
Distributed Caching Algorithms
for Content Distribution Networks

Sem Borst†, Varun Gupta�, Anwar Walid†
†Alcatel-Lucent, Bell Labs, 600 Mountain Avenue, P.O. Box 636, Murray Hill, NJ 07974-0636

�Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract—The delivery of video content is expected to gain
huge momentum, fueled by the popularity of user-generated clips,
growth of VoD libraries, and wide-spread deployment of IPTV
services with features such as CatchUp/PauseLive TV and NPVR
capabilities. The ‘time-shifted’ nature of these personalized ap-
plications defies the broadcast paradigm underlying conventional
TV networks, and increases the overall bandwidth demands by
orders of magnitude. Caching strategies provide an effective
mechanism for mitigating these massive bandwidth requirements
by replicating the most popular content closer to the network
edge, rather than storing it in a central site. The reduction in
the traffic load lessens the required transport capacity and capital
expense, and alleviates performance bottlenecks.

In the present paper, we develop light-weight cooperative cache
management algorithms aimed at maximizing the traffic volume
served from cache and minimizing the bandwidth cost. As a
canonical scenario, we focus on a cluster of distributed caches,
either connected directly or via a parent node, and formulate
the content placement problem as a linear program in order to
benchmark the globally optimal performance. Under certain sym-
metry assumptions, the optimal solution of the linear program is
shown to have a rather simple structure. Besides interesting in
its own right, the optimal structure offers valuable guidance for
the design of low-complexity cache management and replacement
algorithms. We establish that the performance of the proposed
algorithms is guaranteed to be within a constant factor from
the globally optimal performance, with far more benign worst-
case ratios than in prior work, even in asymmetric scenarios.
Numerical experiments for typical popularity distributions reveal
that the actual performance is far better than the worst-case
conditions indicate.

I. INTRODUCTION

The delivery of digital video content is anticipated to show
tremendous growth over the next several years, driven by
the huge popularity of user-generated video clips and the
expansion of VoD (Video-on-Demand) libraries. It is estimated
that YouTube alone attracts tens of millions of viewers a
day, generating around 2000 TB of traffic. While the daily
number of VoD users is unlikely to be that high, the size of
a high-definition movie dwarfs that of a typical video clip,
and just 1 user requesting 1 movie a month would involve
similar bandwidth demands as 10 users watching 20 clips
a month. Even stronger growth is likely to be fueled by
the proliferation of IPTV services with personalized features
such as CatchUp/PauseLive TV and NPVR (Network Personal
Video Recorder) capabilities.

The common characteristic of these ‘time-shifted’ TV ser-
vices as well as VoD libraries and sites like YouTube is that
users can select from a huge collection of content material

at any time they want. This is a radical departure from
conventional TV networks, where users can only tune in to
a limited number of channels at any given time. As a result,
there can be as many different play-out sessions as there are
active viewers, which could be in the hundreds of thousands in
a major metropolitan area. This runs counter to the broadcast
paradigm embraced in conventional TV networks, and raises
a need for unicast sessions, increasing the overall bandwidth
demands by orders of magnitude.

Caching strategies provide an effective mechanism for mit-
igating the massive bandwidth requirements associated with
large-scale distribution of personalized high-definition video
content. In essence, caching strategies exploit storage capacity
to absorb traffic by replicating the most popular content closer
to the network edge rather than storing it in a central location
that requires high processing power and represents a single
point-of-failure. The reduction in the traffic load translates into
a smaller required transport capacity and capital expense as
well as fewer performance bottlenecks, thus enabling better
service quality at a lower price, e.g. short and predictable
download times. The scope for cost savings and performance
benefits from caching increases as the cost of memory contin-
ues to drop at a higher rate than that of transmission gear.

The design of efficient caching strategies involves a broad
range of interrelated problems, such as accurate prediction of
demand, intelligent content placement, and optimal dimension-
ing of caches. In the context of content delivery networks,
these problems inherently entail strong distributed and spatial
features, as the caches are physically scattered across the
network and the user requests are generated in geographically
dispersed nodes. These facets add content look-up and request
routing as a major further problem dimension, and severely
complicate the reliable estimation of demand and efficient
content placement. In tracking popularity for instance, we
face a fundamental trade-off between averaging over larger
user populations to reduce sampling error and capturing pos-
sible variations across heterogeneous user communities. In
view of implementation considerations, we further prefer low-
complexity content placement algorithms which operate in a
mostly distributed fashion and yet implicitly coordinate their
actions so as to approach globally optimal performance.

Motivated by the above issues, we aim to devise light-
weight cooperative content placement algorithms so as to
maximize the traffic volume served from cache and thus
minimize the bandwidth cost. The bandwidth cost need not

978-1-4244-5837-0/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

be actual monetary expenses, but could also represent some
metric reflecting the congestion levels on the various network
links, like link weights in OSPF for example. We assume
that demand estimates are given, and that suitable mechanisms
for on-line content look-up and request routing are available,
e.g. the distributed directory services in [2], [9], [15], [18].

As a canonical scenario, we focus on a cluster of distributed
caches, either connected directly or via a parent node. We
formulate the content placement problem as a linear program
in order to obtain a benchmark of the globally optimal per-
formance. Under certain symmetry assumptions, the optimal
solution of the linear program is shown to have a rather simple
structure. Besides interesting in its own right, the knowledge
of the optimal structure offers useful insight for the design
of low-complexity cooperative content placement and eviction
algorithms. We establish that the proposed algorithms are
guaranteed to operate within a constant factor from the glob-
ally optimal performance while requiring only local actions
by each of the caches, with benign worst-case ratios, even
in asymmetric scenarios. Numerical experiments for typical
topologies and popularity distributions demonstrate that the
actual performance is far better than the worst-case conditions
suggest.

