
Distributed Caching and Adaptive Search in Multilayer P2P Networks

Chen Wang, Li Xiao, Yunhao Liu, Pei Zheng
Department of Computer Science and Engineering
Michigan State University, East Lansing, MI 48824
{wangchen, lxiao, liuyunha, zhengpei}@cse.msu.edu

Abstract

To improve the scalability of Gnutella-like unstructured
Peer-to-Peer (P2P) networks, a uniform index caching
(UIC) mechanism was suggested in some earlier work. In
UIC, query results are cached in all peers along the in-
verse query path such that the same query of other peers
can be replied from their nearby-cached results. However,
our experiments show that the UIC method causes a large
amount of duplicated and unnecessary caching of items
among neighboring peers. Aiming at improving the search
efficiency, we propose a distributed caching mechanism
which distributes the cache results among neighboring
peers. Furthermore, based on the distributed caching
mechanism, an adaptive search approach is built which
selectively forwards the query to the peers with a high
probability of providing the desired cache results. All the
enhancements above are defined in a protocol called Dis-
tributed Caching and Adaptive Search (DiCAS). In the
DiCAS enhanced Gnutella network, all the peers are logi-
cally divided into multiple layers, with the character that
all the peers in the same layer have the same group ID.
The query flooding is restricted in one layer with the
matched group ID. Our simulation study shows that, with
the help of the index caching and search space division,
the DiCAS protocol can significantly reduce the network
search traffic in unstructured P2P systems without degrad-
ing query success rate.

1. Introduction
Compared with a structured P2P network[1-4], an un-

structured P2P network is less efficient due to its blind
flooding search mechanism. However, The unstructured
P2P system, such as Gnutella [5], still gains high popular-
ity in today’s Internet community because of its simplicity.
In Gnutella-like P2P system, a query is broadcast and re-
broadcast until a certain criterion is satisfied. If a peer re-
ceiving the query can provide the requested object, a re-
sponse message will be sent back to the source peer along
the inverse of the query path.

The Breadth First Search behavior in a Gnutella sys-
tem causes exponentially increased network traffic. Meas-
urements in [6] show that even given that 95% of any two
nodes are less than 7 hops away, the message time-to-live
(TTL=7) is preponderantly used, the flooding-based rout-
ing algorithm generates 330 TB/month in a Gnutella net-
work with only 50,000 nodes, in which 91% of the traffic
was query messages and 8% was PING messages. Studies
in [7] and [8] show that P2P traffic contributes the largest
portion of the Internet traffic based on their measurements
on some popular P2P systems, such as FastTrack (includ-
ing KaZaA and Grokster) [9], Gnutella and DirectConnect.
The inefficient blind flooding search technique causes the
unstructured P2P systems being far from scalable [10].

Many efforts have been made to avoid the large vol-
ume of unnecessary traffic incurred by the flooding-based
search in unstructured P2P systems. One approach is to
change the flooding search behavior. For example, k-
walker [11] tries to avoid the exponential increase of
flooding traffic by selecting only several search paths
among the peers. In order to compensate for the possible
missing of peers in each query, replication strategies are
also suggested in [11]. Another method is topology opti-
mization [12], which intends to structure Gnutella-like P2P
networks. In the supernode P2P network, each leaf peer is
connected to a supernode that maintains all the indices
such that query search within supernodes is sufficient to
find the shared objects in the whole system. The overhead
is the index update between the leaves and supernodes.
The cluster based topology tries to limit search in a small
space by dividing the whole network into multiple clusters.
SIL[13] points out that a parallel search cluster based P2P
network is superior to a supernode network in many as-
pects, such as robustness and load balance. The third
mechanism is to employ some forms of cache or replica-
tion, in which file contents or query response results can be
cached in non-query peers in hoping that future queries can
be satisfied within a short query distance. Observations in
[14] show that queries in a Gnutella network obey Power-
law distribution, which significantly benefits the cache
mechanism since the popular keywords are repeatedly que-
ried. Therefore, a uniform index caching (UIC) mechanism
is suggested in [14], which caches query results in all peers
along the inverse query path. Compared with the super-
node network, the overhead of index maintenance in the

This work was partially supported by the US National Science Foun-
dation (NSF) under grant ACI-0325760, by Michigan State University
IRGP Grant 41114.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

cache method is small since they are carried by query re-
sponses in the way of a free ride. There is a trade-off be-
tween the extra cache storage in each peer and the search
efficiency.

