able to show linear convergence for a broader class of
problems.

Most other distributed ERM solvers directly optimize (1). Primal batch solvers for ERM
that require computing the full gradient or Hessian-vector products are inherently paralleliz-
able and can be easily extended to distributed environments as the main computations are
matrix-vector products like Xw. It mostly takes only some implementation modifications to
make these approaches efficient in distributed environments. Among them, it has been shown
that distributed truncated-Newton (Zhuang et al. 2015; Lin et al. 2014), distributed limited-
memory BFGS (Chen et al. 2014), and the limited-memory common-directions method (Lee
et al. 2017) are the most efficient ones in practice. These methods have the advantage that
their convergences are invariant of the data partition, though with the additional requirement
that the primal objective is differentiable or even twice-differentiable in comparison with
ours. However, there are important cases of ERM problems that do not possess differen-
tiable primal objective function such as the SVM problem. In these cases, one still needs
to consider the dual approaches, for other wise the convergence might be extremely slow.
Another popular distributed algorithm for solving (1) without requiring differentiability is
the alternating direction method of multipliers (ADMM) (Boyd et al. 2011), which is widely
used in consensus problems. However, it has been shown in Yang (2013) and Zhuang et al.
(2015) that DisDCA and truncated-Newton outperforms ADMM on various ERM problems.

Many lately proposed distributed optimization methods focus on the communication effi-
ciency. By increasing the computation per iteration, they are able to use fewer communication
rounds to obtain the same level of objective value. However, these approaches either rely
on the stronger assumption that data points across machines are independent and identi-
cally distributed (i.i.d.), or has higher computational dependency on the dimensionality of
the problem. The former assumption may not hold in practice, while the latter results in
computational-inefficient and thus impractical methods. For example, Zhang and Lin (2015)
consider a damping Newton method with a preconditioned conjugate gradient (PCG) method
to solve the Newton linear system, with the preconditioner being the Hessian from a specific
machine. However, the computational cost of PCG is much higher because each iteration
of which involves inverting the local Hessian. The distributed SVRG method proposed by
Lee et al. (2015) has good computational and communication complexity simultaneously,
but needs the assumption that data points on each machine follow a certain distribution and
requires overlapping data points on different machines. This implies more communication
in advance to distribute data points, which is prohibitively expensive when the data volume
is huge. Indeed, instead of a real distributed environment, their experiment is simulated in

123

832 Machine Learning (2020) 109:813–852

a multi-core environment because of this constraint. We therefore exclude comparison with
these methods.

Recently, Zheng et al. (2017) adopted for DisDCA an acceleration technique in Lin et al.
(2015); Shalev-Shwartz and Zhang (2016), resulting in a theoretically faster algorithm. This
technique repeatedly uses DisDCA to solve a slightly modified objective every time to some
given precision, and reconstruct a new objective function based on the obtained iterate and
the previous iterate. The same technique can also be applied to this work in the same fashion
by replacing DisDCA with the proposed method. Therefore, we focus on the comparison with
methods before applying the acceleration technique, with the understanding that the faster
method of the same type before acceleration will result in a faster method after acceleration
as well. Moreover, what is the best way to apply the acceleration technique to obtain the
best efficiency for distributed optimization of ERM problems is itself another open research
problem. Issues including whether to apply it on the primal or the dual problem, should
restarting be considered, how to estimate the unknown parameters, and so on, are left to
future work.

6 Applications

In this section, we apply the proposed algorithm in Sect. 2 to solve various regularized
ERM problems and discuss techniques for improving the efficiency by utilizing the problem
structures. We will demonstrate the empirical performance of the proposed algorithms in
Sect. 7.

We first show that a class of problems satisfies Assumption 5.

Lemma 5 (Necoara et al. (2019), Theorem 10) Consider a problem of the following form

min
α

F(α):=g(Aα) + bT α (35a)

subject to Cα ≤ d, (35b)

where g is strongly convex with any feasible initial point α0. Then F satisfies the condition

(21) in the level set {α | Cα ≤ d, F(α) ≤ F(α0)} for some μ > 0 that depends on the

initial point α0. If the constraint is a polytope, then the condition (21) holds for all feasible

α.

6.1 Binary classification and regression

The first case is the the SVM problem (Boser et al. 1992; Vapnik 1995) where ci ≡ 1, and
given C > 0,

ξi (z) ≡ C max(1 − yi z, 0), g(w) = 1

2
‖w‖2,

with yi ∈ {−1, 1},∀i . Obviously, Assumption 1 holds with σ = 1 in this case, and ξi are
1-Lipschitz continuous. Based on a straightforward derivation, we have that

g∗(Xα) = 1

2
‖Xα‖2, ξ∗

i (−αi) = 1[0,C](αi yi) − αi yi , (36)

123

Machine Learning (2020) 109:813–852 833

where

1[0,C](x):=
{

0 if x ∈ [0, C],
∞ else.

It is clear that ξi are C-Lipschitz continuous. For the dual problem, we see that the constraints
are of the form (35b), g∗ is strongly convex with respect to Xα, and the remaining term −αi yi

is linear, so the objective function satisfies the form (35a). Therefore, by Lemma 1, (21) is
satisfied. Therefore all conditions of Assumption 3 are satisfied. Hence from Corollary 1, our
algorithm enjoys linear convergence in solving the SVM dual problem.

Besides, we can replace the hinge loss (L1 loss) in SVM with the squared-hinge loss (L2
loss):

ξi (z) ≡ C max(1 − yi z, 0)2,

and then ξi becomes differentiable, with the gradient being Lipschitz continuous. Therefore,
Assumption 2 is satisfied, and we can apply Corollary 1. We have that

ξ∗
i (−αi) = 1[0,∞)(αi yi) − αi yi +

α2
i

4C
.

One can observe that the dual objectives of the hinge loss and the squared-hinge loss
SVMs are both quadratic, hence we can apply the exact line search approach in (19) with
very low cost by utilizing the Δv and v vectors.

Another widely used classification model is logistic regression, where

ξi (z):=C log(1 + exp(−yi z)).

It can then be shown that the logistic loss is infinitely differentiable, and its gradient is
Lipschitz continuous. Thus, Assumption 2 is satisfied.

An analogy of SVM to regression is support vector regression (SVR) by Boser et al.
(1992); Vapnik (1995) such that the g function is the same and given C > 0 and ǫ ≥ 0,

ξi (z):=
{

C max(|z − yi | − ǫ, 0), or

C max(|z − yi | − ǫ, 0)2,

with yi ∈ R for all i . Similar to the case of SVM, the first case satisfies Assumption 36

and the latter satisfies Assumption 2. Often the first variant is called SVR and the second
variant is called L2-loss SVR. Note that the degenerate case of ǫ = 0 corresponds to the
absolute-deviation loss and the least-square loss. In the case of the least-square loss, we again
can use the exact line search approach because the objective is a quadratic function.

Note that one can also replace g with other strongly convex functions, but it is possible
that (21) is not satisfied. In this case, one can establish some sublinear convergence rates by
applying similar techniques in our analysis, but we omit these results to keep the description
straightforward.

A short summary of various ξi ’s we discussed in this section is in Table 1.