The benefits of cooperative caching have been investigated
before in the setting of distributed file systems, starting with
the taxonomy in [8], as well as large-scale information systems
and web-oriented content distribution networks (CDN’s). Prior
studies in these contexts include simulation experiments [7],
[9], [14], [16], prototypes [20], and analytical results and
algorithms [1], [3], [4], [6], [11], [12], [13], [19]. Most of the
above-mentioned work has focused on minimizing access la-
tency, and disregarded the bandwidth consumption involved. In
fact, the main rationale for cooperative caching in distributed
file systems is that bandwidth is assumed to be abundant, and
hence can be freely leveraged to improve the response time
performance. In contrast, for high-definition video objects with
sizes of a few GB’s and hour-long durations, minimizing the
bandwidth usage is a far more relevant objective than reducing
the initial play-out delay by a few hundred milliseconds.
A somewhat similar comment applies with respect to web-
oriented CDNs, such as Akamai, designed for relatively small
web objects as opposed to high-definition video applications.

Although the relevant performance metrics may differ in
various application scenarios, a strong conceptual similarity
emerges when the notion of ‘access cost’ is adopted. This cost
could either represent the additional latency incurred when
fetching content from remote caches or main memory, or the
bandwidth consumed when retrieving content from a peer node
or video head end, depending on the scenario of interest.
Indeed, our mathematical formulation of the content placement
problem shows strong resemblance with earlier ones for which
a wide range of approximation algorithms have been proposed.
Korupolu et al. [12] present a polynomial-time exact algorithm
for the hierarchical placement problem based on a reduction
to minimum-cost flow which generalizes the results in [13].
They further develop a constant-factor distributed amortizing

algorithm which is at most 13.93 times from optimal. Awer-
buch et al. [1] consider general on-line cooperative caching
on arbitrary networks and present a polylog(n)-competitive
algorithm, where n is the number of caches. Swamy [19]
shows that the optimal solution to the relaxed integer program
for the case of equal object sizes can be rounded to an integer
solution while losing a factor of at most 10, an improvement
over the factor of 20.5 in [3]. Kangasharju et al. [11] consider
object placement with the objective of minimizing the aver-
age number of autonomous systems a request must traverse.
Replication strategies are proposed and studied numerically,
but no performance guarantees are given.

In contrast to [3], [4], [19], we focus on specific topologies,
motivated by real system deployments, and prove that the
optimal solution of the relaxed integer program has a simple
structure. In addition, we use the insight into the optimal
structure to develop efficient distributed content placement
algorithms with far more favorable performance ratios than the
ones in [3], [4], [19]. When it comes to the design of actual
content placement and eviction algorithms, a further crucial
distinction with earlier studies in different contexts manifests
itself. In our setting, transferring content pro-actively into a
peer cache carries a significant cost penalty, and it only makes
sense to cache an item when it is actually requested. This limits
the use of cooperative caching algorithms proposed in different
contexts that ignore the bandwidth consumption when moving
content around so as to reach the optimal placement.

On a final related note, it is worth observing that caches
could be located as close to the users as to actually reside
in set-top boxes, creating a degree of similarity with P2P
networks [10], [17]. Most work on P2P algorithms however
pays little attention to the bandwidth efficiency and the impact
on network traffic. The bandwidth usage is in fact an issue
of great concern to ISP’s, and has spurred a strong interest
in mechanisms for localizing (or even throttling) P2P traffic
flows. While the latter mechanisms serve a similar purpose,
they aim at minimizing the network traffic for a given content
placement, whereas our focus is on a slightly more controlled
environment where the content placement can be actively
managed.

The remainder of the paper is organized as follows. In
Section II we present a detailed model description and linear
programming problem formulation. Under certain symmetry
assumptions, we show in Section III that the optimal solution
of the linear program has a rather simple structure. (Because
of page limitations, we only outline the main insights and
results, and refer to [5] for detailed technical derivations and
proof arguments.) In Section IV we examine a scenario with
intra-level cache collaboration only, and use the knowledge of
the optimal structure to develop distributed content placement
algorithms with tight performance guarantees. We then turn
attention to a scenario with inter-level cache collaboration
only in Section V. In Section VI numerical experiments are
presented to evaluate the performance of the proposed content
placement algorithms. We make some concluding remarks in
Section VII.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

We consider a cache cluster consisting of M ‘leaf’ nodes
indexed 1, . . . , M , which are either directly connected or
indirectly via node 0 as a common parent somewhere along
the path to the root node, as represented in Figure 1. The
parent and leaf nodes are endowed with caches of sizes
B0, B1, . . . , BM , while the root node is endowed with a cache
of sufficient capacity to store all the content items. We assume
a static collection of N content items of sizes s1, . . . , sN .
Denote by din the demand for the n-th content item in node i,
i = 0, . . . , M , n = 1, . . . , N . We assume that there is no direct
demand for content at the parent node, i.e., d0n ≡ 0 for all
n = 1, . . . , N , although that assumption is not particularly
essential.

parent node

2 M1

leaf nodes

root node

Fig. 1. Graphical illustration of cache cluster.

It is worth emphasizing that the cache cluster need not be
a stand-alone network, but could in fact be part of a larger
hierarchical tree topology as illustrated in Figure 2. For ease
of operation, IPTV networks tend to have a mostly hierarchical
tree structure, but they may also have some degree of logical
connectivity among nodes within the same hierarchy level,
either directly or via a ‘U-turn’ through a common parent
node. Cost analysis reveals that it rarely pays off to install
caches at more than one or two levels, even if the network
consists of four or five hierarchy levels as is commonly
the case. Also, there are implementation issues involved in
integrating caches with other lower-layer devices at certain
hierarchy levels. Hence, the two-level cache cluster constitutes
a fairly canonical scenario that covers most cases of practical
interest. However, most of the structural properties that we
will obtain in fact extend to any number of hierarchy levels.