In the first part of this study, we implemented an In-
dex Cache-enabled Gnutella Client (CGC) to cache query
results in a real P2P network, measured query patterns and
observed the cached results for the purpose of examining
the caching efficiency. Even a single index cache-enabled
peer connected to the Gnutella network can contribute a
20% cache hit ratio, which means 20% of queries can be
replied using the cache results instead of being further
forwarded. However, our experiments also show that a
uniform index caching mechanism can easily cause a large
amount of duplicated and unnecessary caching results
among neighboring peers. Aiming to improve the search
efficiency, we propose a distributed caching mechanism
which distributes the cache results among neighboring
peers. Furthermore, in a P2P system enabled with distrib-
uted index caching, since a query result will be only
cached in selected peers, there is no need to flood the
query to all peers. Instead, we propose an adaptive search
mechanism which selectively forwards the query to only
peers with a high probability of providing the desired
cache results. Since only a portion of the peers among the
neighbors are selected during each forwarding process, the
volume of search traffic is reduced significantly. All the
enhancements above are defined in the Distributed Cach-
ing and Adaptive Search (DiCAS) protocol. In DiCAS,
each node randomly takes an initial value in a certain
range [0..M-1] as a group ID when it participates into the
P2P system. We define that a query matches a peer if and
only if the equation below is satisfied:

Peer Group ID = hash(query) Mod M

Under the DiCAS protocol, a query response will only
be cached in a matched peer. The query forwarding will
also be restricted to matched peers. In the DiCAS en-
hanced Gnutella P2P network, the group of all peers are
divided into multiple layers, with the character that the
peers in the same layer have the same group ID. The query
flooding is restricted within one layer with the matched
group ID. Figure 1 shows an example when M equals 3.

Our simulations have shown that the DiCAS protocol
can significantly reduce the network traffic incurred by
search in unstructured P2P systems without degrading the
query success rate.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 presents our implemen-
tation of Index Cache-enabled Gnutella Clients, and ex-
perimental results on the index cache-enabled clients con-
necting in a real P2P network. Section 4 describes the Dis-

tributed Caching and Adaptive Search scheme. Section 5
describes our simulation methodology. Performance
evaluation of the DiCAS is presented in Section 6, and our
study is concluded in Section 7.

Figure 1 Flooding in multilayer P2P network

2. Related Work
Several mechanisms have been proposed to improve

search efficiency in decentralized unstructured P2P sys-
tems.

The authors in [14] analyze the characteristics of
Gnutella queries and their popularity distribution, and pro-
pose that each peer cache query strings and results that
flow through it. Similar to [14], the authors in [15] ob-
served that submitted queries exhibit significant amounts
of locality based on one hour of Gnutella traffic, and pro-
posed a caching mechanism that caches query responses
according to the timestamp the query is responded to. The
effectiveness of caching query results has been shown by
simulations in both [14] and [15]. All the work above sug-
gests a uniform index caching (UIC) mechanism. The UIC
causes a large amount of duplicated and unnecessary cache
results among neighboring peers, which is shown by our
experiment.

Based on an observation of query locality in peers be-
hind a gateway of an organization, transparent query cach-
ing [16] is proposed to cache query responses at the gate-
way. Contrast to the work in [16], our approach can fully
take advantage of the internal nodes’ resources and avoid
the bottleneck in the centralized cache.

Caching file content has also been studied. An ideal
cache (infinite capacity and no expiration) simulator is
built [8] to investigate the performance of content caching
for KaZaA P2P network. It has been shown that caching
would have a great effect on a large-scale P2P system on
reducing wide-area bandwidth demands. Compared with
the index caching, the content caching is less storage effi-
cient.

