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Abstract

In this paper, we present a technique for distributed self-

calibration of pan-tilt camera network using multi-layered

belief propagation. Our goal is to obtain globally consistent

estimates of the camera parameters for each camera with

respect to a global world coordinate system. The network

configuration changes with time as the cameras can pan and

tilt. We also give a distributed algorithm for automatically

finding which cameras have overlapping views at a certain

point in time. We argue that using belief propagation it is

sufficient to have correspondences between three cameras

at a time for calibrating a larger set of (static) cameras with

overlapping views. Our method gives an accurate and glob-

ally consistent estimate of the camera parameters of each

camera in the network.

1. Introduction

In this paper, we present a distributed algorithm for self-

calibration of a pan-tilt camera network using multi-layered

belief propagation. The goal of our distributed calibration

algorithm is to obtain a globally consistent and accurate

estimate of each camera’s parameters (intrinsic as well as

extrinsic) with respect to a global world coordinate sys-

tem (WCS). As the cameras can pan and tilt, the camera

network contains various mutually exclusive sub-networks,

where, all cameras in a sub-network view a common re-

gion. For distributed calibration, we perform multi-camera

self-calibration at each camera in a sub-network and apply

belief propagation to obtain consistent camera parameters

in each sub-network. We then propagate belief between

sub-networks to obtain the globally consistent and accurate

estimates of the camera parameters for each camera in the

network.

In general, pan-tilt camera networks are well-suited for

wide area surveillance. Automated surveillance requires
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that the camera network be calibrated with respect to a

global WCS so that tasks such as 3D-tracking, recogni-

tion of objects, activities and events can be effectively per-

formed. Moreover, this also requires that the camera param-

eters be consistent and accurate with respect to one another,

which cannot be achieved by individually calibrating each

camera. Self-calibration of a pan-tilt camera network is nec-

essary as it is, in general, difficult and impractical to use an

external calibration object.

Distributed calibration is advantageous for pan-tilt cam-

era network, as it is more robust against failures. In case of

failure of a camera, the information can be retrieved from

its neighbors. Moreover, unlike failure of the central server

which may lead to shutting down of the system, failure of

a camera does not impact the complete network. Also, in

case of distributed calibration, addition of new cameras in

the network does not require re-calibration of the complete

camera network. Our distributed calibration also leads to

making the system scalable, as large camera networks span-

ning a wide geographical area would contain mutually ex-

clusive sub-networks, thereby, no communication and com-

putation among the cameras of these sub-networks would

be necessary for calibration. Therefore, in effect, cameras

which do not view a common scene in any of their pan-tilt

positions do not affect each other. Therefore, our distributed

algorithm calibrates the complete camera network by cali-

brating smaller sub-networks, making the system scalable.

Distributed calibration of the camera network may lead

to inconsistencies in the estimation of the camera parame-

ters since these parameters are computed at each node of

the network. We use belief propagation to leverage on the

information at each node of the camera network to arrive at

a consistent and accurate estimate of the camera parameters

of each camera in the network.

The configuration of a pan-tilt camera network is dy-

namic. The various sub-networks that exist in the system

change across time, that is, cameras in different pan-tilt po-

sitions become a part of different sub-networks across time.

Moreover, within a fixed time interval, a camera can be a

part of only one sub-network. We give a technique to au-



tomatically find the sub-networks as well as a method to

automatically control the cameras so that they become parts

of different sub-networks across time, which is essential for

propagating belief across various sub-networks. We discuss

the related work in the next section.

2. Related Work

Multi-camera calibration is a well-studied problem in

computer vision. Pan-tilt camera network calibration has

also become an important area of research. Most of the

multi-camera calibration methods are based on centralized

processing. As camera networks are becoming larger, dis-

tributed algorithms are becoming a necessity. Recently,

in [10], an online distributed algorithm has been proposed

for cluster based calibration of a large wireless static cam-

era network using features detected on known moving tar-

get objects. They assume that the intrinsic parameters are

known and that each target object has known multiple dis-

tinctive features. In [7], 3D features and geographic hash

tables are used while in [5] object motion is used for cali-

bration. Very recently, authors in [4], have proposed a dis-

tributed algorithm for calibration of a camera sensor net-

work, where they assume that one of the cameras is cali-

brated and use epipolar geometry based algorithms at each

node to obtain its calibration parameters. They show that a

globally consistent solution can be reached in a distributed

manner by solving a set of linear equations.

