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Abstract 

To improve the scalability of Gnutella-like unstructured 
Peer-to-Peer (P2P) networks, a uniform index caching 
(UIC) mechanism was suggested in some earlier work. In 
UIC, query results are cached in all peers along the in-
verse query path such that the same query of other peers 
can be replied from their nearby-cached results. However, 
our experiments show that the UIC method causes a large 
amount of duplicated and unnecessary caching of items 
among neighboring peers. Aiming at improving the search 
efficiency, we propose a distributed caching mechanism 
which distributes the cache results among neighboring 
peers. Furthermore, based on the distributed caching 
mechanism, an adaptive search approach is built which 
selectively forwards the query to the peers with a high 
probability of providing the desired cache results. All the 
enhancements above are defined in a protocol called Dis-
tributed Caching and Adaptive Search (DiCAS). In the 
DiCAS enhanced Gnutella network, all the peers are logi-
cally divided into multiple layers, with the character that 
all the peers in the same layer have the same group ID. 
The query flooding is restricted in one layer with the 
matched group ID. Our simulation study shows that, with 
the help of the index caching and search space division, 
the DiCAS protocol can significantly reduce the network 
search traffic in unstructured P2P systems without degrad-
ing query success rate. 

1. Introduction 
Compared with a structured P2P network[1-4], an un-

structured P2P network is less efficient due to its blind 
flooding search mechanism. However, The unstructured 
P2P system, such as Gnutella [5], still gains high popular-
ity in today’s Internet community because of its simplicity. 
In Gnutella-like P2P system, a query is broadcast and re-
broadcast until a certain criterion is satisfied. If a peer re-
ceiving the query can provide the requested object, a re-
sponse message will be sent back to the source peer along 
the inverse of the query path.  

The Breadth First Search behavior in a Gnutella sys-
tem causes exponentially increased network traffic. Meas-
urements in [6] show that even given that 95% of any two 
nodes are less than 7 hops away, the message time-to-live 
(TTL=7) is preponderantly used, the flooding-based rout-
ing algorithm generates 330 TB/month in a Gnutella net-
work with only 50,000 nodes, in which 91% of the traffic 
was query messages and 8% was PING messages. Studies 
in [7] and [8] show that P2P traffic contributes the largest 
portion of the Internet traffic based on their measurements 
on some popular P2P systems, such as FastTrack (includ-
ing KaZaA and Grokster) [9], Gnutella and DirectConnect. 
The inefficient blind flooding search technique causes the 
unstructured P2P systems being far from scalable [10]. 

Many efforts have been made to avoid the large vol-
ume of unnecessary traffic incurred by the flooding-based 
search in unstructured P2P systems. One approach is to 
change the flooding search behavior. For example, k-
walker [11] tries to avoid the exponential increase of 
flooding traffic by selecting only several search paths 
among the peers. In order to compensate for the possible 
missing of peers in each query, replication strategies are 
also suggested in [11]. Another method is topology opti-
mization [12], which intends to structure Gnutella-like P2P 
networks. In the supernode P2P network, each leaf peer is 
connected to a supernode that maintains all the indices 
such that query search within supernodes is sufficient to 
find the shared objects in the whole system. The overhead 
is the index update between the leaves and supernodes. 
The cluster based topology tries to limit search in a small 
space by dividing the whole network into multiple clusters. 
SIL[13] points out that a parallel search cluster based P2P 
network is superior to a supernode network in many as-
pects, such as robustness and load balance. The third 
mechanism is to employ some forms of cache or replica-
tion, in which file contents or query response results can be 
cached in non-query peers in hoping that future queries can 
be satisfied within a short query distance. Observations in 
[14]  show that queries in a Gnutella network obey Power-
law distribution, which significantly benefits the cache 
mechanism since the popular keywords are repeatedly que-
ried. Therefore, a uniform index caching (UIC) mechanism 
is suggested in [14], which caches query results in all peers 
along the inverse query path. Compared with the super-
node network, the overhead of index maintenance in the 
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cache method is small since they are carried by query re-
sponses in the way of a free ride. There is a trade-off be-
tween the extra cache storage in each peer and the search 
efficiency.   