Group 0

Group 1

Group 2

Query matches Group 0

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Query ID

K
ey

w
or

d
D

is
tr

ib
ut

io
n

0 1 2 3 4 5 6 7 8

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Queries

C
ac

he
 H

it
R

at
io

0 200 400 600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (minutes)

C
ac

he
 H

it
R

at
io

cache size = 2k
cache size = 8k
cache size = 64k

Figure 2 Keyword distribution of
the CGC query trace. Query IDs
are ordered by the frequency.

Figure 3 Cache hit ratio on a sin-
gle CGC peer with trace-driven
query generator. Cache size is

1024 KB.

Figure 4 Cache hit ratio with differ-
ent cache sizes in single CGC ex-

periment.

The k-walker [11] proposes a random walk search
mechanism and evaluates three different strategies to repli-
cate data (file content or query responses) on multiple
peers. Uniform strategy creates a fixed number of copies
when the item first enters the system. Proportional strategy
creates a fixed number of copies every time the item is
queried. In square-root replication strategy, the ratio of
allocations is the square root of the ratio of query rates.
Our work is different from K-walker in that the query is
more tightly connected to the cache. In DiCAS, the query
is forwarded intentionally to the peers with a high prob-
ability to provide the desired cache results.

The superiority of the cluster based P2P network has
been mathematically proved in [13], while the mechanism
of how to break the P2P network into multiple clusters has
not been mentioned yet.

3. Experiments of Index Caching in Gnutella
Network

3.1. Overview of Experimental Setup

To investigate the performance impact of index cach-
ing in a real, large scale peer-to-peer network, we modified
LimeWire Gnutella servant [17] with support of Gnutella
protocol v0.6 [18], and developed an index Cache-enabled
Gnutella Client (CGC). Compared with a normal Gnutella
client, Our CGC peer is able to create and maintain a local
index cache by overhearing traversing query response re-
sults in existing Gnutella network. As a result, other peers
neighboring to the CGC peer will have the opportunity to
utilize the index cache for future search. We conduct a
number of experiments with the CGC peer in Gnutella
network to explore the performance improvement by the
index caching.

We have also built a traffic monitoring tool that works
in conjunction with the CGC peer to trace incoming and
outgoing queries and responses, as well as cache hits and
misses on the index cache. Two aspects of the dumped P2P

network traffic through the CGC peer could be used. First,
by analyzing the query patterns and locality in both space
and time we could gain more insight into some fundamen-
tal issues of index caching, such as how to determine the
cache size and the cache expiration time. Second, the trace
data can be used as traffic source to flexibly test our CGC
peer implementation in a variety of scenarios with compa-
rable results. In this sense, we have actually built a cache-
aware P2P network testbed with the CGC experimental
setup and the traffic monitoring and trace-driven tool. In
the following section, we present four test scenarios that
employ either single or multiple CGC peers to examine the
benefit and overhead of index caching in a Gnutella net-
work.

The CGC peer is a PC with a 2.4GHz Pentium IV
processor, 1 Gigabytes memory, and Ethernet connection
to the campus network. The CGC software is running on
Linux. We use LRU as the index cache replacement policy.
Other cache replacement policies can also be incorporated
into CGC. Clearly, different cache replacement policies
will have different effects on the hit ratio of the index
cache. To examine the impact of cache size on overall
performance, we vary the cache size from 2 Kbytes to 64
Kbytes.

3.2. Trace-driven Single CGC Peer Experiment

Our Gnutella network query trace was collected on
one CGC peer on March 11, 2003. Some non-meaningful
words such as articles and propositions have been removed
from the trace to improve the accuracy of our analysis. The
total number of queries is 13,705,339, while 129,293
unique keywords exist in the trace. As shown in Figure 2,
the frequency of query keyword in the trace roughly fol-
lows a Zipf distribution, which substantially suggests that
the index cache in a Gnutella network could make use of
the keyword and query response result locality to improve
searching performance. Figure 3 shows the index cache hit
ratio on the single CGC peer in a trace-driven query ex-
periment. The cache size is 1024Kbytes in this case. It

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

shows that about 21% of total traversing queries will be
replied by the single CGC index cache.