Denote by c0 the unit cost incurred when transferring
content from the root node to the parent node, by ci the unit
cost associated with transferring content from the parent node
to node i, and by cij the unit cost incurred when transferring
content from leaf node i to leaf node j, i �= j = 1, . . . ,M .
We assume that cij ≤ c0 + ci for all i = 1, . . . ,M ,
i �= j = 1, . . . ,M , i.e., it is cheaper to transfer content from
a peer node than from the root node.

Let the 0–1 decision variable xin indicate whether the n-th
content item is stored in the cache of node i or not. The 0–1

VHO

IO

STB

DSLAM

CO

Fig. 2. Cache cluster embedded in hierarchical tree network.

variable xijn indicates whether requests for the n-th content
item at node i are served from the cache of node j or not,
with j = −1 representing the root node.

The problem of minimizing the bandwidth expenses may
then be formulated as follows

min
M∑

i=1

N∑

n=1

sndin((c0 + ci)xi,−1n + cixi0n +
∑

j �=i

cijxijn)

sub
N∑

n=1

snxin ≤ Bi, i = 0, . . . , M

xijn ≤ xjn, i = 1, . . . ,M, i �= j = 0, 1, . . . ,M,∀n

xin + xi,−1n + xi0n +
∑

j �=i

xijn ≥ 1, i = 1, . . . , M,∀n,

where the last inequality constraint will in fact hold with
equality at optimality. The (equivalent) problem of maximizing
the bandwidth savings may be stated as follows:

max
M∑

i=1

N∑

n=1

sndin((c0 +ci)xin +c0xi0n+
∑

j �=i

(c0+ci−cij)xijn)

sub
N∑

n=1

snxin ≤ Bi, i = 0, . . . ,M

xijn ≤ xjn, i = 1, . . . ,M, i �= j = 0, 1, . . . ,M,∀n

xin + xi0n +
∑

j �=i

xijn ≤ 1, i = 1, . . . , M,∀n,

with
∑

j �=i short-hand notation for
∑i−1

j=1 +
∑M

j=i+1. We will
focus on distributed algorithms with provable performance
ratios for maximizing the metric of bandwidth savings.

III. SYMMETRIC SCENARIO

In this section, we assume that the leaf nodes are symmetric
in terms of bandwidth costs, demand characteristics, and cache
sizes, i.e., ci = c, cij = c′i = c′, din = dn, and Bi = B for
all i = 1, . . . ,M . The assumption of equal bandwidth cost
and cache sizes is a fairly natural one, given the way IPTV
networks tend to be configured. The assumption of symmetric
demands is more restrictive, as the popularity of content items
may exhibit variation across different user communities. In

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

practice however, the available demand estimates may simply
not have the required level of granularity to reliably distinguish
among possibly heterogeneous popularity characteristics, and
assuming them to be homogeneous may be the most rea-
sonable option. Furthermore, the optimal content placement
turns out to have a distinct and relatively simple structure in
case of symmetric demands. Besides interesting in its own
right, the knowledge of the optimal structure offers valuable
insight for the design of low-complexity cache management
and replacement algorithms. As will be shown later, these
algorithms perform remarkably well in terms of both worst-
case guarantees and average metrics, even when the actual
demand characteristics are highly asymmetric.

Henceforth, we will relax the integrality constraints on the
decision variables, so as to obtain linear programs which
provide lower and upper bounds for problems Pmin and
Pmax, respectively. The optimal solutions of the continuous
relaxations actually turn out to be ‘mostly integral’, i.e., only
have a few fractional variables. If we additionally allow the
nodes to partially cache items, which we call ‘chunking’, then
the fractional optimal solution can be exactly achieved under
mild conditions on cij . Specifically, the fractional optimal
solution can be achieved via chunking in case of either source-
dependent or destination-dependent costs.

Under the above-mentioned symmetry assumptions, it may
be shown that problems Pmin and Pmax reduce to

max
N∑

n=1

sndn(Mc′′un + c′
M∑

i=1

xin + (c′ − c)
M∑

i=1

xi0n) (1)

sub
N∑

n=1

snx0n ≤ B0 (2)

N∑

n=1

snxin ≤ B, i = 1, . . . ,M (3)

un ≤ 1, n = 1, . . . , N (4)

un ≤ x0n +
M∑

i=1

xin, n = 1, . . . , N (5)

xin ≤ 1, i = 0, . . . ,M, n = 1, . . . , N (6)

xi0n ≤ x0n, i = 1, . . . ,M, n = 1, . . . , N (7)

xi0n + xin ≤ 1, i = 1, . . . ,M, n = 1, . . . , N, (8)

with c′′ := c + c0 − c′ and un := min{1, x0n +
∑M

i=1 xin}
representing the fraction of content item n that is collectively
stored in the cache cluster, including the parent node.

We now make three important observations about the struc-
ture of the optimal solution of the above linear program:

1) Without loss of generality, we can assume xin = xn for
all i = 1, . . . ,M and n = 1, . . . , N .

2) The optimal solution satisfies x0n + xn ≤ 1.
3) Optimality requires un = 1 when un < x0n+

∑M
i=1 xin.