6.2 Multi-class classification

For the case of multi-class classification models, we assume without loss of generality that
ci ≡ T for some T > 1, and yi ∈ {1, . . . , T } for all i . The first model we consider is the

6 Up to an equivalent reformulation of the dual problem by setting α = α+ − α− and α+, α− ≥ 0.

123

834 Machine Learning (2020) 109:813–852

Table 1 Summary of popular ERM problems for binary classification (the range of y = {1,−1}) and for
regression (the range of y = R), where our approach is applicable. Our approach is also applicable to the
extensions of these methods for multi-class classification and structured prediction

Loss name ξi (z) Assumption ξ∗
i
(−α)

L1-loss SVM C max(1 − yi z, 0) 3 1[0,C](αyi) − αyi

L2-loss SVM C max(1 − yi z, 0)2 2 1[0,∞)(αyi) − αyi + α2

4C

Logistic regression C log(1 + exp(−yi z)) 2 1[0,C](αyi) + αyi log(αyi)

+(C − αyi) log((C − αyi))

SVR C max(|z − yi | − ǫ, 0) 3 1[−C,C](α) + ǫ|αi | − αyi

L2-loss SVR C max(|z − yi | − ǫ, 0)2 2 ǫ|αi | − αyi + 1
4C

α2

Least-square regression C(z − yi)
2 2 −αyi + 1

4C
α2

multi-class SVM model proposed by Crammer and Singer (2002). Given an original feature
vector xi ∈ Rñ , the data matrix X i is defined as (IT − eyi

1T) ⊗ xi , where IT is the T by
T identity matrix, ei is the unit vector of the i-th coordinate, 1 is the vector of ones, and ⊗
denotes the Kronecker product. We then get that n = T ñ, and the multi-class SVM model uses

g(w):=1

2
‖w‖2,

ξi (z):=C max

(

max
1≤ j≤T

1 − zi , 0

)

. (37)

From the first glance, this ξ seems to be not even Lipschitz continuous. However, its dual
formulation is

min
α

1

2
‖Xα‖2 +

l
∑

i=1

∑

j 	=yi

(αi) j

subject to αT
i 1 = 0, i = 1, . . . , l,

(αi) j ≤ 0, ∀ j 	= yi , i = 1, . . . , l,

(αi)yi
≤ C, i = 1, . . . , l, (38)

showing the boundedness of the dual variables α. Thus, the primal variable w(α) = Xα also
lies in a bounded area. Therefore, ξi (X T

i w(α)) also has a bounded domain, indicating that by
compactness we can find L ≥ 0 such that this continuous function is Lipschitz continuous
within this domain. Moreover, the formulation (38) satisfies the form (35), so (21) holds by
Lemma 1. Thus, Assumption 3 is satisfied. Note that in this case the objective of (38) is a
quadratic function so once again we can apply the exact line search method on this problem.

As an analogy of SVM, one can also use the squared-hinge loss for multi-class SVM (Lee
and Lin 2013).

ξi (z):=C max

(

max
1≤ j≤T

1 − zi , 0

)2

. (39)

The key difference to the binary case is that the squared-hinge loss version of multi-class SVM
does not possess a differentiable objective function. We need to apply a similar argument as
above to argue the Lipschitzness of ξ . The dual formulation from the derivation in Lee and
Lin (2013) is

123

Machine Learning (2020) 109:813–852 835

min
α

1

2
‖Xα‖2 +

l
∑

i=1

∑

j 	=yi

(αi) j +
l
∑

i=1

((αi)yi
)2

4C

subject to αT
i 1 = 0, i = 1, . . . , l,

(αi) j ≤ 0,∀ j 	= yi , i = 1, . . . , l,

suggesting that each coordinate of α is only one-side-bounded, so this is not the case that α

lies explicitly in a compact set. However, from the constraints and the objective, we can see
that given any initial point α0, the level set {α | f (α) ≤ f (α0)} is compact. Because our
algorithm is a descent method, throughout the optimization process, all iterates lie in this
compact set. This again indicates that w(α) and X T

i w(α) are within a compact set, proving
the Lipschitzness of ξi within this set. The condition (21) is also satisfied following the same
argument for the hinge-loss case. Therefore, Assumption 3 still holds, and it is obvious that
we can use the exact line search method here as well.

We can also extend the logistic regression model to the multi-class scenario. The loss
function, usually termed as multinomial logistic regression or maximum entropy, is defined
as

ξi (z):= − log

(

exp(zyi
)

∑T
k=1 exp(zk)

)

.

It is not hard to see that Assumption 2 holds for this problem. For more details of its dual
problem and an efficient local sub-problem solver, interested readers are referred to Yu et al.
(2011).

6.3 Structured predictionmodels

In many real-world applications, the decision process involves making multiple predictions
over a set of interdependent output variables, whose mutual dependencies can be modeled
as a structured object such as a linear chain, a tree, or a graph. As an example, consider
recognizing a handwritten word, where characters are output variables and together form
a sequence structure. It is important to consider the correlations between the predictions
of adjacent characters to aid the individual predictions of characters. A family of models
designed for such problems are called structured prediction models. In the following, we
discuss how to apply Algorithm 2 in solving SSVM (Tsochantaridis et al. 2005; Taskar et al.
2004), a popular structured prediction model.

Different from the case of binary and multi-class classifications, the output in a structured
prediction problem is a set of variables yi ∈ Yi , and Yi is the set of all feasible structures. The
sizes of the input and the output variables are often different from instance to instance. For
example, in the handwriting recognition problem, each element in y represents a character
and Y is the set of all possible words. Depending on the number of characters in the words,
the sizes of inputs and outputs vary.

Given a set of observations {(xi , yi)}l
i=1, SSVM solves

min
w,ψ

1

2
‖w‖2 + C

l
∑

i=1

ℓ(ψi)

subject to wT φ(y, yi , xi) ≥ Δ(yi , y) − ψi , ∀ y ∈ Yi , i = 1, . . . , l, (40)

123

836 Machine Learning (2020) 109:813–852

where C > 0 is a predefined parameter, φ(y, yi , xi) = Φ(xi , yi) − Φ(xi , y), and Φ(x, y)

is the generated feature vector depending on both the input x and the output structure y. By
defining features depending on the output, one can encode the output structure into the model
and learn parameters to model the correlation between output variables. The constraints in
problem (40) specify that the difference between the score assigned to the correct output
structure should be higher than a predefined scoring metric Δ(y, yi) ≥ 0 that represents the
distance between output structures. If the constraints are not satisfied, then a penalty term ψi

is introduced to the objective function, where ℓ(ψ) defines the loss term. Similar to the binary
and multi-class classifications cases, common choices of the loss functions are the L2 loss
and the L1 loss. The SSVM problem (40) fits in our framework, depending on the definition
of the features, one can define X i to encode the output y. One example is to set every column
of X i as a vector of the form φ(y, yi , xi) with different y ∈ Yi , and let ξi (X T

i w) in problem
(1) be

ξi (z) = C max
y∈Yi

ℓ(Δ(yi , y) − z y). (41)

Here, we use the order of y appeared in the columns of X i as the enumerating order for the
coordinates of z.