3.3. Single CGC Experiment

The single CGC is connected to Gnutella network,
which works as a regular Gnutella client except that it
maintains an index cache. Intuitively, the benefit of index
caching will be more evident if the CGC peer could popu-
late a large number of cached items. Hence, the CGC has
been configured to be an ultrapeer that has a higher prob-
ability to establish connections with others than regular
peers, according to Gnutella protocol. We have observed
that the number of neighbors of the CGC peer ranges from
less than 10 to 120.

Figure 4 illustrates the index cache hit ratio as a func-
tion of time with different cache sizes in one day, which
clearly shows that if the cache size increases, the hit ratio
will increase as well. We identified that the major factors
that limit the hit ratio of an index cache are transit search
locality of neighboring peers to the CGC peer, and the
number of neighboring connections the CGC peer could
reach over the time we conduct the experiment. We expect
that with a longer warm-up time and allowing more con-
nections to the CGC peer, the cache hit ratio will be further
improved.

We also expect if there are more CGC peers partici-
pating in the P2P network, the overall searching perform-
ance can be improved due to cooperation between the
neighboring peers. However, our following experiments
show that a large amount of duplicated items are cached
among neighbors.

3.4. Twin CGC Peer Experiment

For the purpose of investigating the performance of
distributed index caching in a Gnutella network, we con-
nected our two CGC ultrapeers into the network. The two
CGC ultrapeers should be logical Gnutella neighbors in the
overlay such that we could measure their overall contribu-
tions to traversing queries with two separated index caches.
Due to the inherent overlay nature of P2P systems and
Gnutella’s topology optimization scheme, the two CGC
ultrapeers, even if they are close to each other in the physi-
cal network, cannot maintain a persistent neighboring rela-
tion after some up time. To enforce a fixed neighboring
relation between the two CGC ultrapeers (the Twin CGCs),
a “dummy” regular Gnutella Client is added to the test
environment. The “dummy” GC can only have two
neighbors (the twin CGCs) in the overlay. It is “dummy”
because when forwarding queries between the twin CGCs,
it will not decrease TTL of the query such that the two
peers connected by the dummy Gnutella Client become
virtual neighbors.

In the Twin CGCs experiment, all the cache hits in
each CGC were recorded in log files. The comparison be-
tween the records of both peers shows significant cache hit
overlap between the neighboring peers. Among the 8500

cache hits recorded in each peer within two hours, there
are 2741 duplicated cache hits. The overlapped cache hits
between two neighboring peers exceed 32% of all the
cache hits in one peer. We expect more overlap among
neighboring peers when multiple peers are fully connected
with each other. Those duplicated cache hits are unneces-
sary since only one of the duplicated cache hit is sufficient
to satisfy the correspondent query. The observation above
suggests that it is possible to improve the search efficiency
by distributing index cache among neighboring peers.
Based on the distributed index caching, the search effi-
ciency can be further improved by our adaptive search
method which forwards the query to only peers with the
matched Group ID.

4. Distributed Caching and Adaptive Search

4.1. Gnutella Protocol

We first briefly introduce a related part of the Gnutella
protocol before presenting our proposed DiCAS. Topology
maintenance and search operations of the Gnutella network
are specified in [18]. Each Gnutella peer connects to sev-
eral overlay neighbors using point-to-point connections. A
peer sends ping messages periodically to check all connec-
tions with its direct neighbors, and expects the pong mes-
sages from them. Typical Gnutella peers will try to main-
tain a pre-specified number (3 to 5 for a normal node, and
much more for a ultrapeer) of connections. Gnutella peers
overhear all the pong and Query Response messages pass-
ing by and cache IP addresses of other peers currently
alive. If a peer detects that one of its neighbors is offline, it
will look up its host cache or connect to a well-known
Gnutella host cache sever, and randomly create another
connection.

In order to locate a file, a source peer floods a query to
all its direct neighbors. When a peer receives a query, it
checks its local index to see whether it has the queried
content. If so, a query response will be returned along the
reverse of the query path to the source peer. Otherwise, the
query will continue to be broadcasted. In the current
Gnutella protocol, query responses are not cached by any
peers in the returning path.