For compactness, denote c′′′ := M(c0 + c) − (M − 1)c′ =
Mc′′ + c′. Introducing the variables pn = un − x0n, qn =
(x0n +

∑M
i=1 xin − un)/(M − 1), and using the above three

observations, problem (1)–(8) may be equivalently stated as

max
N∑

n=1

sndn(c′′′pn + c′(M − 1)qn + Mc0x0n) (9)

sub
N∑

n=1

snx0n ≤ B0 (10)

N∑

n=1

sn(pn + (M − 1)qn) ≤ MB (11)

pn + x0n ≤ 1, n = 1, . . . , N (12)

qn + x0n ≤ 1 n = 1, . . . , N (13)

Problem (9)–(13) represents a knapsack-type problem,
with two knapsacks of sizes B0 and MB and 2N items of
sizes an = sn, aN+n = (M − 1)sn, n = 1, . . . , N . Items
N + 1, . . . , 2N cannot be included in the first knapsack.
Inclusion of item n in the first knapsack precludes inclusion
of that item as well as item n + N in the second knapsack,
n = 1, . . . , N . The value of item n when included in the first
knapsack is Mc0, while the values of items n and N + n
when included in the second knapsack are c′′′ and (M − 1)c′,
respectively. The latter observation may be interpreted as
follows. Storing item n in the first of the M leaf nodes yields
a bandwidth savings of sndnc′′′, while storing it in each
additional node yields a further bandwidth savings of sndnc′.
The variable pn indicates whether or not at least one copy of
content item n is stored in the leaf nodes. (As we will see
later, a fractional value can occur for at most one content
item.) The variable qn can only be non-zero when pn = 1,
and indicates whether content item n is fully replicated across
the leaf nodes or not. (Again, a fractional value can occur for
at most one content item, as will be seen later.) The variable
x0n indicates whether content item n is stored in the parent
cache or not. (A fractional value can occur for at most two
content items.) When x0n = 1, the values of pn and qn must
be zero. This reflects the fact that storing a content item both
in the parent and leaf nodes can not be optimal.

The optimal solution of problem (9)–(13) has a distinct
structure which we now proceed to describe. Assume that
the content items are indexed in descending order of dn, i.e.,
d1 ≥ d2 ≥ · · · ≥ dN . We distinguish two cases, depending on
whether Mc is larger or smaller than (M − 1)c′, which will
be treated separately in the next two subsections.

A. Case A: Mc ≥ (M − 1)c′

We first consider the case Mc ≥ (M − 1)c′, which means
that it is more advantageous to store unreplicated content in
the leaf nodes than in the parent node.

Observe that, given the values of xn, x0n, we can assume
without loss of generality the following caching behavior:

• Subcase c < c′: The parent node caches the first x0n

fraction of item n and the leaf nodes cache arbitrary xn

fractions of item n, distinct from the parent node, and to
maximize the coverage of item n.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

• Subcase c ≥ c′: The leaf nodes cache xn fractions of
item n so as to maximize the coverage of item n, and
the parent node caches an arbitrary x0n fraction of item n
which is still uncovered by the leaf nodes.

xn

x0n

1
M

No config.

1(0, 0)

1

cost = M · c

cost = 0

cost = M(c + c0)

cost = (M − 1)c′

cost =

{
Mcx0n + M(1 − x0n − xn)c′ if c < c′

M(1 − xn)c + min {(1 − xn), (M − 1)xnc} · M(c′ − c)+ if c ≥ c′

cost = {x0n}Mc + {Mxn}(M − 1)c′ + {1 − x0n − Mxn}M(c + c0)

Fig. 3. An illustration of the valid symmetric configurations and their costs.

Now we can obtain the cost associated with an item with
some configuration (x0n, xn). As shown in Figure 3, the
space of possible configurations is the area x0n + xn ≤ 1.
We distinguish two regions: x0n + Mxn ≤ 1 (item n is
not completely covered by the parent and leaf nodes) and
x0n + Mxn ≥ 1 (item n is completely covered and possibly
overreplicated). For the case c < c′, the cost of any configura-
tion lying in any of the above two regions can be written
as the convex combination of the costs of the vertices of
the triangular region it belongs to, with the coefficients being
the respective barycentric coordinates (the case c ≥ c′ needs
special handling). This is explicitly illustrated in Figure 3 for
a point in the region x0n + Mxn ≤ 1.

Given the above, we now introduce the concept of isocost
curves of different configurations which we will use to obtain
the structure of optimal configuration for different parameter
settings. Simply put, isocost curves are curves connecting
configurations ((x0n, xn) pairs) which have the same cost.
For case A, the isocost curves are shown in Figure 4. A
configuration of the entire system can be represented by N
points on this plot, one for each of the items. We refer to
the configurations corresponding to (i) full replication in leaf
nodes, (ii) single copy in leaf node only, (iii) single copy in
parent node only, and (iv) no copy as vertex configurations.

A case-by-case analysis yields that there can be at most
two items in non-vertex configurations as stated in the next
proposition.

xn

x0n

1
M

1(0, 0)

1

cost = M · c

cost = 0

cost = M(c + c0)

cost = (M − 1)c′

Increasing cost

n1

n2

n0

(a) Subcase c < c′

xn

x0n

1
M

1(0, 0)

1

cost = M · c

cost = 0

cost = M(c + c0)

cost = (M − 1)c′

Increasing cost

n0

n1

n2

(b) Subcase c ≥ c′

Fig. 4. Illustration of iso-cost curves (solid lines) in the configuration space
for case A.

Proposition 3.1: In the optimal configuration for case A,
there can be at most two items which are in a non-vertex
configuration.

It is easy to argue from the structure of isocost curves that if
there is at least one item with a single copy in the parent node
(0,1) and at least one item with a single copy in the leaf nodes
(1/M, 0), the possible non-vertex points are of the form n0, n1

and n2 (n0 < n1 < n2 under optimality) as shown in Figure 4.
Thus under the optimal configuration, items 1, . . . , n0 − 1 are
cached in all the leaf nodes, items n0 + 1, . . . , n1 − 1 have a
single copy in the leaf nodes, items n1 + 1, . . . , n2 − 1 have
a copy in the parent node only, and items n2 + 1, . . . , N are
not cached anywhere. Further, one of n0, n1 or n2 must have
a vertex configuration, i.e., one of the following must be true:
(i) item n0 has a single copy at a leaf node; (ii) item n1 has
a single copy at the parent node; (iii) item n2 is not cached.