In the first part of this study, we implemented an In-
dex Cache-enabled Gnutella Client (CGC) to cache query 
results in a real P2P network, measured query patterns and 
observed the cached results for the purpose of examining 
the caching efficiency. Even a single index cache-enabled 
peer connected to the Gnutella network can contribute a 
20% cache hit ratio, which means 20% of queries can be 
replied using the cache results instead of being further 
forwarded. However, our experiments also show that a 
uniform index caching mechanism can easily cause a large 
amount of duplicated and unnecessary caching results 
among neighboring peers. Aiming to improve the search 
efficiency, we propose a distributed caching mechanism 
which distributes the cache results among neighboring 
peers. Furthermore, in a P2P system enabled with distrib-
uted index caching, since a query result will be only 
cached in selected peers, there is no need to flood the 
query to all peers. Instead, we propose an adaptive search
mechanism which selectively forwards the query to only 
peers with a high probability of providing the desired 
cache results. Since only a portion of the peers among the 
neighbors are selected during each forwarding process, the 
volume of search traffic is reduced significantly. All the 
enhancements above are defined in the Distributed Cach-
ing and Adaptive Search (DiCAS) protocol. In DiCAS, 
each node randomly takes an initial value in a certain 
range [0..M-1] as a group ID when it participates into the 
P2P system. We define that a query matches a peer if and 
only if the equation below is satisfied: 

Peer Group ID = hash(query) Mod M 

Under the DiCAS protocol, a query response will only 
be cached in a matched peer. The query forwarding will 
also be restricted to matched peers. In the DiCAS en-
hanced Gnutella P2P network, the group of all peers are 
divided into multiple layers, with the character that the 
peers in the same layer have the same group ID. The query 
flooding is restricted within one layer with the matched 
group ID. Figure 1 shows an example when M equals 3. 

Our simulations have shown that the DiCAS protocol 
can significantly reduce the network traffic incurred by 
search in unstructured P2P systems without degrading the 
query success rate. 

The rest of the paper is organized as follows. Section 
2 discusses related work. Section 3 presents our implemen-
tation of Index Cache-enabled Gnutella Clients, and ex-
perimental results on the index cache-enabled clients con-
necting in a real P2P network. Section 4 describes the Dis-

tributed Caching and Adaptive Search scheme. Section 5 
describes our simulation methodology. Performance 
evaluation of the DiCAS is presented in Section 6, and our 
study is concluded in Section 7. 

Figure 1 Flooding in multilayer P2P network 

2. Related Work 
Several mechanisms have been proposed to improve 

search efficiency in decentralized unstructured P2P sys-
tems. 

The authors in [14] analyze the characteristics of 
Gnutella queries and their popularity distribution, and pro-
pose that each peer cache query strings and results that 
flow through it. Similar to [14], the authors in [15] ob-
served that submitted queries exhibit significant amounts 
of locality based on one hour of Gnutella traffic, and pro-
posed a caching mechanism that caches query responses 
according to the timestamp the query is responded to. The 
effectiveness of caching query results has been shown by 
simulations in both [14] and [15]. All the work above sug-
gests a uniform index caching (UIC) mechanism. The UIC 
causes a large amount of duplicated and unnecessary cache 
results among neighboring peers, which is shown by our 
experiment. 

Based on an observation of query locality in peers be-
hind a gateway of an organization, transparent query cach-
ing [16] is proposed to cache query responses at the gate-
way. Contrast to the work in [16], our approach can fully 
take advantage of the internal nodes’ resources and avoid 
the bottleneck in the centralized cache. 

Caching file content has also been studied. An ideal 
cache (infinite capacity and no expiration) simulator is 
built [8] to investigate the performance of  content caching 
for KaZaA P2P network. It has been shown that caching 
would have a great effect on a large-scale P2P system on 
reducing wide-area bandwidth demands. Compared with 
the index caching, the content caching is less storage effi-
cient. 
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Figure 2 Keyword distribution of 
the CGC query trace. Query IDs 
are ordered by the frequency. 