In [1], a method for self-calibration of purely rotating

cameras using infinite homography constraint is proposed.

Davis et al. [2] present a method for calibrating pan-tilt

cameras and introduce a complete model of the pan-tilt ro-

tation occurring around arbitrary axes. Both these methods

are for calibrating a single camera and not for calibration

of a pan-tilt camera network. Authors in [12], estimate both

the internal and external parameters of a pan-tilt camera net-

work without requiring any special calibration object. But,

their method is feature based and estimates the camera pa-

rameters by using the complete set of images captured at

each pan-tilt-zoom configuration of the camera.

Radke et al. [3], give a distributed calibration method

for a static camera network using belief propagation. They

assume that the cameras form a graph where cameras are

the nodes and an edge exists between the nodes if they

have overlapping views. In their case, since the cameras

are static, the configuration of the network does not change

with time and the cameras form one connected graph. We

extend this approach for distributed calibration of pan-tilt

camera network using multi-layered belief propagation. In

our case, many mutually exclusive graphs exist at the same

time and the same camera may belong to many different

graphs across time. We also address the issues of automat-

ically finding the various graphs in the system. In [3], they

assume that the camera network forms a connected graph,

whereas we give a method for automatically controlling the

cameras to create connected graphs. Also, we propose the

use of multi-layered belief propagation, first within a graph

for a consistent measure of the camera parameters within

the graph, and then between multiple graphs to get a consis-

tent estimate of the camera parameters in the pan-tilt camera

network.

The methods in [3, 10, 7, 4] are for distributed calibration

of static camera networks while we propose a technique for

distributed calibration of pan-tilt camera network. More-

over, unlike [4, 10], we do not require that the internal or

external parameters of any camera be known and do not re-

quire any external calibration object. Also, unlike [12], our

method does not consider every pan-tilt configuration of any

camera in the network.

3. Distributed calibration of pan-tilt camera

network: an overview

We assume that the camera network has N ≥ 3 cameras

and each camera has a unique number n ∈ {1, 2, . . . , N}
associated with it. We also assume that each camera has a

processing unit attached with it and that there exists an un-

derlying communication network such that each camera can

communicate with every other camera. A sub-network in a

pan-tilt camera network consists of cameras viewing a com-

mon area. The cameras which have overlapping views form

a complete graph G = (V,E) where, the cameras Ci ∈ V

and edge eij ∈ E between cameras Ci and Cj for all cam-

eras in the graph. In a pan-tilt camera network, there may

exist many such mutually exclusive graphs at any point in

time. Moreover, if a camera pans and/or tilts, then it may

cease to remain a part of one graph and become a part of

another graph. In Section 5, we give a distributed algorithm

for finding these graphs automatically.

We assume that the cameras remain in a certain pan-tilt

position for a fixed period of time. During this time in-

terval, the cameras in each graph are considered as static

cameras. Corresponding points between the views of the

cameras in each graph are found automatically and multi-

camera self-calibration is performed at each node of the

graph. It is well-known that finding automatic correspon-

dences between multiple views is not an easy problem. We

show that by using multi-layered belief propagation it is

sufficient to have correspondences between only three cam-

eras at a time for consistent calibration of a larger N > 3
static camera network. In Section 6, we give the method

to calibrate a large N > 3 (static) camera network us-

ing multi-layered belief propagation by iteratively calibrat-

ing its 3-cliques. We discuss belief propagation and multi-

layered belief propagation in Section 7 and discuss how

multi-layered belief propagation is applied at each camera

in the network. Since the information is combined from



Figure 1. Example of common points found in three images. Note:

All images are best viewed in color and at a high resolution.

graphs containing the cameras in various pan-tilt configura-

tions, it is unlikely that belief propagation will get stuck in

a local minima and hence, globally consistent estimates are

achieved.