B. Case B: Mc ≤ (M − 1)c′

We now turn to the case Mc ≤ (M − 1)c′, which means
that it is more attractive to store unreplicated content in the
parent cache than in the leaf nodes. In the previous case, the
most popular unreplicated content was stored in the leaf nodes,
and the second tier of content was stored in the parent cache,
which will now be reversed.

xn

x0n

1
M

1(0, 0)

1

cost = M · c

cost = 0

cost = M(c + c0)

cost = (M − 1)c′

Increasing cost

n0

n1n2

Fig. 5. Illustration of iso-cost curves (solid lines) in the configuration space
for case B.

Proposition 3.2: In the optimal configuration for case B,
there can be at most two items which are in a non-vertex
configuration.

Similar to case A, Figure 5 shows the isocost curves for
case B. As in case A, if there is at least one item with a single
copy in the parent node and at least one item with a single
copy in the leaf nodes, the only possible non-vertex points are
of the form n0, n1 and n2 as shown in Figure 5 (and we avoid
discussing the less interesting corner cases). Thus under the
optimal configuration, items 1, . . . , n0−1 are cached in all the
leaf nodes, items n0 +1, . . . , n1 −1 have a copy in the parent
node only, items n1 + 1, . . . , n2 − 1 have a single copy in the
leaf nodes, and items n2 +1, . . . , N are not cached anywhere.
Further, one of n0, n1 or n2 must have a vertex configuration,
i.e., one of the following must be true: (i) item n0 has a single
copy at a parent node node; (ii) item n1 has a single copy at
a leaf node; (iii) item n2 is not cached.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

IV. INTRA-LEVEL CACHE COOPERATION

In this section we focus on the special case where content
can only be stored at the leaf nodes and not at the parent
node, i.e., B0 = 0, which we will refer to as intra-level cache
cooperation.

A. Symmetric demands, cache sizes and costs

We start with the case that the leaf nodes are symmetric
in terms of bandwidth cost, demand characteristics and cache
sizes, i.e., ci = c, c′ij = c′i = c′ < c0 + c, din = dn and
Bi = B for all i = 1, . . . ,M . In a similar fashion as in
Section III, problem Pmax may then be shown to simplify to

max
N∑

n=1

sndn(c′′′pn + (M − 1)c′qn) (14)

sub
N∑

n=1

sn(pn + (M − 1)qn) ≤ MB (15)

pn ≤ 1, n = 1, . . . , N (16)

qn ≤ 1, n = 1, . . . , N (17)

with c′′′ := M(c0 + c) − (M − 1)c′ = Mc′′ + c′.
Problem (14)–(17) represents a knapsack-type problem,

with a knapsack of size MB and 2N items of sizes an = sn,
aN+n = (M − 1)sn, n = 1, . . . , N . The value of item n is
Mc′′′sndn, while the value of item N + n is (M − 1)c′sndn.

The optimal solution of problem (14)–(17) has a relatively
simple structure which we now proceed to describe. Without
loss of generality, assume that the content items are indexed
in descending order of dn, i.e., d1 ≥ d2 ≥ · · · ≥ dN . For
convenience, we further assume unit-size content items, i.e.,
sn = 1 for all n = 1, . . . , N .

1) For some N1, items 1, . . . , N1 are replicated at each
node.

2) Item N1 + 1 is possibly replicated but not at all the
nodes.

3) For some N2 > N1 + 1, items N1 + 1, . . . , N2 have a
single copy in the cluster.

Based on the above insights, we now propose a simple dis-
tributed algorithm, Local-Greedy for cooperative caching.
Specifically, with item n at node i we associate a utility value
which is defined as dnc′′′ if item n is not cached in any other
node, and dnc′ otherwise (i.e. if item n is cached in some
other node). As opposed to a central agent populating all the
caches, under Local-Greedy each node modifies its local
content to achieve the maximum gain in global utility, and is
distributed in this sense.

Algorithm Local-Greedy
Select a node i and an item n. If item n is currently
not stored at node i, and it has higher utility than some
item m (e.g. with minimum utility) that is currently stored
at node i, then replace item m by item n.

It would be natural for the selection of a node i and item n
to be governed by actual received requests, meaning that items
only get cached when they are being transferred through nodes

anyway and are not pre-fetched. It is clear that Local-
Greedy must eventually converge to some stable configu-
ration, assuming each node-item combination is selected with
nonzero probability. While in the restrictive case of symmetric
demands, cache sizes and bandwidth costs, it might seem that
the globally optimal configuration should be reached, this is
not always the case as the next theorem shows.

Theorem 4.1: Under symmetric demands, cache sizes and
bandwidth costs, Local-Greedy is a 4

3 -approximation algo-
rithm for the metric of maximizing bandwidth savings. Further,
there exist demand vectors for which Local-Greedy may
not achieve more than 3

4 of the optimal.

B. Arbitrary demands, cache sizes and costs

The Local-Greedy algorithm is a special case of the
algorithm Local-Greedy-Gen specified below:

Algorithm Local-Greedy-Gen
Select a node i and an item n. If item n is currently not
stored at node i, then replace that by some item m that is
currently stored at node i, if and only if that increases the
global utility.

We now provide matching upper and lower bounds on
the performance of Local-Greedy-Gen under arbitrary
demand vectors, cache sizes and bandwidth costs.

Theorem 4.2: Local-Greedy-Gen is a 2-approximation
algorithm for the metric of maximizing bandwidth savings un-
der arbitrary demands, cache sizes and bandwidth costs. Fur-
ther, there exist demand vectors for which Local-Greedy-
Gen may not achieve more than 1

2 of the optimal, even under
equal cache sizes and symmetric bandwidth costs.

The 2-approximation ratio of Local-Greedy-Gen ex-
tends to arbitrary topologies – the only requirement is that
all nodes have knowledge of the global utility. For the cache
cluster scenario considered in this paper, the latter knowledge
only requires limited information exchange under suitable
assumptions on the bandwidth costs, which may be enabled by
existing protocols such as Internet Cache Protocol or Cache
Digest.