We consider solving problem (40) in its dual form (Tsochantaridis et al. 2005). One can
clearly see the similarity between (41) and the multi-class losses (37) and (39), where the
major difference is that the value 1 in the multi-class losses is replaced by Δ(yy, y). Thus, it
can be expected that the dual problem of SSVM is similar to that of multi-class SVM. With
the L1 loss, the dual problem of (40) can be written as,

min
α

1

2
‖Xα‖2 −

l
∑

i=1

∑

y∈Yi , y 	= yi

Δ(yi , y)(αi) yi

subject to αT
i 1 = 0, i = 1, . . . , l,

(αi) y ≤ 0,∀ y ∈ Yi , y 	= yi , i = 1, . . . , l,

(αi) yi
≤ C, i = 1, . . . , l. (42)

With the L2 loss, the dual of (40) is

min
α

1

2
‖Xα‖2 −

l
∑

i=1

∑

y 	= yi

Δ(yi , y)(αi) yi
+

l
∑

i=1

((αi) yi
)2

4C

subject to αT
i 1 = 0, i = 1, . . . , l,

(αi) y ≤ 0,∀ y ∈ Yi , y 	= yi , i = 1, . . . , l. (43)

As the dual forms are almost identical to that shown in Sect. 6.2, it is clear that all the analysis
and discussion can be directly used here.

The key challenge of solving problems (42) and (43) is that for most applications, the size
of Yi and thus the dimension of α is exponentially large (with respect to the length of xi),
so optimizing over all variables is unrealistic. Efficient dual methods (Tsochantaridis et al.
2005; Lacoste-Julien et al. 2013; Chang and Yih 2013) maintain a small working set of dual
variables to optimize such that the remaining variables are fixed to be zero. These methods
then iteratively enlarge the working set until the problem is well-optimized.7 The working

7 This approach is related to applying the cutting-plane methods to solve the primal problem (40) (Tsochan-
taridis et al. 2005; Joachims et al. 2009).

123

Machine Learning (2020) 109:813–852 837

set is selected using the sub-gradient of (40) with respect to the current iterate. Specifically,
for each training instance xi , we add the dual variable αi, ŷ corresponding to the structure ŷ

into the working set, where

ŷ = arg max
y∈Yi

wT φ(y, yi , xi) − Δ(yi , y). (44)

Once α is updated, we update w accordingly. We call the step of computing eq. (44) “infer-
ence”, and call the part of optimizing Eq. (42) or (43) over a fixed working set “learning”.
When training SSVM in a distributed manner, the learning step involves communication
across machines. Therefore, inference and learning steps are both expensive. Our algorithm
can be applied in the learning step to reduce the rounds of communication, and linear con-
vergence rate for solving the problem under a fixed working set can be obtained.

SSVM is an extension of multi-class SVM for structured prediction. Similarly, conditional
random fields (CRF) (Lafferty et al. 2001) extends multinomial logistic regression. The loss
function in CRF is defined as the negative log-likelihood:

ξi (z):= − log

(

exp(z yi
)

∑

y∈Yi
exp(z y)

)

. (45)

Similar to multinomial logistic regression, Assumption 2 holds for (45).

7 Experiments

We conduct experiments on different ERM problems to examine the efficiency of variant
realizations of our framework. The problems range from binary classification (i.e., ci ≡ 1) to
problems with complex output structures (i.e., each ci is different), and from that exact line
search can be conducted to that backtracking using Algorithm 1 is applied. For each problem,
we compare our method with the state of the art approaches, and the data is partitioned
evenly across machines in terms of the number of data points without randomly shuffling the
instances in advance, so it is possible that the data distributions on different machines vary.

For the case of ci ≡ 1, we consider two linear classification tasks. To evaluate the situation
of larger ci , we take SSVM as the exemplifying application.

7.1 Binary linear classification

The proposed framework is suitable for training large machine learning models on data where
numbers of instances and features are both large. It is especially useful in a practical setting
where data instances are stored distributedly on multiple machines. This setting is common
on web data due to efficiency and privacy concerns. We therefore consider the following
large-scale datasets in our experiments.

– webspam (Wang et al. 2012) is a binary classification task aiming at detecting if a web
page is created to manipulate search engines. We use bag-of-words model with n-gram
(n ≤ 3) to extract features.

– url (Ma et al. 2009) detects malicious URLs based on their lexical and host-based features.
– KDD2010-b is dataset used in KDD Cup 2010 with the goal to predict students’ perfor-

mance based on logs of their interaction with an educational system. We follow (Yu et al.
2010) to extract features.

123

838 Machine Learning (2020) 109:813–852

Table 2 Data statistics Data set #instances (l) #features (n) #nonzeros

webspam 350,000 16,609,143 1,304,697,446

url 2,396,130 3,231,961 277,058,644

KDD2010-b 19,264,097 29,890,095 566,345,888

The statistics of the data are summarized in Table 2.8

We consider both linear SVM and L2-regularized logistic regression discussed in Sect. 6.1.
The comparison criteria are the relative primal and dual objective distances to the optimum,
respectively defined as

∣

∣

∣

∣

∣

f P
(

w
(

αt
))

− f ∗

f ∗

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

f (αt) − (− f ∗)

f ∗

∣

∣

∣

∣

, (46)

where f ∗ is the optimum we obtained approximately by running our algorithm with a tight
stopping condition. Note that the optimum for the dual and the primal problems are identical
except the flip of the sign, according to strong duality. We examine the relation between these
values and the training time. We fix C = 1 in this experiment. The distributed environment
is a cluster of 16 machines connected through MPI.

We compare the methods below whenever applicable.

– BDA: the Block-Diagonal Approximation method proposed in this paper. For the dual
SVM problem, we utilize its quadratic objective to conduct exact line search while back-
tracking line search is used with the parameters being τ = 10−2, β = 0.5 for logistic
regression. For Bt in (14), we use at

1 ≡ 1 for all problems, as it is the closest block-
diagonal approximation of the Hessian. We set at

2 = 10−3 in the hinge-loss SVM problem
and at

2 = 0 in the other two whose dual objectives are strongly convex.
– DisDCA (Yang 2013): we use the practical variant for it outperforms th basic variant

empirically. Moreover, experimental result in Ma et al. (2017) showed that this algorithm
(under a different name CoCoA+) is faster than DSVM-AVE, and the best solver for the
local sub-problems is indeed SDCA used in Yang (2013).

– L-CommDir (Lee et al. 2017): a state-of-the-art distributed primal ERM solver that has
been shown to empirically outperform existing distributed primal approaches. We take
the experimental setting in Lee et al. (2017) to use historical information from the latest
five iterations.

– TRON (Zhuang et al. 2015; Hsia et al. 2017): a distributed implementation for ERM
problems of the trust-region truncated Newton method proposed by Steihaug (1983).