In Section 8, we give a protocol for automatically con-

trolling the cameras so that they become a part of various

sub-networks across time which is necessary for distributed

calibration of the pan-tilt camera network. Otherwise, the

network will remain divided into mutually exclusive sub-

networks and there will be no exchange of information

between various pan-tilt views of the same camera across

time. To perform multi-layered belief propagation between

two graphs containing the same camera in different pan-tilt

positions, we need to bring the cameras to their home (zero

pan and zero tilt) position in both the graphs. We show that

the camera matrix for the home position of the camera can

be computed by automatically finding pairwise correspon-

dences to compute the homography or a sequence of homo-

graphies between the camera’s pan-tilt view and the home

view. We also propose a protocol in Section 9, for aligning

all the cameras’ home positions to a global WCS, to get a

globally consistent estimate of the camera’s home position

(zero pan, zero tilt position). In the next section, we give a

method for automatically finding correspondences between

three images. The same method can be used for finding cor-

respondences automatically between a pair of images.

4. Automatically finding corresponding points

between three images

We propose a method for automatically finding corre-

sponding points in three images. It can also be used to find

correspondences in a pair of images or more than three im-

ages. But, as the number of images increase, the error in

correspondences also increase. Let I1, I2 and I3 be three

images taken by three different cameras of the same scene.

We perform the following steps to automatically find corre-

spondences between the three images. First, compute the

SIFT features in all three images and then, compute the

SIFT matches between the pairs I1−I2, I1−I3 and I2−I3.

Next, find the common SIFT matches between these three

pairs, denoted by X = {x1, x2, x3} for points in I1, I2 and

I3 respectively. Further, refine these points by fitting funda-

mental matrices between pairs of images and taking points

which are common in all the three images. This is done by

first fitting fundamental matrix to the pairs F12 = {x1, x2},
F13 = {x1, x3} and F23 = {x2, x3} and then, finding the

common points between the inliers in F12, F13 and F23, say

y1, y2 and y3. If the number of points are≥ 50, then we say

that there exists overlap between the three images and y1,

y2 and y3 are the correspondences in the three views. Fig-

ure 1 shows the common points found between three images

taken by three different cameras.

5. Finding the graphs

We develop an algorithm to automatically find the graphs

in the network. Starting with the camera with the smallest

number that does not belong to any graph currently, say Ci,

find the camera with the next smallest number, say Cj , that

has an overlap with Ci and which does not belong to any

graph. Form a graph G = (V,E) where, V = {Ci, Cj} is

the set of nodes and eij ∈ E is the edge between Ci and

Cj . Incrementally, find all those cameras (by automatically

finding the corresponding points) which have overlapping

views with Ci and Cj and are not a part of any graph cur-

rently. Add them as nodes of G and add edges between all

the nodes of G. Continue till either there is no camera that

does not belong to a graph in the system or no other camera

has overlapping views with the nodes in graph G.

Repeat this with all the cameras in the network that are

not a part of any graph. In general, there will be more than

one graph in the pan-tilt camera network. Moreover, each

graph will be a complete graph. A priori knowledge of the

camera network topology can be used to reduce the amount

of communication across cameras as well as the number of

computations for SIFT matches. For example, in a wide

area pan-tilt camera network it is possible that two sets of

cameras are geographically so far apart that there will be no

overlapping view between these two sets of cameras. There-

fore, no communication or computation needs to be carried

out between such mutually exclusive and distant camera

sub-sets.

6. Camera calibration within a graph

We assume that the cameras in a graph, say Gk, remain

static for a certain time period. Thus, standard multi-camera

self-calibration techniques can be used for calibrating the

cameras within a graph. In a distributed system, multi-

camera calibration is carried out at each node of the graph,

Gk. The crucial point here is to automatically find multi-

view correspondences at each node. Since this is not an

easy task, we show that it is possible to calibrate a graph of

size N > 3 by calibrating its 3−cliques and using multi-

layered belief propagation to reach a consistent estimate of

the camera parameters of all the cameras in the graph.

We consider all possible 3-cliques of the graph Gk. Let



Figure 2. These images are from one pan-tilt camera taken at different pan and tilt positions. To find the homography between (a) and (f),

where (f) is the home position, we find a sequence of homographies: between (a) and (b), then (b)=(c) and (d) and then (d) = (e) and (f).

The point correspondences for finding the homographies are automatically found as explained in text.