4.2. Distributed Caching

In addition to a local index that keeps indices of local
files, each peer maintains a response index which caches
the query results that flow through the peer. Each item
cached in the response index includes the queried file
name, and the IP address of the responding peer where the
file is located. When a peer receives a query from its
neighbor, it will look up the response index as well as the
local index. A query match with either of them will gener-
ate a response. Instead of caching query responses in all
peers along the returning path, Distributed caching at-
tempts to cache the responses in some selected peers. The

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

key of distributed caching is to determine whether an in-
coming query response should be cached or not so that the
duplicated query responses among neighboring peers can
be minimized. In DiCAS, when a peer joins the P2P sys-
tem, it will randomly take an initial value in a certain range
[0..M-1] as its group ID so that all the peers are separated
into M groups. A uniform hash algorithm is employed to
translate the queried file name string to a hash value. We
define that a query matches a peer if the equation below
can be satisfied.

Peer Group ID = hash(query) Mod M

For a passing query response, each peer overhearing
the response independently performs a computation on the
response using the hash function, and caches this response
only when this hash value matches the peer’s group ID.
For example, when M = 2, all peers are separated into two
different groups. Suppose the modulus operation result of a
file name’s hash value equals 1. Only the peers in group1
will cache this response, as illustrated in Figure 5.

0
0

1

0
1

1

0

1

1

1

0

0
0

0

1

Query
Peer

Response
 Peer

Response Peer

 Query Peer

 Query Path

 Caching Peer

 Response Path

A

B0

B1

C0

Figure 5 Cache strategy of DiCAS

4.3. Adaptive Search

Accordingly, a query is also forwarded to only
neighbors with a group ID that matches the hash value of
the desired file name in the query. For example, when a
node receives a query which matches group ID of 1, the
query will only be forwarded to neighbors with group ID
of 1. We claim the group ID is uniformly distributed in the
P2P network due to its value being randomly chosen.
Benefiting from the group ID’s uniform distribution, a
query can be forwarded to matched neighbors in most
cases. However, it is still possible that query forwarding
can be blocked if none of a peer’s neighbors have a
matched group ID. To avoid the early death of the query,
the peer will select a neighbor with the highest connec-
tivity degree to forward the query to in this case. Based on
the adaptive search algorithm above, the query forwarding
will be restricted to peers with the matched group ID.
Those peers form a virtual layer which has much smaller
searching space than the original P2P network. Based on
the modulus operation, the whole network is logically di-
vided into multiple layers and each query will be for-

warded within the correspondent layer with matched group
ID.

5. Simulation Methodology

5.1. Considerations of P2P Simulation

It is unrealistic for us to make a considerable number
of peers in Gnutella network configured with the support
of DiCAS for the purpose of evaluating the performance
improvement. We decided to develop a DiCAS simulator
for a large-scale cache-aware P2P network. We choose to
simulate each peer’s message-level behaviors as an effort
to investigate searching and index caching on all peers
across the entire network. Each simulated peer is able to
send queries, modify local and response index caches, and
generate responses based on both caches. Our previous
experiences on network simulations and experiments show
that simulation configurations and parameters strongly
influence the validity of simulation results. In this section,
we summarize a list of network parameters used in the
simulations of previous studies.

The parameters that determine the simulation scenar-
ios fall into three categories: network and topology pa-
rameters, workload parameters, and initial con-
tent/keyword distributions over the network. Content
popularity at a publisher follows Zipf-like distribution (aka
Power Law) [19, 20], where the relative probability of a
request for the ith most popular page is proportional to 1/i ,
with typically taking on some value less than unity.
The observed value of the exponent varies from trace to
trace. The request distribution does not follow the strict
Zipf’s law (for which =1), but instead follows a more
general Zipf-like distribution. Query word frequency does
not follow a Zipf distribution [21, 22]. User’s query lexi-
con size does not follow a Zipf distribution [21] but with a
heavy tail.

Both the overall traffic and the traffic from the 10%
most popular nodes are heavy-tailed in terms of host
connectivity, traffic volume, and average bandwidth of the
hosts [7]. Paper [23] suggests a log-quadratic distribution

(
2

10) for stored file locality and transfer file locality.
The length of time that nodes remain available follows a
log-quadratic curve [23], which could be approximated by
two Zipf distributions.