Figure 3 Cache hit ratio on a sin-
gle CGC peer with trace-driven 
query generator. Cache size is 

1024 KB. 

Figure 4 Cache hit ratio with differ-
ent cache sizes in single CGC ex-

periment. 

The k-walker [11] proposes a random walk search 
mechanism and evaluates three different strategies to repli-
cate data (file content or query responses) on multiple 
peers. Uniform strategy creates a fixed number of copies 
when the item first enters the system. Proportional strategy 
creates a fixed number of copies every time the item is 
queried. In square-root replication strategy, the ratio of 
allocations is the square root of the ratio of query rates. 
Our work is different from K-walker in that the query is 
more tightly connected to the cache. In DiCAS, the query 
is forwarded intentionally to the peers with a high prob-
ability to provide the desired cache results. 

The superiority of the cluster based P2P network has 
been mathematically proved in [13], while the mechanism 
of how to break the P2P network into multiple clusters has 
not been mentioned yet. 

3. Experiments of Index Caching in Gnutella 
Network  

3.1. Overview of Experimental Setup  

To investigate the performance impact of index cach-
ing in a real, large scale peer-to-peer network, we modified 
LimeWire Gnutella servant [17] with support of Gnutella 
protocol v0.6 [18], and developed an index Cache-enabled 
Gnutella Client (CGC). Compared with a normal Gnutella 
client, Our CGC peer is able to create and maintain a local 
index cache by overhearing traversing query response re-
sults in existing Gnutella network.  As a result, other peers 
neighboring to the CGC peer will have the opportunity to 
utilize the index cache for future search. We conduct a 
number of experiments with the CGC peer in Gnutella 
network to explore the performance improvement by the 
index caching.  

We have also built a traffic monitoring tool that works 
in conjunction with the CGC peer to trace incoming and 
outgoing queries and responses, as well as cache hits and 
misses on the index cache. Two aspects of the dumped P2P 

network traffic through the CGC peer could be used. First, 
by analyzing the query patterns and locality in both space 
and time we could gain more insight into some fundamen-
tal issues of index caching, such as how to determine the 
cache size and the cache expiration time. Second, the trace 
data can be used as traffic source to flexibly test our CGC 
peer implementation in a variety of scenarios with compa-
rable results. In this sense, we have actually built a cache-
aware P2P network testbed with the CGC experimental 
setup and the traffic monitoring and trace-driven tool. In 
the following section, we present four test scenarios that 
employ either single or multiple CGC peers to examine the 
benefit and overhead of index caching in a Gnutella net-
work. 

The CGC peer is a PC with a 2.4GHz Pentium IV 
processor, 1 Gigabytes memory, and Ethernet connection 
to the campus network. The CGC software is running on 
Linux. We use LRU as the index cache replacement policy. 
Other cache replacement policies can also be incorporated 
into CGC. Clearly, different cache replacement policies 
will have different effects on the hit ratio of the index 
cache. To examine the impact of cache size on overall 
performance, we vary the cache size from 2 Kbytes to 64 
Kbytes. 

3.2. Trace-driven Single CGC Peer Experiment 

Our Gnutella network query trace was collected on 
one CGC peer on March 11, 2003.  Some non-meaningful 
words such as articles and propositions have been removed 
from the trace to improve the accuracy of our analysis. The 
total number of queries is 13,705,339, while 129,293 
unique keywords exist in the trace. As shown in Figure 2, 
the frequency of query keyword in the trace roughly fol-
lows a Zipf distribution, which substantially suggests that 
the index cache in a Gnutella network could make use of 
the keyword and query response result locality to improve 
searching performance. Figure 3 shows the index cache hit 
ratio on the single CGC peer in a trace-driven query ex-
periment. The cache size is 1024Kbytes in this case. It 
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shows that about 21% of total traversing queries will be 
replied by the single CGC index cache. 

3.3. Single CGC Experiment 

The single CGC is connected to Gnutella network, 
which works as a regular Gnutella client except that it 
maintains an index cache.  Intuitively, the benefit of index 
caching will be more evident if the CGC peer could popu-
late a large number of cached items. Hence, the CGC has 
been configured to be an ultrapeer that has a higher prob-
ability to establish connections with others than regular 
peers, according to Gnutella protocol. We have observed 
that the number of neighbors of the CGC peer ranges from 
less than 10 to 120.  