All methods are implemented in C++. We use the implementation of L-CommDir and TRON

in the package MPI-LIBLINEAR 2.11.9 These two methods require differentiability of the
primal objective, so we apply them only on squared-hinge loss SVM and logistic regression
problems. We implement DisDCA and BDA with the local sub-problem solver being the
random permutation cyclic coordinate descent (RPCD) for dual SVM (Hsieh et al. 2008) and
for dual logistic regression (Yu et al. 2011). Note that the original solver in Yang (2013) is
the dual stochastic coordinate descent algorithm in Shalev-Shwartz and Zhang (2013) that
samples the coordinates with replacement, but it has been shown in Shalev-Shwartz and

8 Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
9 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Machine Learning (2020) 109:813–852 839

Zhang (2013) that empirically RPCD is faster, and therefore we apply it in DisDCA as well.
At each iteration, we run one epoch of RPCD on each machine, namely we pass through
the whole dataset once, before communication. This setting ensures that DisDCA and BDA

have computation-to-communication ratios similar to that of L-CommDir and TRON, so our
results represent both a comparison for the training time and a comparison for the number of
communication rounds.

The comparison of the dual and primal objectives are shown in Figs. 1, 2 and 3. For
webspam and url that are easier to solve, we present the result of running different algorithms
for 500 s. For the more difficult problem KDD2010-b, we run all algorithms for 10, 000 s.

We first discuss the dual objectives. We can see that our approach is always better than
state of the art for the dual problem. The difference is more significant in the SVM problems,
showing that low-cost exact line search has its advantage over backtracking, while back-
tracking is still better than the fixed step size scheme. The reason behind is that although the
approach of DisDCA provides a safe upper bound model for the objective difference such
that the local updates can be directly applied to ensure the objective decrease, this upper
bound might be too conservative as suggested by Ma et al. (2017), but more aggressive upper
bound modelings might be computationally impractical to obtain. On the other hand, our
approach provides an efficient way to dynamically estimate how aggressive the updates can
be, depending to the current iterate. Therefore, the objective can decrease faster as the update
is more aggressive but still safe in terms of ensuring sufficient objective value decrease.
Investigation of the step sizes generated by line search in Sect. 7.3 will show that the step
sizes are indeed not fixed throughout the optimization procedure, indicating that a fixed step
size scenario might not be ideal.

Now we turn to the primal objectives. Note that the step-like behavior of BDA is from that
we use the best primal objective up to the current iterate discussed in Sect. 3.4. Although
aggressive step sizes in BDA results in less stable primal objective progress especially in the
beginning, we observe that BDA still reaches lower primal objective faster than DisDCA, and
the behavior of the early stage is less important. For the case of hinge-loss SVM, BDA is
always the best, and note that only dual approaches are feasible for hinge loss as it is not
differentiable. When it comes to squared-hinge loss SVM, in which case exact line search for
the dual problem can still be conducted, BDA outperforms all primal and dual approaches. The
dual problem of logistic regression is not a quadratic one, hence we cannot easily implement
exact line search and need to resort to the backtracking approach in Algorithm 1. We can see
that for this problem, L-CommDir has an advantage in the later stage of optimization, while
BDA and DisDCA are competitive till a medium precision, which is usually enough for linear
classification tasks. In most cases, TRON is the slowest method.

7.2 Structured learning

We perform experiments on two benchmark tasks for structured prediction, part-of-speech
tagging (POS) and dependency parsing (DEP). For both tasks, we use the Wall Street Journal
portion of the Penn Treebank (Marcus et al. 1993) with the standard split for training (section
02-21), development (section 22), and test (section 23). POS is a sequential labeling task,
where we aim at learning part-of-speech tags assigned to each word in a sentence. Each
tag assignment (there are 45 possible tag assignments) depends on the associated word, the
surrounding words, and their part-of-speech tags. The inference in POS is solved by the
Viterbi algorithm (Viterbi 1967). We evaluate our model by the per-word tag accuracy. For
DEP, the goal is to learn, for each sentence, a tree structure which describes the syntactic

123

840 Machine Learning (2020) 109:813–852

lamirPlauD

Hinge-loss SVM

Squared-hinge loss SVM

Logistic regression

Fig. 1 Comparison of different algorithms for optimizing the ERM problem on webspam with C = 1. We
show training time v.s. relative difference of the objectives to the optimal function value

dependencies between words. We use the graph-based parsing formulation and the features
described in McDonald et al. (2005), where we find the highest scoring parse using the
Chu-Liu-Edmonds algorithm (Chu and Liu 1965; Edmonds 1967). We evaluate the parsing
accuracy using the unlabeled attachment score, which measures the fraction of words that
have correctly assigned parents.

We compare the following algorithms using eight nodes in a local cluster. All algorithms
are implemented in JAVA, and the distributed platform is MPI.

– BDA: the proposed algorithm. We take at
1 ≡ K and at

2 ≡ 10−3 as at
1 ≡ 1 is less stable in

the primal objectives, which is essential for the sub-problem solver in this application.
– ADMM-Struct: distributed alternating directions method of multiplier discussed in Boyd

et al. (2011).

123

Machine Learning (2020) 109:813–852 841

lamirPlauD

Hinge-loss SVM

Squared-hinge loss SVM

Logistic regression

Fig. 2 Comparison of different algorithms for optimizing the ERM problem on url with C = 1. We show
training time v.s. relative difference of the objectives to the optimal function value

– Distributed Perceptron: a parallel structured perceptron algorithm described in McDon-
ald et al. (2010).

– Simple average: each machine trains a separate model using the local data. The final
model is obtained by averaging all local models.

For BDA and ADMM-Struct, the problem considered is SSVM in (40) with L2 loss. Dis-
tributed Perceptron, on the other hand, solves a similar but different problem such that no
regularization is involved. We set C = 0.1 for SSVM. Empirical experience suggests that
structured SVM is not sensitive to C , and the model trained with C = 0.1 often attains
reasonable test performance.

Both ADMM-Struct and BDA decompose the original optimization problem into sub-
problems, and we solve the sub-problems by the dual coordinate descent solver for L2-loss

123

842 Machine Learning (2020) 109:813–852

lamirPlauD

Hinge-loss SVM

Squared-hinge loss SVM

Logistic regression

Fig. 3 Comparison of different algorithms for optimizing the ERM problem on KDD2010-b with C = 1. We
show training time v.s. relative difference of the objectives to the optimal function value

SSVM proposed in Chang and Yih (2013), which is shown to be empirically efficient com-
paring to other existing methods. By solving the sub-problems using the same optimizers,
we can investigate the algorithmic difference between ADMM-Struct and BDA. For all algo-
rithms, we fix the number of passes through all instances to make inferences between any two
rounds of communication to be one, so that the number of inference rounds is identical to the
number of communication rounds. Although it is possible to alter the number of inferences
between two rounds of communication (or the number of communication between two rounds
of inferences) to obtain a faster running time, fine-tuning this parameter is not realistic for
users because this parameter does not affect the prediction performance, and thus there is no
reason to spend time retrain the model several times. For BDA and ADMM-Struct, each time
in solving the local sub-problem with a fixed working set, we let the local RPCD solver pass

123

Machine Learning (2020) 109:813–852 843

Fig. 4 Comparison between different algorithms for structured learning using eight nodes. Training time is in
log scale

Table 3 Percentage of training
time spent on line search. For
hinge and squared-hinge loss,
Variant II of Algorithm 2 is used,
while Variant I is applied for
logistic loss

Loss webspam (%) url (%) KDD2010-b (%)

Hinge 6.25 7.82 2.05

Squared-hinge 9.87 10.64 7.50

Logistic 0.47 5.00 4.55

through the local instances ten times. We note that this number of iterations may also affect
the convergence speed but we do not fine-tune this parameter for the same reason above.
For ADMM-Struct, the weight for the penalty term in the augmented Lagrangian also affects
the convergence speed.10 Instead of fine-tuning it, a fixed value of 1.0 is used. Note that
since Distributed Perceptron and BDA/ADMM-Struct consider different problems, instead
of showing objective function values, we compare the test performance along training time
of these methods.