Research on content searching in P2P networks gener-
ally uses simulation to illustrate the effectiveness of the
underlying approach. Thus the problem of choosing a de-
cent abstraction level becomes a critical issue, which in
turn determines what simulation configuration is needed
for such a scenario. For specific simulation, one should
carefully choose related parameters and distributions such
that the simulation results and observations are reasonable.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

Number of Queries

A
ve

ra
ge

 T
ra

ff
ic

 P
er

 Q
ue

ry

cache size = 0 (No cache)
cache size = 50
cache size = 100

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6

7

Number of Queries

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

P
er

 Q
ue

ry

cache size = 0 (No cache)
cache size = 50
cache size = 100

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 T
ra

ffi
c

P
er

 Q
ue

ry

Number of Queries

UIC
DiCAS

Figure 6 Average traffic incurred by
each query

UIC vs. No cache

Figure 7 Average query re-
sponse time

UIC vs. No cache

Figure 8 Average traffic incurred
by each query

5.2. Our Simulation Configuration

In our simulation configuration, we generate two types
of network topology: Power-law topology and random
topology with an average connectivity degree of 3. We
examine the impact of index caching on searching effi-
ciency in terms of keyword matching. Hence in our simu-
lation we only look at single keyword matching rather than
document matching and semantic layer searching. Blind
flooding in Gnutella network is simulated by conducting
the Breath First Search algorithm from a specific node. A
search operation, bounded by TTL of 7, is simulated by
randomly choosing a peer as the sender, and a keyword
according to Zipf distribution. In each simulation session,
a large number of search operations are simulated sequen-
tially. While receiving a query, a peer will consult its local
index and its query response index cache using the search-
ing keyword for possible matches. The trace we collected
(described in Section 3.2) is used in our simulation.

6. Performance Evaluation
A well-designed search mechanism should seek to op-

timize both efficiency and user satisfaction. Efficiency
focuses on better utilizing resources, such as bandwidth
and processing power, while user satisfaction focuses on
user-perceived qualities, such as number of returned re-
sults and response time. We will use three performance
metrics: query success rate, query response time, and traf-
fic overhead incurred by queries to evaluate the effective-
ness of DiCAS.

6.1. Effectiveness of Uniform Index Caching

In the first simulation, we examine the effectiveness
of uniform index caching (UIC) scheme in which all peers
in a query response path will cache the query response.
Blind flooding is still used in UIC to forward queries.

Figure 6 shows the average traffics incurred by each
query, and Figure 7 shows the average query response
times for different cache sizes. Not surprisingly, introduc-
ing caching query responses with a moderate cache size of

50 significantly reduces network traffic by 54%, and query
response time by 33%. However, further increasing cache
size in each peer would not improve performance propor-
tionally. One of the reasons we have mentioned is that
there exists a large amount of overlapped query responses
among neighboring peers in UIC, which can limit the per-
formance improvement of caching query responses.

6.2. Effectiveness of DiCAS

Aiming at further improving search efficiency, we
propose DiCAS to cache query responses in selected peers
and forward the query to peers with matched group ID.
DiCAS is evaluated in this section using M=2, which logi-
cally divides the search space into two layers.

Figure 8 and Figure 9 compare the average traffic, and
the average query response time of UIC and DiCAS,
respectively. We can see that DiCAS outperforms UIC by
70% in terms of average traffic reduction. Compared with
UIC, DiCAS increases average query response time by
only about 6%.

When we measure the success rate of UIC and DiCAS,
we find that UIC can keep the same query success rate as
original flooding without caching (see Figure 10). How-
ever, Figure 11 shows that query success rate of DiCAS is
decreased by 13% compared with UIC. Because the Di-
CAS protocol only forwards a query to some selected
neighboring peers instead of all neighboring peers, it is
likely that the query will miss some peers who have que-
ried results. There are two reasons for a query to miss
matched peers.