Figure 4 illustrates the index cache hit ratio as a func-
tion of time with different cache sizes in one day, which 
clearly shows that if the cache size increases, the hit ratio 
will increase as well.  We identified that the major factors 
that limit the hit ratio of an index cache are transit search 
locality of neighboring peers to the CGC peer, and the 
number of neighboring connections the CGC peer could 
reach over the time we conduct the experiment. We expect 
that with a longer warm-up time and allowing more con-
nections to the CGC peer, the cache hit ratio will be further 
improved. 

We also expect if there are more CGC peers partici-
pating in the P2P network, the overall searching perform-
ance can be improved due to cooperation between the 
neighboring peers. However, our following experiments 
show that a large amount of duplicated items are cached 
among neighbors. 

3.4. Twin CGC Peer Experiment 

For the purpose of investigating the performance of 
distributed index caching in a Gnutella network, we con-
nected our two CGC ultrapeers into the network. The two 
CGC ultrapeers should be logical Gnutella neighbors in the 
overlay such that we could measure their overall contribu-
tions to traversing queries with two separated index caches.  
Due to the inherent overlay nature of P2P systems and 
Gnutella’s topology optimization scheme, the two CGC 
ultrapeers, even if they are close to each other in the physi-
cal network, cannot maintain a persistent neighboring rela-
tion after some up time.  To enforce a fixed neighboring 
relation between the two CGC ultrapeers (the Twin CGCs), 
a “dummy” regular Gnutella Client is added to the test 
environment.  The “dummy” GC can only have two 
neighbors (the twin CGCs) in the overlay.  It is “dummy” 
because when forwarding queries between the twin CGCs, 
it will not decrease TTL of the query such that the two 
peers connected by the dummy Gnutella Client become 
virtual neighbors. 

In the Twin CGCs experiment, all the cache hits in 
each CGC were recorded in log files. The comparison be-
tween the records of both peers shows significant cache hit 
overlap between the neighboring peers. Among the 8500 

cache hits recorded in each peer within two hours, there 
are 2741 duplicated cache hits. The overlapped cache hits 
between two neighboring peers exceed 32% of all the 
cache hits in one peer. We expect more overlap among 
neighboring peers when multiple peers are fully connected 
with each other. Those duplicated cache hits are unneces-
sary since only one of the duplicated cache hit is sufficient 
to satisfy the correspondent query. The observation above 
suggests that it is possible to improve the search efficiency 
by distributing index cache among neighboring peers. 
Based on the distributed index caching, the search effi-
ciency can be further improved by our adaptive search 
method which forwards the query to only peers with the 
matched Group ID. 

4. Distributed Caching and Adaptive Search 

4.1. Gnutella Protocol 

We first briefly introduce a related part of the Gnutella 
protocol before presenting our proposed DiCAS. Topology 
maintenance and search operations of the Gnutella network 
are specified in [18]. Each Gnutella peer connects to sev-
eral overlay neighbors using point-to-point connections. A 
peer sends ping messages periodically to check all connec-
tions with its direct neighbors, and expects the pong mes-
sages from them. Typical Gnutella peers will try to main-
tain a pre-specified number (3 to 5 for a normal node, and 
much more for a ultrapeer) of connections. Gnutella peers 
overhear all the pong and Query Response messages pass-
ing by and cache IP addresses of other peers currently 
alive. If a peer detects that one of its neighbors is offline, it 
will look up its host cache or connect to a well-known 
Gnutella host cache sever, and randomly create another 
connection.  

In order to locate a file, a source peer floods a query to 
all its direct neighbors. When a peer receives a query, it 
checks its local index to see whether it has the queried 
content. If so, a query response will be returned along the 
reverse of the query path to the source peer. Otherwise, the 
query will continue to be broadcasted. In the current 
Gnutella protocol, query responses are not cached by any 
peers in the returning path. 