Figure 4 shows the results. The x-axis is in log-scale. Although averaging local classifiers
achieves reasonable performance, all other methods improve the performance of the models
with multiple rounds of communications. This indicates that training models jointly on all
parts of data is necessary. Among different algorithms, BDA performs the best in both tasks. It
achieves the final accuracy performance (indicated when the accuracy stops improving) with
shorter training time comparing to other approaches. This result confirms that BDA enjoys a
fast convergence rate.

7.3 Line search

The major difference between our approach and most other dual distributed optimization
methods for ERM is the line search part. In this subsection we investigate the empirical cost
of line search. For this investigation, we use the information from the L2-regularized linear
classification experiments in Sect. 7.1.

In Table 3, we show the proportion of time spent on line search to the overall training
time. As the results indicate, the cost of line search is relatively low in comparison to solving
the local sub-problem and communicating Δv. Note that the cost of line search for hinge

10 See, for example, Boyd et al. (2011) for details.

123

844 Machine Learning (2020) 109:813–852

and squared-hinge loss is independent to the final step size, as exact line search instead of
backtracking is applied.

7.4 Speedup

Finally, we examine the practical speedup of BDA. We pick webspam on L2-loss SVM as
a representative example for this experiment. We run different algorithms on {1, 2, 4, 8, 16}
machines and see how the training time and the overall running time (training time plus data
loading time) differ. We record the time for (46) to reach 10−2 in Fig. 5. The left column
represents the time measured using the primal objective, while the right column represents
that using the dual objective. We can see that when it comes to the training time, TRON has a
better speedup because its algorithmic behavior is invariant of how the data are distributed,
while BDA still enjoys better speedup than the state of the art dual solver DisDCA.

When the data loading time is combined, we can see that BDA has the best speedup, and
the reason can be seen from the third row of time profiling. We see that the bottleneck in the
single-machine case is data loading which is embarrassingly parallel, and the training time of
BDA is insignificant in comparison with the I/O time. Therefore, although the training time
speedup of BDA is not that significant, the running time speedup is very promising. Another
reason we cannot obtain good speedup in the training time is that the single-machine case
is already very efficient in comparison with TRON, so it is rather difficult to have further
improvement.

8 Discussion

As Sect. 4.4 suggests, if the block-diagonal matrix Bt is a tight approximation to the Hessian
of G∗, BDA is expected to enjoy fast convergence. To achieve so, we might partition the data
in a better way such that those off diagonal-block entries in the matrix X T X are as small as
possible, then the Hessian will also have smaller off-diagonal terms. However, repartitioning
the data across machines involves a significant amount of data transmission, and designing an
efficient mechanism to split the data into blocks with desirable properties is challenging. One
practically feasible scenario is the case where the data points are streamed in and partitioned
in an online fashion.

Notice that in (32), having a larger step size while maintaining a large μB leads to fast
convergence. However, balancing these two factors is not an easy task. One potential heuristic
is to adjust at

1 and at
2 dynamically based on the step size in the previous iteration.

One limitation of our current approach is that the algorithm does not scale strongly with
the number of machines when the data size is fixed. If the number of machines increases, Bt

will contain more zero entries. This means the algorithm will be closer to a proximal gradient
method and converge slowly. This is inevitable for all distributed dual optimizers we discussed
in Sect. 5. However, in many real applications, distributed optimization techniques are used to
protect privacy or handle distributional data. In such applications, repartitioning data is costly
and may not be feasible. Therefore, the number of machines is predefined and practitioners
are concerned more about how to make the optimization procedure more efficient given the
fixed number of machines and the fixed data partitions, but not how to use more machines
for the same data to speed up the training process.

As mentioned in Sect. 5, just like Zheng et al. (2017) applied existing acceleration tech-
niques on top of DisDCA, our algorithm can also be combined with the acceleration techniques

123

Machine Learning (2020) 109:813–852 845

lamirPlauD

Training Time Speedup

Overall Running Time Speedup

Scalability Factors

Fig. 5 Speedup of different algorithms for training L2-loss SVM on webspam with C = 1

proposed by Shalev-Shwartz and Zhang (2016); Lin et al. (2015) to obtain a faster algorithm,
and we expect using our algorithm instead of DisDCA will be faster than the result in Zheng
et al. (2017) as our algorithm is faster than DisDCA in practice. This comparison will be an
interesting future work.

9 Conclusions

In this work, we proposed a distributed optimization framework for the dual problem of
regularized empirical risk minimization. Our theoretical results show linear convergence for
both the dual problem and the corresponding primal problem for a variety class of popular
problems whose dual problem is non-strongly convex. Our analysis further shows that when
the sub-problem can serve as a preconditioner to improve the problem condition, much better
convergence speed can be expected. Our approach is most powerful when it is difficult to

123

846 Machine Learning (2020) 109:813–852

directly solve the primal problem. Experimental results show that our method outperforms
state-of-the-art distributed dual approaches for regularized empirical risk minimization, and
is competitive to cutting-edge distributed primal methods when those primal methods are
feasible.

Acknowledgements The authors would like to thank the action editor and the anonymous reviewers for their
valuable comments and Dan Roth, Shyam Upadhyay, Chih-Jen Lin, Cho-Jui Hsieh, Martin Jaggi, and Shai
Shalev-Shwartz for their feedback and suggestions on the early version of this paper. This work was partially
supported in part by NSF Grant IIS-1760523.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

A Proofs

A.1 Proof of Lemma 1

Proof By (Hiriart-Urruty and Lemaréchal 2001, Part E, Theorem 4.2.1), if Assumption 2
holds, then ξ∗(·) and hence f is (1/ρ)-strongly convex. We thus have that for any α1,α2 ∈ Ω

and any λ ∈ (0, 1],

f (λα1 + (1 − λ)α2) ≤ λ f (α1) + (1 − λ) f (α2) − λ(1 − λ)

2ρ
‖α1 − α2‖2 ,

which implies

f (α1) − f (α2) ≥ 1 − λ

2ρ
‖α1 − α2‖2 + f (α2 + λ (α1 − α2)) − f (α2)

λ
.

Let λ → 0+, we get

f (α1) − f (α2) ≥ 1

2ρ
‖α1 − α2‖2 + sT (α1 − α2) ,∀s ∈ ∂ f (α2) .

By taking α2 = α with any s ∈ ∂ f (α) and minimizing both sides with respect to α1

simultaneously, we get (21) as s is arbitrary. ⊓⊔

A.2 Proof of Lemma 2 and 3

We can see that Lemma 2 is a special case of Lemma 3 with γ = 0, so we provide detailed
proof for the latter only.

