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Adaptable gain regulation is at the core of the forward controller operation performed

by the cerebro-cerebellar loops and it allows the intensity of motor acts to be finely

tuned in a predictive manner. In order to learn and store information about body-object

dynamics and to generate an internal model of movement, the cerebellum is thought

to employ long-term synaptic plasticity. LTD at the PF-PC synapse has classically been

assumed to subserve this function (Marr, 1969). However, this plasticity alone cannot

account for the broad dynamic ranges and time scales of cerebellar adaptation. We

therefore tested the role of plasticity distributed over multiple synaptic sites (Hansel

et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into

a control loop connected to a robotic simulator. The robot used a three-joint arm and

performed repetitive fast manipulations with different masses along an 8-shape trajectory.

In accordance with biological evidence, the cerebellum model was endowed with both LTD

and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme

whose effectiveness was extended considerably compared to one including just PF-PC

synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted

to manipulate different masses and to learn the arm-object dynamics over a time course

that included fast learning and consolidation, along the lines of what has been observed

in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between

the actual input state and the system error, while MF-DCN and PC-DCN plasticity played

a key role in generating the gain controller. This model suggests that distributed synaptic

plasticity allows generation of the complex learning properties of the cerebellum. The

incorporation of further plasticity mechanisms and of spiking signal processing will allow

this concept to be extended in a more realistic computational scenario.
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INTRODUCTION

The cerebellum plays a critical role in the precise control of

movements, as is evident when studying patients with cerebel-

lar malfunctioning and diseases (Thach, 1996). The cerebellum

receives proprioceptive signals (Sawtell, 2010) and copies of motor

commands (Schweighofer et al., 1998a) together with haptic

information (Ebner and Pasalar, 2008; Shadmehr and Krakauer,

2008; Weiss and Flanders, 2011) through MFs. By means of these

signals and its own internal circuitry, the cerebellum is able to

learn and process sensorimotor information, and thereby regu-

late the initiation, intensity and duration of motor acts in an

anticipatory manner (Spencer et al., 2005; Manto et al., 2012).

This gain control operation is a fundamental aspect of motor

Abbreviations: PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule
cell; GoC, Golgi cell; PC, Purkinje cell; DCN, deep cerebellar nuclei; VN, vestibu-
lar nuclei; IO, inferior olive; MLI, molecular layer interneuron; EBCC, eye-blink
classical conditioning; VOR, vestibule-occular reflex; MAE, mean average error.

control in animals, as it allows not only the rapid regulation

of motor acts according to contextual cues, but also, through

learning, adaptation of these acts to bodily and environmental

changes. This adaptable gain control requires closed-loop interac-

tions between command centers and effectors and is thought to

involve the cerebellum embedded in the so-called forward con-

troller loop (Schweighofer et al., 1998a; Wolpert et al., 1998;

Wolpert and Ghahramani, 2000). In fact, the abstraction of

models (kinematics and dynamics) of objects under manipula-

tion (Shadmehr and Mussa-Ivaldi, 2012) is efficiently achieved

thanks to close interaction between the cerebral and the cere-

bellar cortex (Middleton and Strick, 2000; Wang et al., 2008).

However, two main issues remained unresolved. First, the adapt-

able gain controller localized in the cerebellum is thought to

require suitable learning and memory mechanisms, whose nature

is still debated. Secondly, it remains to be explained how a

gain control system involving the cerebellum is able to optimize
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its performance in the face of broad and varying operative

ranges.

Several attempts have been made to understand how the cere-

bellum implements adaptable gain control. The original theories,

based on analysis of network connectivity (Marr, 1969; Albus,

1971; Fujita, 1982), defined the cerebellum as a timing and learn-

ing machine. The granular layer was hypothesized to perform

expansion recoding of input signals and the PF-PC synapse to

learn and store relevant patterns under the control of the teaching

signal provided by CFs. On the basis of electrophysiological deter-

minations, it has been suggested that the inferior olive (IO), by

comparing proprioceptive and predicted signals, is indeed able to

provide quantitative error estimation (Bazzigaluppi et al., 2012;

De Gruijl et al., 2012). Moreover, some authors, on the basis of

eye-movement analysis, have advanced the hypothesis of a two-

state learning mechanism (Shadmehr and Brashers-Krug, 1997;

Shadmehr and Holcomb, 1997), wherein a fast learning pro-

cess takes place in the cerebellar cortex (granular and molecular

layer, possibly involving PF-PC plasticity) and a slow consolida-

tion process takes place in deeper structures (possibly the DCN)

(Shadmehr and Brashers-Krug, 1997; Shadmehr and Holcomb,

1997; Medina and Mauk, 2000). Clearly, in the development of

an adequate model of adaptable cerebellar gain control, it has to

be known where and how learning actually occurs. Long-term

synaptic plasticity is thought to provide the biological basis for

learning and memory in neuronal circuits (Bliss and Collingridge,

1993) and appears in various forms of potentiation (LTP) and

depression (LTD). In the cerebellum, long-term synaptic plastic-

ity was initially thought to occur only as LTD or LTP (Marr, 1969;

Albus, 1971) at the PF-PC synapse, but now synaptic plasticity is

known to be distributed and to occur also in the granular layer,

molecular layer and DCN (Hansel et al., 2001; Gao et al., 2012).