4.2. Distributed Caching 

In addition to a local index that keeps indices of local 
files, each peer maintains a response index which caches 
the query results that flow through the peer. Each item 
cached in the response index includes the queried file 
name, and the IP address of the responding peer where the 
file is located. When a peer receives a query from its 
neighbor, it will look up the response index as well as the 
local index. A query match with either of them will gener-
ate a response. Instead of caching query responses in all 
peers along the returning path, Distributed caching at-
tempts to cache the responses in some selected peers. The 
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key of distributed caching is to determine whether an in-
coming query response should be cached or not so that the 
duplicated query responses among neighboring peers can 
be minimized. In DiCAS, when a peer joins the P2P sys-
tem, it will randomly take an initial value in a certain range 
[0..M-1] as its group ID so that all the peers are separated 
into M groups. A uniform hash algorithm is employed to 
translate the queried file name string to a hash value. We 
define that a query matches a peer if the equation below 
can be satisfied. 

Peer Group ID  =  hash(query)  Mod  M 

For a passing query response, each peer overhearing 
the response independently performs a computation on the 
response using the hash function, and caches this response 
only when this hash value matches the peer’s group ID. 
For example, when M = 2, all peers are separated into two 
different groups. Suppose the modulus operation result of a 
file name’s hash value equals 1. Only the peers in group1 
will cache this response, as illustrated in Figure 5.  
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Figure 5 Cache strategy of DiCAS 

4.3. Adaptive Search 

Accordingly, a query is also forwarded to only 
neighbors with a group ID that matches the hash value of 
the desired file name in the query. For example, when a 
node receives a query which matches group ID of 1, the 
query will only be forwarded to neighbors with group ID 
of 1. We claim the group ID is uniformly distributed in the 
P2P network due to its value being randomly chosen. 
Benefiting from the group ID’s uniform distribution, a 
query can be forwarded to matched neighbors in most 
cases. However, it is still possible that query forwarding 
can be blocked if none of a peer’s neighbors have a 
matched group ID. To avoid the early death of the query, 
the peer will select a neighbor with the highest connec-
tivity degree to forward the query to in this case. Based on 
the adaptive search algorithm above, the query forwarding 
will be restricted to peers with the matched group ID. 
Those peers form a virtual layer which has much smaller 
searching space than the original P2P network. Based on 
the modulus operation, the whole network is logically di-
vided into multiple layers and each query will be for-

warded within the correspondent layer with matched group 
ID.

5. Simulation Methodology 

5.1. Considerations of P2P Simulation 

It is unrealistic for us to make a considerable number 
of peers in Gnutella network configured with the support 
of DiCAS for the purpose of evaluating the performance 
improvement. We decided to develop a DiCAS simulator 
for a large-scale cache-aware P2P network.  We choose to 
simulate each peer’s message-level behaviors as an effort 
to investigate searching and index caching on all peers 
across the entire network.  Each simulated peer is able to 
send queries, modify local and response index caches, and 
generate responses based on both caches. Our previous 
experiences on network simulations and experiments show 
that simulation configurations and parameters strongly 
influence the validity of simulation results. In this section, 
we summarize a list of network parameters used in the 
simulations of previous studies. 

The parameters that determine the simulation scenar-
ios fall into three categories: network and topology pa-
rameters, workload parameters, and initial con-
tent/keyword distributions over the network. Content 
popularity at a publisher follows Zipf-like distribution (aka 
Power Law) [19, 20], where the relative probability of a 
request for the ith most popular page is proportional to 1/i ,
with typically taking on some value less than unity.  
The observed value of the exponent varies from trace to 
trace. The request distribution does not follow the strict 
Zipf’s law (for which =1), but instead follows a more 
general Zipf-like distribution.  Query word frequency does 
not follow a Zipf distribution [21, 22]. User’s query lexi-
con size does not follow a Zipf distribution [21] but with a 
heavy tail.   

Both the overall traffic and the traffic from the 10% 
most popular nodes are heavy-tailed in terms of host 
connectivity, traffic volume, and average bandwidth of the 
hosts [7]. Paper [23] suggests a log-quadratic distribution 

(
2

10 ) for stored file locality and transfer file locality. 
The length of time that nodes remain available follows a 
log-quadratic curve [23], which could be approximated by 
two Zipf distributions. 