Gi
k be the ith 3-clique of Gk. The corresponding points be-

tween the nodes of Gi
k are found automatically as discussed

in Section 4. Standard multi-camera self-calibration tech-

nique is used at each node of Gi
k to get estimates of camera

parameters of each camera in Gi
k. Belief propagation (dis-

cussed in Section 7) between the nodes of Gi
k gives a con-

sistent estimate of the camera parameters for each camera in

Gi
k. This is done for each of the 3-cliques of Gk, which will

not be more than
(

n
3

)

for a graph of size n. Therefore, there

will be
(

n
3

)

estimates of each camera after belief propaga-

tion is carried out within each 3-clique. Then, multi-layered

belief propagation at each node of Gk is carried out between

the estimates of the camera parameters of that node in the

various (at most
(

n
3

)

) 3-cliques. If this procedure is carried

out iteratively, then it is not necessary to calibrate all the
(

n
3

)

3-cliques. It is possible that a consistent estimate of the

camera parameters for each camera in Gk can be reached

with a lesser number of 3-cliques than
(

n
3

)

. Thus, we are

able to calibrate the complete graph of N > 3 cameras

without knowing multi-view correspondences among all the

nodes of the graph. Figure 4 shows a result of this tech-

nique for calibrating a graph of five cameras by using five

3-cliques of the graph. An important point to be noted here

is that the camera matrices have to be aligned to a common

WCS for this graph before propagating belief at a node be-

tween the subgraphs. The common WCS for this graph can

be a predefined WCS or we can take the lowest numbered

camera in the graph to be at the origin of the WCS.

7. Belief Propagation within a graph

For distributed calibration of cameras in a graph, say Gk,

multi-camera self-calibration is carried out at each node, us-

ing the automatically found corresponding points. There-

fore, at each node Ci of Gk, we obtain an estimate of the

camera parameters P k
j for all j cameras in Gk. Let yi be

the true camera parameters for the ith camera. Our aim is

to find yi from the estimates of the camera parameters com-

puted at each node of Gk, using belief propagation. The

estimates of the camera parameters of all cameras in Gk

computed at each node are considered as the beliefs at each

node. In general, belief propagation algorithm is used for

solving inference problems based on local message pass-

ing [11]. Each node updates its beliefs by using the esti-

mates it receives from its neighbors in the form of “mes-

sages”. These beliefs are iteratively updated until there is

no change in the belief at a node. As has been shown in [3],

belief propagation can be directly applied on a graph which

has cameras viewing a common scene as its nodes. In this

case, the update equations are of the form:

Σ̃i,k ← [Σ−1
i,k +

∑

j∈N(i,k)

Σ−1
j,k]−1

µ̃i,k ← Σ̃i,k ∗ [Σ−1
i,kµi,k +

∑

j∈N(i,k)

Σ−1
j,kµj,k] (1)

Here, µi,k and Σi,k are the estimate and covariance of the

camera parameters computed at the ith camera Ci in the kth

graph, Gk. N(i, k) denotes the set of neighbors of camera

Ci in graph Gk. Moreover, the ith node, Ci receives µj,k

and Σj,k from Cj , its jth neighbor, j ∈ N(i, k). µ̃i,k and

Σ̃i,k are the estimates of the camera parameters after belief

propagation within graph Gk. The covariance matrix is cal-

culated based on the forward covariance propagation from

bundle adjustment. We consider the diagonal terms of the

covariance matrix only, resulting in it being a diagonal ma-

trix which is positive definite and invertible. Moreover, we

use all the 11 camera parameters [6] as the belief at a node.

7.1. Multilayered Belief Propagation

Since the graphs are dynamic and the same camera Ci

can be a part of two graphs, say Gk−1 and Gk, in different

pan-tilt orientations at different points in time, we perform

belief propagation between graphs at each node, Ci, which

is common in both Gk−1 and Gk. Here, the belief at Ci in

Gk−1 is the estimate of the camera matrix of Ci (after be-

lief propagation within Gk−1) at its home position, obtained

by using the homography between Ci’s view in Gk−1 and

the image taken at the home position of Ci. Similarly, the

belief at Ci in Gk is the estimate of camera matrix of Ci (af-

ter belief propagation within Gk) at home position obtained

using homography between the view of Ci in Gk and the

home view of Ci.