First, some matched peers may be missed. In DiCAS,
a source peer forwards its query to those neighboring peers
whose group ID matches the query. Some other neighbors
are non-matched neighbors. However, the non-matched
neighbors’ neighbors may have matched group ID with
this query, but may be never reached by the query. See
Figure 5 again for an example, Peer A has two neighbors
B1 and B0. Peer C0 is B1’s neighbor, but two hops away
from A. Assume that peer B0 and C0 have the same group
ID (e.g. GID=0), and peer B1 has another group ID (e.g.
GID=1). If peer A initiates a query that matches GID=0,

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6

7

8

Number of Queries

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

P
er

 Q
ue

ry

UIC
DiCAS

Figure 9 Average query re-
sponse time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Queries

Q
ue

ry
 S

uc
ce

ss
 R

at
e

cache size = 0 (No Cache)
cache size = 50
cache size = 100

 Figure 10 Average success rate
of each query

UIC vs. No cache

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Queries

Q
ue

ry
 S

uc
ce

ss
 R

at
e

UIC
DiCAS

 Figure 11 Average success rate
of each query

the query will only be forwarded to peer B0. Peer B1 will not
receive the query, so the query may not reach C0, but C0 is
indeed a matched peer should be queried.

Second, some matched objects may be missed. When a
peer joins, it selects a group ID, but this cannot guarantee
that all its local objects will match the group ID. In this case,
there are some objects that do not match the owner’s group
ID and will never be queried, forming some dead corners.
Thus, some of the objects, even though they are available,
may not be found by many queries.

Motivated by above two reasons, we proposed two solu-
tions to address the problem of query success rate degrada-
tion in DiCAS, which are described and evaluated next.

6.3. Solutions to improve the query success rate

The first solution is called push-DiCAS that attempts to
avoid missing matched objects. When a peer is joining a P2P
network and randomly taking a group ID, it computes hash
values of the file names for all its sharing objects. If some
objects do not match this peer’s group ID, the peer will push
the indices of these objects to one of its neighboring peers
with matched group ID. These neighboring peers will cache
the indices of pushed objects with a similar format of a
query response indicating whereabouts of the objects. If
none of the neighboring peers with matched group ID exists,
a peer with the highest connectivity degree will be selected.
The whole process is repeated until a peer with matched
group ID is found. Figure 12 shows the average query suc-
cess rates of UIC and push-DiCAS. We can see that the
query success rate of push-DiCAS is improved to be very
close to that of UIC. Figure 14 shows average traffic com-
parisons. The push message travels along a single path. Thus,
compared with the exponentially increasing query flooding,
the increased traffic caused by the push operation is trivial,
which is shown by the difference between the push-DiCAS
curve and DiCAS curve.

We called the second solution random-DiCAS that at-
tempts to avoid missing matched objects shared by non-
matched peers. Instead of ignoring all non-matched
neighboring peers, a peer forwards its query to some ran-

domly selected non-matched neighboring peers, but these
non-matched peers will not forward the query further. As a
result, the flooding is mainly restricted within matched peers
while some of the non-matched peers are still covered. Fig-
ures 12-14 show random-DiCAS’s comparable performance
with push-DiCAS in average query success rate and average
traffic.

Comparing push-DiCAS and random-DiCAS, we find
that they have comparable performance except that random-
DiCAS causes a little bit more traffic because more
neighbors will be queried on average. The key factor affect-
ing the performance of push-DiCAS is the frequency of the
push operation, which balances the volume of search traffic
and success rate. The push frequency heavily depends on the
dynamic nature of P2P network. Because peers can join and
leave at any time, it is possible that peers who have received
pushed indices leave the network. In these cases, the source
peer should do push operations frequently, which incurs
extra traffic. However, compared with the exponentially
increased search traffic, the linearly increased push traffic is
trivial. Figure 14 shows that the overall traffic is still re-
duced significantly. In our simulation, we investigate the
case of M=2 thoroughly , which means that the search space
is divided into two layers. When the network is divided into
more layers, the volume of flooding traffic can be further
reduced. However, the push messaging between multiple
layers will become heavier. The best choice to balance well
the flooding traffic and push overhead depends on the dy-
namic nature of the real Gnutella network, which will be
studied in our future work.