Research on content searching in P2P networks gener-
ally uses simulation to illustrate the effectiveness of the 
underlying approach. Thus the problem of choosing a de-
cent abstraction level becomes a critical issue, which in 
turn determines what simulation configuration is needed 
for such a scenario. For specific simulation, one should 
carefully choose related parameters and distributions such 
that the simulation results and observations are reasonable. 
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Figure 6 Average traffic incurred by 
each query  

UIC vs. No cache 

Figure 7 Average query re-
sponse time  

UIC vs. No cache 

Figure 8 Average traffic incurred 
by each query 

5.2. Our Simulation Configuration 

In our simulation configuration, we generate two types 
of network topology: Power-law topology and random 
topology with an average connectivity degree of 3. We 
examine the impact of index caching on searching effi-
ciency in terms of keyword matching.  Hence in our simu-
lation we only look at single keyword matching rather than 
document matching and semantic layer searching. Blind 
flooding in Gnutella network is simulated by conducting  
the Breath First Search algorithm from a specific node. A 
search operation, bounded by TTL of 7, is simulated by 
randomly choosing a peer as the sender, and a keyword 
according to Zipf distribution. In each simulation session, 
a large number of search operations are simulated sequen-
tially. While receiving a query, a peer will consult its local 
index and its query response index cache using the search-
ing keyword for possible matches. The trace we collected 
(described in Section 3.2) is used in our simulation. 

6. Performance Evaluation 
A well-designed search mechanism should seek to op-

timize both efficiency and user satisfaction. Efficiency 
focuses on better utilizing resources, such as bandwidth 
and processing power, while user satisfaction focuses on 
user-perceived qualities, such as number of returned re-
sults and response time. We will use three performance 
metrics: query success rate, query response time, and traf-
fic overhead incurred by queries to evaluate the effective-
ness of DiCAS. 

6.1. Effectiveness of Uniform Index Caching 

In the first simulation, we examine the effectiveness 
of uniform index caching (UIC) scheme in which all peers 
in a query response path will cache the query response. 
Blind flooding is still used in UIC to forward queries. 

Figure 6 shows the average traffics incurred by each 
query, and Figure 7 shows the average query response 
times for different cache sizes. Not surprisingly, introduc-
ing caching query responses with a moderate cache size of 

50 significantly reduces network traffic by 54%, and query 
response time by 33%. However, further increasing cache 
size in each peer would not improve performance propor-
tionally. One of the reasons we have mentioned is that 
there exists a large amount of overlapped query responses 
among neighboring peers in UIC, which can limit the per-
formance improvement of caching query responses. 

6.2. Effectiveness of DiCAS 

Aiming at further improving search efficiency, we 
propose DiCAS to cache query responses in selected peers 
and forward the query to peers with matched group ID. 
DiCAS is evaluated in this section using M=2, which logi-
cally divides the search space into two layers. 

Figure 8 and Figure 9 compare the average traffic, and 
the average query response time of UIC and DiCAS, 
respectively. We can see that DiCAS outperforms UIC by 
70% in terms of average traffic reduction. Compared with 
UIC, DiCAS increases average query response time by 
only about 6%. 

When we measure the success rate of UIC and DiCAS, 
we find that UIC can keep the same query success rate as 
original flooding without caching (see  Figure 10). How-
ever, Figure 11 shows that query success rate of DiCAS is 
decreased by 13% compared with UIC. Because the Di-
CAS protocol only forwards a query to some selected 
neighboring peers instead of all neighboring peers, it is 
likely that the query will miss some peers who have que-
ried results. There are two reasons for a query to miss 
matched peers. 