As is well-known [6], two views of a camera in differ-

ent pan-tilt positions are related by a 3 × 3 image to image



homography. Therefore, we automatically compute the ho-

mography between the pan/tilt view and the home view of

a camera by automatically finding corresponding points be-

tween the two images, using SIFT matches further refined

by fitting fundamental matrices to the points obtained, as

described in Section 4. This homography is then used to

get the camera matrix of the home position from the camera

matrix of the pan-tilt position. Let Pθφ be the camera matrix

at pan θ and tilt φ position, Phome be the camera matrix at

the home position, and H be the homography between the

home view and the pan-tilt view. Then, if x = PhomeX ,

x′ = PθφX and x = Hx′,⇒ Phome = H ∗Pθφ. Similarly,

we can get to the pan-tilt position as: Pθφ = H−1 ∗ Phome.

In case, the pan-tilt view of the camera does not have any

overlap with the home position’s view, a sequence of ho-

mographies can be used, again calculated automatically, as

shown in Figure 2. Let µ̃i,k be the estimate of the cam-

era parameters of Ci after belief propagation within graph

Gk, where Ci is in pan θk and tilt φk position. Homogra-

phy or a sequence of homographies is used to calculate the

camera parameters for the home position of Ci, denoted by

Pihome,k. These parameters, taken as a vector, are the belief

at Ci in Gk denoted by µihome,k. Let µ̃k−1
ihome

and Σ̃k−1
ihome

be

the estimates of the camera parameters and the covariance

matrix after the (k − 1)th iteration, at the home position

of Ci, of multi-layered belief propagation between k − 1
graphs containing Ci in different pan-tilt positions. The

home position is calculated in each graph using the image-

to-image homography before applying the update equations

for multi-layered belief propagation. The belief is updated

using Equations 2.

Σ̃k
ihome
← [(Σ̃k−1

ihome
)−1 + Σ−1

ihome,k]−1

µ̃k
ihome
← Σ̃k

ihome
[(Σ̃k−1

ihome
)−1µ̃k−1

ihome
+Σ−1

ihome,kµihome,k](2)

where, µ̃k
ihome

denotes the estimate of the camera parame-

ters and Σ̃k
ihome

is the estimate of the covariance matrix of

the home position of Ci after the kth iteration.

8. Forming new graphs

The multi-layered belief propagation mechanism can be

utilized only if the graphs change across time. We de-

velop a protocol for automatically controlling the pan-tilt

of the cameras so that the network configuration changes

after a fixed time period. We define a set of landmarks

L = {L1, L2, . . . , Lm} in the scene with respect to the

global WCS. Initially, the graphs are found using the tech-

nique discussed in Section 5. Once the estimate of the cam-

era parameters for cameras have been computed in each

of these graphs by multi-camera self-calibration and belief

propagation within each graph, these cameras are aligned

to the global WCS. The camera parameter estimates after

alignment are then used for controlling the cameras to form

new graphs in the network. The protocol is:

1. For each camera, compute the pan-tilt rotations re-

quired to view all the landmarks. (It is possible that

a camera may not be able to view all the landmarks,

therefore, only those that are visible are considered).

2. For each camera, rotate by the smallest pan-tilt angles

such that it views a landmark other than the one it is

currently viewing.

3. Send a message to all the other cameras about the new

landmark that it is viewing. If it is known a priori that

two cameras will never have overlapping views, they

need not inform each other about the new landmark

they are viewing, thereby reducing unnecessary com-

munication.

4. Each camera will have information of all other cam-

eras about the landmark they are viewing. It takes into

consideration all the cameras, say set S, that are view-

ing the same landmark as itself.

5. For each camera, check whether the cameras in its set

S form a graph by using the procedure given in Sec-

tion 5.

This also makes our system scalable as the correspondences

have to be calculated among only those cameras which view

the same landmark and in step 3, the messages have to be

passed only between those cameras which can have over-

lapping views in some pan-tilt configuration. In general,

these will be much smaller in number compared to the size

of the camera network. The above algorithm ensures that

the graphs in the camera network change over time. This

is essential because if the graphs remained static, since they

are mutually exclusive no information would be shared be-

tween the graphs and it would not be possible to calibrate

the complete network. It is possible that there will be cam-

eras which do not have overlapping views with any other

camera or graphs that have less than 3 cameras. In the cur-

rent time period these cameras are not considered for cal-

ibration and therefore, remain idle. In the next time pe-

riod, they shall repeat the above protocol and become part

of graphs with ≥ 3 nodes and hence, will be used for cali-

bration and multi-layered belief propagation.