7. Conclusion
The DiCAS protocol, which distributes index cache

among peers and divides the searching space into multiple
layers, can significantly reduce the searching traffic in
Gnutella-like P2P network. Our simulation results demon-
strate its strong effectiveness under different conditions. We

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Queries

Q
ue

ry
 S

uc
ce

ss
 R

at
e

UIC
push-DiCAS

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Queries

Q
ue

ry
 S

uc
ce

ss
R

at
e

UIC
random-DiCAS

0 1 2 3 4 5

x 10
4

-1000

0

1000

2000

3000

4000

5000

6000

7000

Number of Queries

N
um

be
r

of
 H

op
s

No cache
UIC
random-DiCAS
push-DiCAS
DiCAS

Figure 12 Average success rate
of each query

Figure 13 Average success rate
of each query

Figure 14 Average traffic in-
curred by each query

have also shown that deploying such a caching scheme in
an existing P2P network, such as Gnutella, is feasible with
an immediate favorable impact on P2P search performance,
thus making unstructured P2P systems more scalable. We
are refining a prototype version of the Gnutella-based Di-
CAS for public release in the P2P community.

References
[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.

Balakrishnan, "Chord: A scalable peer-to-peer lookup ser-
vice for Internet applications," in Proceedings of SIG-
COMM, 2001.

[2] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems," in Proceedings of International Conference on Dis-
tributed Systems Platforms, 2001.

[3] B.Y.Zhao, J. D. Kubiatowicz, and A. D. Joseph, "Tapestry:
An infrastructure for fault-resilient wide-area location and
routing," Technical Report UCB//CSD-01-1141,
U.C.Berkeley 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A scalable content-addressable network," in Pro-
ceedings of ACM SIGCOMM, 2001.

[5] Gnutella, http://gnutella.wego.com/
[6] M. Ripeanu, A. Iamnitchi, and I. Foster, "Mapping the

Gnutella Network," IEEE Internet Computing, 2002.
[7] S. Sen and J. Wang, "Analyzing peer-to-peer traffic across

large networks," in Proceedings of ACM SIGCOMM Inter-
net Measurement Workshop, 2002.

[8] S. Saroiu, K. P.Gummadi, R. J. Dunn, S. D. Gribble, and H.
M. Levy, "An Analysis of Internet Content Delivery Sys-
tems," in Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

[9] Fasttrack, http://www.fasttrack.nu
[10] Why Gnutella can't scale. No, really,

http://www.tch.org/gnutella.html
[11] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, "Search and

replication in unstructured peer-to-peer networks," in Pro-

ceedings of the 16th ACM International Conference on Su-
percomputing, 2002.

[12] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, "Location-
Aware Topology Matching in Unstructured P2P Systems,"
in Proceedings of INFOCOM 2004, 2004.

[13] B. F. Cooper and H. Garcia-Molina, "Studying search net-
works with SIL," in Proceedings of IPTPS, 2003.

[14] The popularity of Gnutella queries and its implications on
scalability,
http://www2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.
html

[15] E. P. Markatos, "Tracing a large-scale peer to peer system:
an hour in the life of gnutella," in Proceedings of the 2nd
IEEE/ACM International Symp. on Cluster Computing and
the Grid 2002, 2002.

[16] S. Patro and Y. C. Hu, "Transparent Query Caching in Peer-
to-Peer Overlay Networks," in Proceedings of the 17th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 2003.

[17] Limewire, http://www.limewire.com
[18] The Gnutella protocol specification 0.6, http://rfc-

gnutella.sourceforge.net
[19] V. Almeida, A. Bestavros, M. Crovella, and A. d. Olivera,

"Characterizing Reference Locality in the WWW," in Pro-
ceedings of the IEEE Conference on Parallel and Distrib-
uted Information Systems (PDIS), 1996.

[20] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
"Web Caching and Zipf-like Distributions: Evidence and
Implications," in Proceedings of INFOCOM'99, 1999.

[21] Y. Xie and D. O'Hallaron, "Locality in Search Engine Que-
ries and Its Implications for Caching," in Proceedings of
INFOCOM('02), 2002.

[22] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic, "Real
Life Information Retrieval: a study of User Queries on the
Web," SIGIR Forum, vol. 32, pp. 5-17, 1998.

[23] M. T. Schlosser and S. D. Kamvar, "Availability and local-
ity measurements of peer-to-peer file systems," in Proceed-
ings of ITCom: Scalability and Traffic Control in IP Net-
works, 2002.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