V. INTER-LEVEL CACHE COOPERATION

In this section we focus on the special case where content
can only be fetched from the parent node and not from a peer,
i.e., cij = ∞, which we will refer to as inter-level cache
cooperation.

A. Homogeneous demands, equal cache sizes

We start with the case that the leaf nodes have equal cache
sizes, i.e., Bi = B for all i = 1, . . . , M , and that the
demand characteristics satisfy di1 ≥ di2 ≥ · · · ≥ diN for
all i = 1, . . . ,M , possibly after suitable reindexing of the
content items. Note that the demand characteristics are no
longer assumed to be symmetric, and could for example only
be identical up to node-dependent scaling factors, representing
the overall traffic volumes at the various nodes.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

In this case, optimality forces xijn = 0, j �= −1, 0, i, and
problem Pmax may be shown to reduce to

max
M∑

i=1

N∑

n=1

sndin((c0 + ci)xin + c0

M∑

i=1

xi0n) (18)

sub
N∑

n=1

snx0n ≤ B0 (19)

N∑

n=1

snxin ≤ B, i = 1, . . . , M (20)

xi0n ≤ x0n, i = 1, . . . ,M, n = 1, . . . , N (21)

xin + xi0n ≤ 1, i = 1, . . . ,M, n = 1, . . . , N(22)

The optimal solution of problem (18)–(22) has a relatively
simple structure. Specifically, the most popular content items
are fully replicated in all the leaf nodes, and single copies
of the second-tier items are stored in the cache of the parent
node.

It is worth observing that the optimal content placement can
be achieved through a simple ‘greedy’ strategy where each
individual node aims to maximize the local hit rate, i.e., the
fraction of traffic served from cache of the requests it receives.
In that case, each of the leaf nodes will store the most popular
content items. As a result, the parent node will not receive any
requests for the most popular items, and end up storing the
second-tier items.

B. Arbitrary demands, cache sizes

We now analyze the performance of the greedy content
placement strategy under arbitrary demands and cache sizes.
While the strategy will no longer yield the optimal content
placement in general, it is guaranteed to achieve a certain
fraction of the maximum achievable bandwidth savings as the
next theorem shows.

Theorem 5.1: For arbitrary cost values, item sizes, and
cache sizes, the greedy content placement strategy is guar-
anteed to achieve at least a fraction (M−1)cmin+Mc0

(M−1)cmin+(2M−1)c0
≥

M
2M−1 of the maximum achievable bandwidth savings, with
cmin := mini=1,...,M ci.

The performance ratio in the above proposition is tight,
and attained in (unnatural) cases where some items are highly
popular in some leaf nodes and not popular at all in others.

VI. NUMERICAL EXPERIMENTS

In this section we present the numerical experiments that we
have conducted to evaluate the performance of the proposed
algorithms. Throughout we assume that there are M = 10
leaf nodes, each endowed with a cache of size B. The parent
node has a cache of size B0 (possibly zero), while the root
node is endowed with a cache of sufficient capacity to store
all the content items. The parameters c0, c and c′ represent
the unit cost incurred when transferring content from the root
node to the parent node, from the parent node to one of the
leaf nodes, and between any pair of leaf nodes, respectively.
In all the experiments we assume c0 = 2, c = 1, and c′ = 1.

The system offers a collection of N = 10, 000 content
items. For convenience, we assume the content items to have
a common size of S = 2 GB, although this is not particularly
essential. For compactness, denote by K = B/S the number
of content items that can be stored in each of the leaf nodes.

Each of the leaf nodes receives an average of 1 request
every 160 seconds i.e., the aggregate request rate per leaf
node ν = 0.00625 sec−1. We assume that the popularity of
the various content items is governed by a Zipf-Mandelbrot
distribution with shape parameter α and shift parameter q, i.e.,
the normalized popularity pn of the n-th most popular item is
proportional to (q + n)−α. The request rate for the n-th most
popular item at each of the leaf nodes is dn = pnν, with ν
the total request rate per leaf node defined above.

Below we present two sets of experimental results. In the
first set of results, we assess the gains from cooperative
caching, and demonstrate that judicious replication can yield
significant bandwidth savings, even with small cache sizes. In
the second set of experiments, we examine the performance
of the Local-Greedy algorithm, and show that it operates
close to globally optimal performance.

A. Gains from cooperative caching

In order to quantify the gains from cooperative caching,
we compare the minimum bandwidth cost as characterized by
the optimal solution of problem (14)–(17) with the bandwidth
cost incurred in two other scenarios: (i) full replication, where
each leaf node stores the K most popular content items; (ii) no
replication, where only a single copy of the MK most popular
content items is stored in one of the leaf nodes. The bandwidth
costs for these three scenarios are compared as function of the
shape parameter α of the Zipf-Mandelbrot distribution with the
shift parameter fixed at q = 10. Note that without caching the
bandwidth cost would be MνS(c+ c0) = 10× 0.00625× 2×
3 = 0.375 GBps, which amounts to 3 Gbps.

Figures 6(a)–(c) show the results for cache sizes B = 200
GB, B = 1 TB, and B = 2 TB, respectively. Figure 6(d)
shows similar results for a cache size B = 1 TB, where in
addition the parent node has a cache of size B0 = 2 TB. As the
results demonstrate, the bandwidth costs markedly decrease
with increasing values of α, reflecting the well-known fact that
caching effectiveness improves as the popularity distribution
gets steeper. Even when B = 200 GB, which means that the
collective cache space can hold no more than 10% of the total
content, caching reduces the bandwidth cost to a fraction of
what they would have been in the absence of caching.