9. Aligning cameras to a global world coordi-

nate system

We want the position and orientation of each camera’s

home position with respect to a global WCS. Moreover, be-

lief propagation can be carried out only if all the cameras

are aligned with respect to a common coordinate system in

the world. For the cameras to align themselves to a global



Figure 3. (a) Re-projections after belief propagation within the

graph. (b) and (c) Re-projection after randomly choosing cam-

era parameters after multi-camera self-calibration at each node of

the graph G1. The yellow and green ‘+’ denote the reprojections,

the red ‘o’ are the input points.

Table 1. The re-projection statistics for graph, G1. (Refer Fig 3)

After belief propagation within the graph:

CamId 1 2 3

mean 0.85 1.32 0.85

std. deviation 0.82 1.36 0.75

Random Set 1:

CamId 1 2 3

mean 20.00 7.74 21.26

std. deviation 19.37 8.60 20.38

Selected from node C1 C2 C3

Random Set 2:

CamId 1 2 3

mean 9.58 20.71 2.12

std. deviation 8.89 33.38 2.76

Selected from node C2 C3 C1

coordinate system in a distributed manner, we follow the

following protocol. Within each graph Gj , the camera with

the smallest number is said to be at the origin of a common

coordinate system. Its lowest numbered neighbor is said to

be on the x−axis at a unit distance. These two conditions

establish a common coordinate system at the lowest num-

bered camera, say Ci, in each graph formed in the camera

network. All other cameras in Gj are aligned to this com-

mon coordinate system. If camera Ci pans/tilts it becomes

a part of another graph, say Gk. The two views of cam-

era Ci, in Gj and in Gk are aligned using the pan and tilt

rotation matrices between the two pan-tilt positions of the

camera. Thus, the cameras in the two graphs are aligned

to the common coordinate system at the lowest numbered

Table 2. The re-projection error for the graph with 5 cameras. (Re-

fer Figs. 4, 5, 6)

After multi-layered belief propagation at each node

CamId 1 2 3 4 5

mean 1.80 2.60 1.79 1.63 2.01

std. deviation 0.77 1.78 0.98 0.90 1.42

Random Set 1:

CamId 1 2 3 4 5

mean 8.67 14.91 13.34 28.62 10.97

std. deviation 8.35 14.26 9.43 21.21 8.10

Sub-graph G1 G3 G2 G5 G4

Random Set 2:

CamId 1 2 3 4 5

mean 13.41 8.90 30.08 15.48 6.69

std. deviation 7.25 5.74 16.42 11.31 2.95

Sub-graph G3 G1 G5 G4 G2

camera among the two graphs. This is done for every graph

formed. The lowest numbered camera in the network is then

aligned to the global WCS in case it is pre-defined. In case

the global WCS is not pre-specified, the lowest numbered

camera in the network may be assumed to be at the origin

of the global WCS.

10. Results and Discussion

We use 6 SONY EVI-D70 PTZ cameras for our ex-

periments. For multi-camera self-calibration, within each

graph, we use the code by Svoboda et al. [13] and for de-

tecting and matching SIFT features we use the code by

Lowe [9]. Moreover, for fitting the fundamental matrix

to the SIFT matches we use Peter Kovesi’s code [8]. The

objective of our experiments is to show the following: (a)

that a pan-tilt camera network can be calibrated in a dis-

tributed manner using multi-layered belief propagation; (b)

that multi-layered belief propagation leads to accurate and

consistent estimates of the camera parameters, both within

a graph and across multiple graphs; (c) that it is possible to

calibrate a static camera network of size N > 3, by know-

ing correspondences between only 3 views at a time and

using multi-layered belief propagation. Figure 3 shows one

of the graphs in the network with 3 nodes. The correspond-

ing points among the 3 nodes are found automatically as

described in Section 4. Multi-camera self-calibration is car-

ried out at each node of this graph. Therefore, each node

Ci computes the camera parameters Pi of all the cameras in

the graph. If we randomly select one camera (all its param-

eters) from each node, for example, P1 from node C2, P2

from C3 and P3 from C1, then as seen in Figure 3(b) and

(c) the reprojection error is high and vary based on which



Figure 4. The five cameras are calibrated by first distributed calibration and belief propagation within the 3-cliques and then multi-layered

belief propagation across the nodes of the graph. The red circles denote the input points and the green ’+’ are the reprojections of the

3D-points found by triangulating the input points using all five cameras.(Note: same notation for the two images below)

Figure 5. Random set 1: The five cameras are calibrated by first distributed calibration and belief propagation within the 3-cliques and then

randomly chosen from the different cliques.