This result follows directly from Lee and Wright (2019a, Lemma 3), which implies (in
our notation)

Δt ≤ −1

2

(

(

1 − √
γ
)

C2
(

1 + √
γ
) + C1

)

∥

∥∆αt
∥

∥

2
(47)

and

ηt ≥ min

(

1,
β(1 − τ)σ

((

1 + √
γ
)

C1 +
(

1 − √
γ
)

C2
)

∥

∥X T X
∥

∥

(

1 + √
γ
)

)

.

123

http://creativecommons.org/licenses/by/4.0/

Machine Learning (2020) 109:813–852 847

A.3 Proof of Theorem 1

Proof We first show the result for the variant of using backtracking line search. From (6),
(47) with γ = 0, and (9), we have that

f (αt+1) − f (αt) ≤ −ηtτ
C1 + C2

2
‖∆αt‖2. (48)

From the optimality of ∆αt in (7), we get that

∇G∗(αt) + Bt∆αt + s̃t+1 = 0, (49)

for some s̃t+1 ∈ ∂ξ∗(−αt − ∆αt). By convexity, that the step size is in [0, 1], and the
condition (21), we have

f
(

αt+1)− f ∗ ≤ ηt

(

f
(

αt + ∆αt
)

− f ∗)+ (1 − ηt)
(

f
(

αt
)

− f ∗)

≤ ηt

‖∇G
(

αt + ∆αt
)

+ s̃t+1‖2

2μ
+ (1 − ηt)

(

f
(

αt
)

− f ∗) . (50)

Now to relate the first term to the decrease, we use (49) to get

‖∇G(αt + ∆αt) + s̃t+1‖2 ≤ ‖∇G∗(αt + ∆αt) − ∇G∗(αt) + ∇G∗(αt) + s̃t+1‖2

≤ 2‖∇G∗(αt + ∆αt) − ∇G∗(αt)‖2 + 2‖Bt∆αt‖2

≤ 2

(‖X T X‖
σ

)2

‖∆αt‖2 + 2‖Bt‖2‖∆αt‖2, (51)

where in the second inequality, we used (a + b)2 ≤ 2(a2 + b2) for all a, b, and in the
last inequality we used the Lipschitz continuity of ∇G∗. We therefore get the following by
combining (50), (51), and (48).

f
(

αt+1)− f ∗ ≤ ηt

μ

(

(‖X T X‖
σ

)2

+ C2
3

)

‖∆αt‖2 + (1 − ηt)
(

f
(

αt
)

− f ∗)

≤
(

(‖X T X‖
σ

)2

+ C2
3

)

2
(

f
(

αt
)

− f
(

αt+1
))

μ(C1 + C2)τ
+ (1 − ηt)

(

f
(

αt
)

− f ∗) .

(52)

Let us define

C4:=
(

(‖X T X‖
σ

)2

+ C2
3

)

2

μ (C1 + C2) τ
,

then rearranging (52) gives

(f (αt+1) − f ∗) ≤ (1 − ηt + C4)

1 + C4
(f (αt) − f ∗). (53)

Combining the above result with the lower bound of ηt from (24) shows the desired Q-linear
convergence rate. As of the exact line search variant, it produces an objective no larger than
the left-hand side of (53), so the same rate holds. ⊓⊔

123

848 Machine Learning (2020) 109:813–852

A.4 Proof of Theorem 2

Proof This a direct application of Peng et al. (2018, Theorem 1). Their result implies

f
(

αt+1
)

− f ∗

f (αt) − f ∗ ≤
{

1 − ηtτ (1 − γ)
μ

4C3
, if μ ≤ 2C3,

1 − ηtτ (1 − γ)

(

1 − C3
μ

)

, else.
(54)

Using (24) in (54), we obtain (25). ⊓⊔

A.5 Proof of Theorem 3

Proof Our proof consists of using α as the initial point, applying one step of some primal-dual
algorithm, then utilizing the algorithm-specific relation between the decrease in one iteration
and the duality gap to obtain the bound. Therefore we will obtain an algorithm-independent
result from some algorithm-specific results.

When Assumption 2 holds, (1) is the type of problems considered in Shalev-Shwartz and
Zhang (2012), and we have that ξ∗ is (1/ρ)-strongly convex. If we take α as the initial point,
and apply one step of their method to obtain the next iterate α+, from (Shalev-Shwartz and
Zhang 2012, Lemma 1), we get that for any s ∈ [0, 1],

ǫ = f (α) − f
(

α∗) ≥ f (α) − f
(

α+) ≥ s
(

f P (w(α)) + f (α)

)

− s2Gs

2σ

≥ s
(

f P (w(α)) − f P
(

w∗)
)

− s2Gs

2σ
, (55)

where w∗ is the optimal solution of (1), and

Gs :=
(

‖X T X‖ − σ(1 − s)

sρ

)

‖u − α‖2 , −ui ∈ ∂ξi

(

X T
i w (α)

)

.

To remove the second term in (55), we set

‖X T X‖ − σ(1 − s)

sρ
= 0 ⇒ s = σ

σ + ρ‖X T X‖ ∈ [0, 1].

This then gives
(

1 + ρ‖X T X‖
σ

)

ǫ ≥ f P (w(α)) − f P
(

w∗) .

Although (Shalev-Shwartz and Zhang 2012, Lemma 1) is for the expected value of the
dual objective decrease at the current iteration and the expected duality gap at the previous
iteration, we can remove the expectations as the expected duality gap is actually a constant
for the initial point, and the expected function decrease cannot exceed the distance from the
current objective to the optimum.

When Assumption 3 holds, (1) falls in the type of problems discussed in Bach (2015). If
we take α as the initial point, and apply one step of their method to obtain the next iterate
α+, from the final inequality in the proof of Proposition 4.2 in Bach (2015) and weak duality,
we get

ǫ ≥ s
(

f P (w(α)) − f P
(

w∗)
)

− (s R)2

2σ
, ∀s ∈ [0, 1], (56)

123

Machine Learning (2020) 109:813–852 849

where

R2:= max
α,β∈Ω

‖X (α − β)‖2 ≤
∥

∥

∥
X T X

∥

∥

∥
max

α,β∈Ω
‖α − β‖2 ≤ 4

∥

∥

∥
X T X

∥

∥

∥
L2. (57)

In the last equality we used (Rockafellar 1970, Corollary 13.3.3) such that if φ(·) is L-
Lipschitz continuous, then the radius of dom(φ∗) is no larger than L . Now take s =
min{1,

√

2σǫ/R2}, we get that
⎧

⎨

⎩

2ǫ ≥ ǫ + R2

2σ
≥ f P (w) − f P (w∗) , if ǫ ≥ R2

2σ
,

√

2R2ǫ
σ

≥ f P (w) − f P (w∗) , else.

These conditions and (57) indicate that

f P (w) − f P
(

w∗) ≤ max

⎧

⎨

⎩

2ǫ,

√

2ǫR2

σ

⎫

⎬

⎭

≤ max

⎧

⎨

⎩

2ǫ,

√

8ǫ‖X T X‖L2

σ

⎫

⎬

⎭

.