It is worth observing that the best between either full or zero
replication is often not much worse than the optimal content
placement. However, neither full nor zero replication performs
well across the entire range of α values, and it is crucial
to adjust the degree of replication based on the steepness
of the popularity distribution. In case of the Zipf-Mandelbrot
distribution, one could in principle calculate the optimal degree
of replication as function of α. In practice, however, the value
of α may not be so easy to obtain, or the popularity statistics
may not even conform to a Zipf-Mandelbrot distribution

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

0 1 2
shape parameter alpha

0

2

4

B
an

dw
id

th
 c

os
t (

G
bp

s)

Full replication
No replication
Optimal configuration

(a) Cache size B = 200 GB

0 1 2
shape parameter alpha

0

2

4

B
an

dw
id

th
 c

os
t (

G
bp

s)

Full replication
No replication
Optimal configuration

(b) Cache size B = 1 TB

0 1 2
shape parameter alpha

0

2

4

B
an

dw
id

th
 c

os
t (

G
bp

s)

Full replication
No replication
Optimal configuration

(c) Cache size B = 2 TB

0 1 2
shape parameter alpha

0

2

4

B
an

dw
id

th
 c

os
t (

G
bp

s)

Full replication
No replication
Optimal configuration

(d) B = 1 TB, B0 = 2 T

Fig. 6. Bandwidth cost as function of shape parameter α for various scenarios
and cache sizes.

altogether. Hence it makes more sense to adjust the degree
of replication based on the actual observed demands, rather
than fitting a particular distribution. The algorithms described
in Section IV do just that, without requiring any knowledge
of α or even relying on the popularity statistics obeying a
Zipf-Mandelbrot distribution.

B. Performance of Local-Greedy algorithm

We now proceed to examine the performance of the
Local-Greedy algorithm. Throughout we assume that each
of the leaf nodes has a cache of size B = 1 TB, and that the
popularity of the various content items is governed by a Zipf-
Mandelbrot distribution with shape parameter α = 0.8 and
shift parameter q = 10.

In order to study the dynamic evolution of the content
placement, we conduct a simulation experiment where the
various leaf nodes receive requests over time, sampled from
the above-described popularity distribution. Whenever a
particular node receives a request for an item that it has
not presently stored, it decides whether to cache it and if
so, which currently stored item to evict, as prescribed by
the Local-Greedy algorithm. In order to monitor the
performance and convergence, we track the objective value
over time, and compare it with the value of the optimal
content placement. In the optimal content placement, items 1
through 165 are fully replicated, and single copies of items
166 through 3515 are stored. For the initial content placement,
we distinguish three different scenarios: (i) full replication,
where each leaf node initially stores the K most popular
content items; (ii) no replication, where initially only a single
copy of the MK most popular content items is stored in one

0 2500 5000
Number of requests received

0

0.5

1

P
er

fo
rm

an
ce

 r
at

io

Full replication
No replication
Random

(a) Static popularity

0 2500 5000
Number of requests received

0

0.5

1

P
er

fo
rm

an
ce

 r
at

io

Full replication
No replication
Random

(b) Slow aging R = 200

0 2500 5000
Number of requests received

0

0.5

1

P
er

fo
rm

an
ce

 r
at

io

Full replication
No replication
Random

(c) Moderate aging R = 100

0 2500 5000
Number of requests received

0

0.5

1

P
er

fo
rm

an
ce

 r
at

io

Full replication
No replication
Random

(d) Fast aging R = 20

Fig. 7. Performance ratio as function of number of requests, with possible
dynamic content ingestion and aging.

of the leaf nodes. (iii) random, where each leaf node stores
K content items selected uniformly at random, independently
of all other leaf nodes.

Figure 7(a) shows the performance of the Local-Greedy
algorithm as ratio of the optimal content placement. Note that
the objective value achieved by the algorithm gets progres-
sively closer to the optimum as the system receives more
requests and replaces content items over time. After only
3000 requests (out of a total number 10,000 content items)
the Local-Greedy algorithm has come to within 1% of
the optimal content placement, and stays there, performing
markedly better that the worst-case ratio of 3/4 might suggest.

While the algorithm converges for all three initial states,
the scenario with no replication appears to be the most
favorable one. This may be explained from the fact that in the
optimal content placement only items 1 through 165 are fully
replicated. It takes relatively few requests to replicate these
items starting from no replication, whereas it takes far more
requests to replace all the duplicates of items 166 through 500
by single copies of items 501 through 3515 starting from full
replication.

In the next experiment, we explore how dynamic content
ingestion and aging affects the performance of the Local-
Greedy algorithm. As a point of reference, the overall
popularity law is assumed to remain the same over time, in
the sense that the relative popularity of the n-th most popular
item continues to be pn. However, the relative popularity of
a given item decays over time, and we specifically assume
that the rank of each item is decremented by one after every
R requests received in the system. In other words, for every
request that the system receives, the ranks of all the items are

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

decremented by 1/R, which may be interpreted as a measure
for the rate of aging. In order to keep the overall popularity
law the same, the bottom item with rank N is supposed to be
removed while a new item with rank 1 is ingested after every R
requests received by the system. Equivalently, each individual
item receives an average of R requests over its active lifetime.

Figures 7(b)–(d) show the results for various aging factors.
The Local-Greedy algorithm continues to ‘converge’, but
now only comes to within a certain margin from the ‘optimal’
content placement, which increases with the rate of aging. This
may be explained from the fact that the constant churn requires
the cache content to be continuously refreshed to maintain
optimality, whereas previously the cache content gradually
settled into a fixed state as the optimum was approached.
The Local-Greedy algorithm is constrained in terms of
the rate at which it can make the required updates by the
requests that it receives, and suffers more as the required rate
of updates grows relative to the number of requests, i.e., as
the aging rate increases. By the same token, the ‘optimal’
content placement is granted an unfair advantage here, as the
additional bandwidth that is required to maintain optimality,
is not accounted for. In other words, it only provides an upper
bound, and the Local-Greedy algorithm may therefore in
fact be closer to the true optimum than the numbers suggest.