Figure 6. Random set 2: The five cameras are calibrated by first distributed calibration and belief propagation within the 3-cliques and then

randomly chosen from the different cliques.

camera is selected from which node. That is, the camera pa-

rameters are inconsistent. When belief is propagated within

this graph, as seen in Figure 3(a) it leads to a consistent es-

timate of the camera parameters for each of the three cam-

eras in the graph. The reprojection error statistics are given

in Table 1. Figure 4 shows a graph formed by five cam-

eras in various pan-tilt positions. We consider five 3-cliques

of the graph for calibrating this graph. First, multi-camera

self-calibration and then belief propagation within each of

the five 3-cliques is computed. Then, belief is propagated

between these 3-cliques at each node of the graph. We con-

sider the camera coordinate system at the first camera to be

the global WCS and align each camera with it. We observe

that if belief propagation is performed within the 3-cliques

and then the cameras are randomly chosen, from the five

sub-graphs then the reprojection errors are high and there

is an inconsistency in the reprojections, as shown in Fig-

ure 5 and Figure 6. Multi-layered belief propagation at the

nodes of the graph results in consistent and accurate cam-

era parameters as seen in Figure 4. The re-projection er-

ror statistics are given in Table 2. This experiment shows

that a static camera network of size N > 3 can be cali-

brated in a distributed manner by knowing correspondences

among 3 cameras at a time. Moreover, it is not necessary to

consider all possible 3-cliques of the network. Figure 7(a),

shows the reprojection on the first camera of the network

at its home position. The camera parameters are found by

multi-layered belief propagation at C1 from 7 graphs in the

network which contained C1 in various pan-tilt positions.

The multi-layered belief propagation is carried out by find-

ing Phome for C1 in each camera using the automatically

computed homography matrices. Figure 7(b) shows the re-

projection after belief propagation within the graph contain-

ing C1 at its home position. The reprojection error statistics

are given in Table 3. Figure 8 shows that the reprojection

of input points in all 6 cameras in their home position is

accurate. These reprojections are calculated using the final

estimates of the camera parameters for each camera in the

pan-tilt camera network. The reprojection error statistics

are given in Table 4.

11. Conclusion

We have presented a multi-layered belief propagation
based distributed algorithm for self-calibration of a pan-
tilt camera network. We have shown that by using multi-



layered belief propagation it is possible to get accurate and
globally consistent estimates of the camera parameters for
each pan-tilt camera in the network with respect to a global
world coordinate system. We have given a method that
shows that if multi-layered belief propagation is used, then
it is sufficient to know correspondences between three cam-
eras (at a time) for distributed calibration of a large (static)
camera network. Our system does not require that all the
cameras should have overlapping views at all times. More-
over, we have shown that by propagating beliefs between
graphs, it is possible to calibrate cameras in the network
even if they do not have any overlap in their views at any
point in time. Our method gives an accurate and globally
consistent estimate of the camera parameters for the home
position of each camera and using the method for automat-
ically finding correspondences in two views, homographies
between the home view and any pan/tilt view can be au-
tomatically computed. Therefore, it is possible to obtain
accurate and globally consistent camera parameters for any
pan/tilt position of the pan-tilt cameras in the network with
respect to a global world coordinate system.

Table 3. The re-projection statistics for home position of C1. (Re-

fer Fig 7)

CamId mean std. deviation

Multi-layered BP 1 0.98 0.67

BP within a graph 1 3.13 1.66

Table 4. The re-projection statistics for home position of all cam-

eras after multi-layered belief propagation. (Refer Fig. 8)

CamId 1 2 3 4 5 6

mean 0.98 0.68 0.79 0.81 0.31 0.67

std. deviation 0.67 0.39 0.37 0.47 0.23 0.51
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