⊓⊔

A.6 Proof of Lemma 4

Proof The part of (30) follows directly from the proof of Lee and Wright (2019a, Corollary 1).
Notice that they required positive definiteness of the matrix for other parts stated in that
corollary but the part for (30) holds true as long as Bt is positive semidefinite.

For the lower bound on the step size, we notice that for any η ∈ [0, 1],

f
(

αt + ηΔαt
)

− f
(

αt
)

= G∗ (αt + ηΔαt
)

− G∗ (α) + ξ∗ (−αt − ηΔαt
)

− ξ∗ (−αt
)

≤ η∇G∗ (αt
)T

Δαt + η2 L B

2

∥

∥Δαt
∥

∥

2
Bt

+ ξ∗ (−αt − ηΔαt
)

− ξ∗ (−αt
)

(58)

≤ η∇G∗ (αt
)T

Δαt + η
(

ξ∗ (−αt − Δαt
)

− ξ∗ (−αt
))

+ η2 L B

2

∥

∥Δαt
∥

∥

2
Bt

(59)

= ηΔt + L Bη2

2

∥

∥Δαt
∥

∥

2
Bt

≤ ηΔt −
L Bη2

(

1 + √
γ
)

2
Δt , (60)

where we used (26) in (58), the convexity of ξ∗(−·) in (59), and (30) in (60). We can therefore
see that (9) is satisfied when

(

η −
L Bη2

(

1 + √
γ
)

2

)

Δt ≤ ητΔt .

As Δt ≤ 0 from (30), we have that (9) holds whenever

η ≤ 2 (1 − τ)

L B

(

1 + √
γ
) .

After considering the overshoot of backtracking by a factor of β, this inequality leads to the
desired step size bound. ⊓⊔

123

850 Machine Learning (2020) 109:813–852

A.7 Proof of Theorem 4

Proof We define (Δαt)∗ as the optimal solution for (7) at the t-th iteration and start from Lee
and Wright (2019a, Lemma 5), which states that when f is convex, we have the following
inequality.

Qαt

Bt

((

Δαt
)∗) ≤ −λ

(

f
(

αt
)

− f ∗)+ λ2

2
min
α∗∈A

∥

∥αt − α∗∥
∥

2
Bt

,∀λ ∈ [0, 1].

By utilizing (27), we further deduce that

Qαt

Bt

((

Δαt
)∗) ≤ −λ

(

f
(

αt
)

− f ∗)+ λ2

μB

(

f
(

αt
)

− f ∗) ,∀λ ∈ [0, 1], (61)

which attains the minimal value at λ = μB/2, which is in [0, 1] according to our assumption
that μB ≤ 2. By considering the line search stopping condition (9) and using λ = μB/2 in
(61), we can see that since Bt is positive semidefinite,

f
(

αt + ηtΔαt
)

− f
(

αt
)

≤ ηtτΔt ≤ ηtτ

(

Δt + 1

2

∥

∥Δαt
∥

∥

2
Bt

)

= ηtτ Qαt

Bt

(

∆αt
)

≤ ηtτ (1 − γ) Qαt

Bt

((

Δαt
)∗) ≤ −ηtτ (1 − γ)

μB

4

(

f
(

αt
)

− f ∗) .

Finally, by taking in the step size in Lemma 4, we see that the convergence speed is

f
(

αt+1)− f ∗ = f
(

αt + ηtΔαt
)

− f ∗

≤
(

1 − τ (1 − γ)μB

4
min

{

1,
2β (1 − τ)
(

1 + √
γ
)

L B

})

(

f
(

αt
)

− f ∗)

=
(

1 − τμB

2
min

{

(1 − γ)

2
,
β (1 − τ)

(

1 − √
γ
)

L B

})

(

f
(

αt
)

− f ∗) .

⊓⊔

References

Bach, F. (2015). Duality between subgradient and conditional gradient methods. SIAM Journal on Optimiza-

tion, 25(1), 115–129.
Bolte, J., Nguyen, T. P., Peypouquet, J., & Suter, B. W. (2017). From error bounds to the complexity of

first-order descent methods for convex functions. Mathematical Programming, 165(2), 471–507.
Boser, B.E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Proceedings

of the fifth annual workshop on computational learning theory (pp. 144–152). ACM Press.
Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning

via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1),
1–122.

Chang, M.-W., & Yih, W.-T. (2013). Dual coordinate descent algorithms for efficient large margin structural
learning. Transactions of the Association for Computational Linguistics, 1, 207–218.

Chen, W., Wang, Z., & Zhou, J. (2014). Large-scale L-BFGS using MapReduce. Advances in Neural Infor-

mation Processing Systems, 27, 1332–1340.
Chu, Y. J., & Liu, T. H. (1965). On shortest arborescence of a directed graph. Scientia Sinica, 14(10), 1396.
Crammer, K., & Singer, Y. (2002). On the learnability and design of output codes for multiclass problems.

Machine Learning, 2–3, 201–233.
Edmonds, J. (1967). Optimum branchings. Journal of Research of the national Bureau of Standards B, 71(4),

233–240.

123

Machine Learning (2020) 109:813–852 851

Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, 1(2),
179–191.

Hiriart-Urruty, J. B., & Lemaréchal, C. (2001). Fundamentals of convex analysis. Berlin: Springer.
Hsia, C. Y., Zhu, Y., & Lin, C. J. (2017). A study on trust region update rules in Newton methods for large-scale

linear classification. In Asian conference on machine learning (pp. 33–48).
Hsieh, C. J., Chang, K. W., Lin, C. J., Keerthi, S. S., & Sundararajan, S. (2008). A dual coordinate descent

method for large-scale linear SVM. In Proceedings of the twenty fifth international conference on machine

learning.
Joachims, T., Finley, T., & Yu, C. N. J. (2009). Cutting-plane training of structural SVMs. Machine Learning,

77(1), 27–59.
Kurdyka, K. (1998). On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier,

48, 769–783.
Lacoste-Julien, S., Jaggi, M., Schmidt, M., & Pletscher, P. (2013). Block-coordinate Frank–Wolfe optimization

for structural SVMs. In Proceedings of the thirtieth international conference on machine learning.
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segment-

ing and labeling sequence data. In Proceedings of the eighteenth international conference on machine

learning.
Lee, C. P., Chang, K. W., Upadhyay, S., & Roth, D. (2015). Distributed training of structured SVM. In NIPS

workshop on optimization for machine learning.
Lee, C. P., & Lin, C. J. (2013). A study on L2-loss (squared hinge-loss) multi-class SVM. Neural Computation,

25(5), 1302–1323.
Lee, C. P., & Roth, D. (2015). Distributed box-constrained quadratic optimization for dual linear SVM. In

Proceedings of the thirty second international conference on machine learning.
Lee, C. P., Wang, P. W., Chen, W., & Lin, C. J. (2017). Limited-memory common-directions method for

distributed optimization and its application on empirical risk minimization. In Proceedings of SIAM

international conference on data mining.
Lee, C. P., & Wright, S. J. (2019). Inexact successive quadratic approximation for regularized optimization.