So far, we have assumed that the relative popularities of
the various content items are known exactly. In practice,
popularities are unlikely to be known with perfect accuracy,
and will need to be estimated. In order to examine the impact
of estimation errors, we conducted an experiment where the
popularities are no longer assumed to be known, but estimated
based on the actual received requests using geometrically
smoothed average with some time constant T as proxy for
the length of the measurement window. Figures 8(a)–(b) plot
the results for various values of the time constant. As to be
expected, the optimum is approached closer as the accuracy
of the estimates improves for larger time constants, although
the initial convergence is possibly slower. For comparison
purposes, the figures also show what the optimum objective
value is for the given popularity estimates. This provides
an indication for the best that any algorithm in general and
Local-Greedy in particular can be expected to do, given the
available estimates, and suggests that for larger time constants
the performance gap is mostly due to estimation errors.

VII. CONCLUSION

We have developed lightweight cooperative cache man-
agement algorithms, which achieve close to globally opti-
mum performance, with favorable worst-case ratios, even in
asymmetric scenarios. Numerical results for typical popularity
distributions demonstrate that the actual performance is far
better than the worst-case guarantees suggest. The numerical
results also illustrate the complex interaction between dis-
tributed cache cooperation and popularity estimation in the
presence of dynamic content ingestion and aging. Finding
optimal content placement algorithms and performance bounds

0 2500 5000
Number of requests received

0

1

2

O
bj

ec
tiv

e
va

lu
e

Optimum with exact knowledge
Optimum for given estimates
Local greedy with estimates

(a) Time constant T = 100

0 2500 5000
Number of requests received

0

1

2

O
bj

ec
tiv

e
va

lu
e

Optimum with exact knowledge
Optimum for given estimates
Local greedy with estimates

(b) Time constant T = 10, 000

Fig. 8. Objective value as function of number of requests, with popularity
estimation.

for time-varying popularity statistics remains as a challenging
issue for further research.

REFERENCES

[1] B. Awerbuch, Y. Bartal, A. Fiat (1998). Distributed paging for general
networks. J. Alg. 28 (1), 67–104.

[2] B. Awerbuch, D. Peleg (1995). Online tracking of mobile users. J. ACM
37, 1021–1058.

[3] I.D. Baev, R. Rajaraman (2001). Approximation algorithms for data
placement in arbitrary networks. Proc. SODA 2001, 661–670.

[4] I.D. Baev, R. Rajaraman, C. Swamy (2008). Approximation algorithms
for data placement problems. SIAM J. Comput 38, 1411–1429.

[5] S.C. Borst, V. Gupta, A. Walid (2009). Self-organizing algorithms for
cache cooperation in content distribution networks. Technical Report
ITD-08-48439B, Alcatel-Lucent, Bell Labs. http://ect.bell-
labs.com/who/sem/publications/publications//bgw08.pdf

[6] H. Che, Z. Wang, Y. Tung (2001). Analysis and design of hierarchical
Web caching systems. In: Proc. IEEE Infocom 2001, 1416–1424.

[7] M.D. Dahlin, R.Y. Wang, T.E. Anderson, D.A. Patterson (1994). Co-
operative caching: using remote client memory to improve file system
performance. In: Proc. OSDI ’94.

[8] L.W. Dowdy, D.V. Foster (1982). Comparative models of the file
assignment problem. ACM Comput. Surv 14, 287–313.

[9] L. Fan, P. Cao, J. Almeida, A.Z. Broder (1998). Summary cache:
A scalable wide-area Web cache sharing protocol. In: Proc. ACM
SIGCOMM ’98, 254–265.

[10] Y. Huang, Z. Xias, Y. Chen, R. Jana, M. Rabinovich, B. Wei (2007).
When is P2P technology beneficial to IPTV service? In: Proc. ACM
NOSSDAV ’07.

[11] J. Kangasharju, J.W. Roberts, K.W. Ross (2002). Object replication
strategies in content distribution networks. Comp. Commun. J. 25, 376–
383.

[12] M.R. Korupolu, C.G. Plaxton, R. Rajaraman (2001). Placement algo-
rithms for hierarchical cooperative caching. J. Alg. 38 (1), 260–302.
Preliminary version appeared in: Proc. SODA ’99, 586–595.

[13] A. Leff, J.L. Wolf, P.S. Yu (1993). Replication algorithms in a remote
caching architecture. IEEE Trans. Parallel Distr. Syst. 4 (11), 1185–
1204.

[14] J. Ni, D.H.K. Tsang (2005). Large-scale cooperative caching and
application-level multicast in multimedia content delivery networks.
IEEE Commun. Mag. 43, 98–105.

[15] C.G. Plaxton, R. Rajaraman, A.W. Richa (1999). Accessing nearby
copies of replicated objects in a distributed environment. Th. Comput.
Syst. 32, 241–280.

[16] P. Sarkar, J.H. Hartman (2001). Hint-based cooperative caching. ACM
Trans. Comp. Syst. 18, 387–419.

[17] T. Silverston, O. Fourmaux (2007). Measuring P2P IPTV systems. In:
Proc. ACM NOSSDAV ’07.

[18] M. van Steen, F.J. Hauck, A.S. Tanenbaum (1996). A model for
worldwide tracking of distributed objects. In: Proc. TINA ’96, 203–212.

[19] C. Swamy (2004). Algorithms for the data placement problem. Preprint.
[20] G.M. Voelker, E.J. Anderson, T. Kimbrel, M.J. Feeley, J.S. Chase,

A.R. Karlin, H.M. Levy (1998). Implementing cooperative prefetching
and caching in a globally-managed memory system. In: Proc. ACM
SIGMETRICS ’98.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