First, some matched peers may be missed. In DiCAS, 
a source peer forwards its query to those neighboring peers 
whose group ID matches the query. Some other neighbors 
are non-matched neighbors. However, the non-matched 
neighbors’ neighbors may have matched group ID with 
this query, but may be never reached by the query. See 
Figure 5 again for an example, Peer A has two neighbors 
B1 and B0. Peer C0 is B1’s neighbor, but two hops away 
from A. Assume that peer B0 and C0 have the same group 
ID (e.g. GID=0), and peer B1 has another group ID (e.g. 
GID=1). If peer A initiates a query that matches GID=0,
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the query will only be forwarded to peer B0. Peer B1 will not 
receive the query, so the query may not reach C0, but C0 is 
indeed a matched peer should be queried. 

Second, some matched objects may be missed. When a 
peer joins, it selects a group ID, but this cannot guarantee 
that all its local objects will match the group ID. In this case, 
there are some objects that do not match the owner’s group 
ID and will never be queried, forming some dead corners. 
Thus, some of the objects, even though they are available, 
may not be found by many queries.  

Motivated by above two reasons, we proposed two solu-
tions to address the problem of query success rate degrada-
tion in DiCAS, which are described and evaluated next. 

6.3. Solutions to improve the query success rate 

The first solution is called push-DiCAS that attempts to 
avoid missing matched objects. When a peer is joining a P2P 
network and randomly taking a group ID, it computes hash 
values of the file names for all its sharing objects. If some 
objects do not match this peer’s group ID, the peer will push 
the indices of these objects to one of its neighboring peers 
with matched group ID. These neighboring peers will cache 
the indices of pushed objects with a similar format of a 
query response indicating whereabouts of the objects. If 
none of the neighboring peers with matched group ID exists, 
a peer with the highest connectivity degree will be selected. 
The whole process is repeated until a peer with matched 
group ID is found. Figure 12 shows the average query suc-
cess rates of UIC and push-DiCAS. We can see that the 
query success rate of push-DiCAS is improved to be very 
close to that of UIC. Figure 14 shows average traffic com-
parisons. The push message travels along a single path. Thus, 
compared with the exponentially increasing query flooding, 
the increased traffic caused by the push operation is trivial, 
which is shown by the difference between the push-DiCAS
curve and DiCAS curve. 

We called the second solution random-DiCAS that at-
tempts to avoid missing matched objects shared by non-
matched peers. Instead of ignoring all non-matched 
neighboring peers, a peer forwards its query to some ran-

domly selected non-matched neighboring peers, but these 
non-matched peers will not forward the query further. As a 
result, the flooding is mainly restricted within matched peers 
while some of the non-matched peers are still covered. Fig-
ures 12-14 show random-DiCAS’s comparable performance 
with push-DiCAS in average query success rate and average 
traffic. 

Comparing push-DiCAS and random-DiCAS, we find 
that they have comparable performance except that random-
DiCAS causes a little bit more traffic because more 
neighbors will be queried on average.  The key factor affect-
ing the performance of push-DiCAS is the frequency of the 
push operation, which balances the volume of search traffic 
and success rate. The push frequency heavily depends on the 
dynamic nature of P2P network. Because peers can join and 
leave at any time, it is possible that peers who have received 
pushed indices leave the network. In these cases, the source 
peer should do push operations frequently, which incurs 
extra traffic. However, compared with the exponentially 
increased search traffic, the linearly increased push traffic is 
trivial. Figure 14 shows that the overall traffic is still re-
duced significantly. In our simulation, we investigate the 
case of M=2 thoroughly , which means that the search space 
is divided into two layers.  When the network is divided into 
more layers, the volume of flooding traffic can be further 
reduced. However, the push messaging between multiple 
layers will become heavier. The best choice to balance well 
the flooding traffic and push overhead depends on the dy-
namic nature of the real Gnutella network, which will be 
studied in our future work. 

7. Conclusion  
The DiCAS protocol, which distributes index cache 

among peers and divides the searching space into multiple 
layers, can significantly reduce the searching traffic in 
Gnutella-like P2P network. Our simulation results demon-
strate its strong effectiveness under different conditions. We 
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have also shown that deploying such a caching scheme in 
an existing P2P network, such as Gnutella, is feasible with 
an immediate favorable impact on P2P search performance, 
thus making unstructured P2P systems more scalable. We 
are refining a prototype version of the Gnutella-based Di-
CAS for public release in the P2P community. 
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