Computational Optimization and Applications, 72, 641–674.
Lee, C. P., & Wright, S. J. (2019). Random permutations fix a worst case for cyclic coordinate descent. IMA

Journal on Numerical Analysis, 39(3), 1246–1275.
Lee, J. D., Lin, Q., Ma, T., & Yang, T. (2015). Distributed stochastic variance reduced gradient methods and

a lower bound for communication complexity. Technical Report. ArXiv:1507.07595.
Lee, J. D., Sun, Y., & Saunders, M. A. (2014). Proximal Newton-type methods for minimizing composite

functions. SIAM Journal on Optimization, 24(3), 1420–1443.
Lin, C. Y., Tsai, C. H., Lee, C. p., & Lin, C. J. (2014). Large-scale logistic regression and linear support vector

machines using Spark. In Proceedings of the IEEE international conference on big data (pp. 519–528).
Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. Advances in

Neural Information Processing Systems, 28, 3384–3392.
Łojasiewicz, S. (1963). Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations

aus Dérivées Partielles. Éditions du centre National de la Recherche Scientifique.
Łojasiewicz, S. (1993). Sur la géométrie semi-et sous-analytique. Annales de l’institut Fourier, 43, 1575–1595.
Ma, C., Konečnỳ, J., Jaggi, M., Smith, V., Jordan, M. I., Richtárik, P., et al. (2017). Distributed optimization

with arbitrary local solvers. Optimization Methods and Software, 32, 1–36.
Ma, J., Saul, L.K., Savage, S., & Voelker, G. M. (2009). Identifying suspicious urls: an application of large-

scale online learning. In Proceedings of the 26th annual international conference on machine learning

(pp. 681–688). ACM.
Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of English:

The Penn Treebank. Computational Linguistics, 19(2), 313–330.
McDonald, R., Hall, K., & Mann, G. (2010). Distributed training strategies for the structured perceptron.

In Human language technologies: The 2010 annual conference of the North American chapter of the

association for computational linguistics.
McDonald, R., Pereira, F., Ribarov, K., & Hajič, J. (2005). Non-projective dependency parsing using spanning

tree algorithms. In Proceedings of the conference on human language technology and empirical methods

in natural language processing.
Necoara, I., Nesterov, Y., & Glineur, F. (2019). Linear convergence of first order methods for non-strongly

convex optimization. Mathematical Programming, 175(1–2), 69–107.
Pechyony, D., Shen, L., & Jones, R. (2011). Solving large scale linear SVM with distributed block minimization.

In NIPS 2011 workshop on big learning: Algorithms, systems, and tools for learning at scale.
Peng, W., Zhang, H., & Zhang, X. (2018). Global complexity analysis of inexact successive quadratic approx-

imation methods for regularized optimization under mild assumptions. Technical Report

123

http://arxiv.org/abs/1507.07595

852 Machine Learning (2020) 109:813–852

Rockafellar, R. T. (1970). Convex Analysis. Princeton, NJ: Princeton University Press.
Shalev-Shwartz, S., Zhang, T. (2012). Proximal stochastic dual coordinate ascent. Technical Report.

ArXiv:1211.2717
Shalev-Shwartz, S., & Zhang, T. (2013). Stochastic dual coordinate ascent methods for regularized loss min-

imization. Journal of Machine Learning Research, 14, 567–599.
Shalev-Shwartz, S., & Zhang, T. (2016). Accelerated proximal stochastic dual coordinate ascent for regularized

loss minimization. Mathematical Programming, 155(1–2), 105–145.
Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale optimization. SIAM Journal

on Numerical Analysis, 20, 626–637.
Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin Markov networks. Advances in Neural Information

Processing Systems, 16, 25–32.
Tseng, P., & Yun, S. (2009). A coordinate gradient descent method for nonsmooth separable minimization.

Mathematical Programming, 117, 387–423.
Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and

interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.
Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer.
Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.

IEEE Transactions on Information Theory, 13(2), 260–269.
Wang, D., Irani, D., & Pu, C. (2012). Evolutionary study of web spam: Webb spam corpus 2011 versus webb

spam corpus 2006. In 8th International conference on collaborative computing: Networking, applications

and worksharing (CollaborateCom) (pp. 40–49). IEEE.
Wang, P. W., & Lin, C. J. (2014). Iteration complexity of feasible descent methods for convex optimization.

Journal of Machine Learning Research, 15, 1523–1548.
Wright, S. J., & Lee, C. p. (2017). Analyzing random permutations for cyclic coordinate descent. Technical

Report. URL http://www.optimization-online.org/DB_HTML/2017/06/6054.html.
Yang, T. (2013). Trading computation for communication: Distributed stochastic dual coordinate ascent.

Advances in Neural Information Processing Systems, 26, 629–637.
Yu, H. F., Huang, F. L., & Lin, C. J. (2011). Dual coordinate descent methods for logistic regression and

maximum entropy models. Machine Learning, 85(1–2), 41–75.
Yu, H. F., Lo, H. Y., Hsieh, H. P., Lou, J. K., McKenzie, T. G., Chou, J. W., Chung, P. H., Ho, C. H., Chang,

C. F., Wei, Y. H., et al. (2010). Feature engineering and classifier ensemble for KDD cup 2010. In KDD

cup.
Yuan, G. X., Ho, C. H., & Lin, C. J. (2012). Recent advances of large-scale linear classification. Proceedings

of the IEEE, 100(9), 2584–2603.
Zhang, Y., & Lin, X. (2015). DiSCO: Distributed optimization for self-concordant empirical loss. In Proceed-

ings of the thirty second international conference on machine learning.
Zheng, S., Xia, F., Xu, W., & Zhang, T. (2017). A general distributed dual coordinate optimization framework

for regularized loss minimization. Technical Report. ArXiv:1604.03763.
Zhuang, Y., Chin, W. S., Juan, Y. C., & Lin, C.J. (2015). Distributed Newton method for regularized logistic

regression. In Proceedings of the Pacific-Asia conference on knowledge discovery and data mining.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1211.2717
http://www.optimization-online.org/DB_HTML/2017/06/6054.html
http://arxiv.org/abs/1604.03763

	Distributed block-diagonal approximation methods for regularized empirical risk minimization
	Abstract
	1 Introduction
	2 A block-diagonal approximation framework
	3 Distributed implementation for dual ERM
	3.1 Update direction
	3.2 Line search
	3.3 Sub-problem solver on each machine
	3.4 Output the best primal solution
	3.5 Stopping condition
	3.6 Cost per iteration

	4 Analysis
	4.1 Convergence analysis when sub-problems are solved exactly
	4.2 Convergence analysis when sub-problems are solved approximately
	4.3 Convergence of the primal objective using w(α)
	4.4 Convergence improvement by using the specific choice of Bt

	5 Related works
	6 Applications
	6.1 Binary classification and regression
	6.2 Multi-class classification
	6.3 Structured prediction models

	7 Experiments
	7.1 Binary linear classification
	7.2 Structured learning
	7.3 Line search
	7.4 Speedup

	8 Discussion

	9 Conclusions
	Acknowledgements
	A Proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2 and 3
	A.3 Proof of Theorem 1
	A.4 Proof of Theorem 2
	A.5 Proof of Theorem 3
	A.6 Proof of Lemma 4
	A.7 Proof of Theorem 4

	References