In particular:

(1) Synaptic plasticity in the granular layer is unsupervised

and may serve to improve spatiotemporal recoding of MF

input patterns into new GC discharges [expansion recoding

(D’Angelo and De Zeeuw, 2009)].

(2) Synaptic plasticity in the molecular layer is supervised and

may serve to store correlated granular layer patterns under

the teaching signal generated by CFs. This plasticity is in fact

composed of multiple mechanisms: PF-PC LTD may occur

together with PF-MLI LTP, globally reducing PC responses,

while PF-PC LTP may occur together with PF-MLI LTD and

MLI-PC LTD, globally increasing PC responses (Gao et al.,

2012).

(3) Synaptic plasticity in the DCN is supervised and may serve

to store correlated granular layer patterns under the teaching

signal generated by PCs (Hansel et al., 2001; Boyden et al.,

2004; Gao et al., 2012). This plasticity is, in turn, composed

of several mechanisms generating MF-DCN (Bagnall and du

Lac, 2006; Pugh and Raman, 2006) and PC-DCN (Morishita

and Sastry, 1996; Aizenman et al., 1998; Ouardouz and

Sastry, 2000) LTP and LTD. On the one hand, it has been

suggested that MF-DCN and PF-DCN plasticity are impor-

tant in controlling cerebellar learning in the context of EBCC

(Medina and Mauk, 1999, 2000) and that equivalent forms

of plasticity in the VN are important in controlling cerebel-

lar learning in the VOR (Masuda and Amari, 2008). On the

other hand, it has been proposed that the nature of cere-

bellar cortical and nuclear plasticity and the involvement of

extra-cerebellar plasticity sites are highly dependent on the

task to be performed, e.g., EBCC or VOR (De Zeeuw and

Yeo, 2005; Porrill and Dean, 2007; Lepora et al., 2010). In

the present context, with the aim of developing a general

computational scheme, we have not considered the potential

task-dependence of the learning process.

We explored the impact of distributed cerebellar synaptic plas-

ticity on gain adaptation using a robotic control task in a closed

loop, starting from the assumption that there are three learn-

ing sites, one in the cerebellar cortex (PF-PC) and two in the

DCN (MF-DCN and PC-DCN), all generating LTP and LTD. We

found that simultaneous recalibration of weights at these multi-

ple synaptic sites was required to implement self-adaptable gain

control over a broad dynamic range involving manipulation of

objects with different masses. Moreover, the model implied, due

to the definition of the learning rules and the configuration of

the learning parameters, that learning was faster in the molec-

ular layer than in DCN, supporting adaptation mechanisms on

different time scales. This result suggests that distributed synap-

tic plasticity is needed to generate the complex computational

and learning properties of the cerebellum and to improve motor

learning and control.

METHODS

A cerebellar model was constructed taking into account the major

functional hypotheses concerning the granular layer, the PC layer

and the DCN. The main synaptic connections between these

structures (PF-PC, PC-DCN, and MF-DCN) were endowed with

long-term synaptic plasticity mechanisms. The cerebellar model

was embedded into a control loop designed to operate a simu-

lated robotic arm manipulating different masses. The simulator

of the robotic arm and the control loop were implemented in

Simulink (Matlab R2011a), in accordance with previous models

(Luque et al., 2011a,b,c; Tolu et al., 2013) (see Appendix B). The

cerebellar model was implemented in C++ and was embedded

in Simulink as an S-function block. The source code is avail-

able at: https://senselab.med.yale.edu/modeldb/ShowModel.asp?

model=150067.

CEREBELLAR MODEL

The model provides a simplified representation of signal process-

ing, while accounting for the main computational and learning

properties of the cerebellar circuit. Each layer of the cerebellum

was implemented as a set of parameter values corresponding

to the firing rate of the neural population. Consequently, and

since the interaction between neuronal layers in the model is

linear, “synaptic strength” and “synaptic weight” correspond to

gain factors describing the influence that firing frequency in the

presynaptic cell group has on the postsynaptic cell group. Thus,

like gain, “synaptic weights” are adimensional. An overview of

the cerebellar circuit is shown in Figure 1 and of computational

features of the model is shown in Figure 2.
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FIGURE 1 | Schematic representation of the main cell types in

the cerebellum and of their connections. Suggestions about the

nature of inputs signals are indicated [according to Schweighofer

et al. (1998b)]. The pathways involved in long-term synaptic

plasticity are drawn in green (for DCN afferents) and blue (for PC

afferents). PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC,

granule cell; GoC, Golgi cell; PC, Purkinje cell; DCN, deep

cerebellar nuclei; IO, inferior olive; MLI, molecular layer interneuron.

Signal coding in the cerebellar model

Previous models of cerebellar control of eyelid conditioning

assumed that MFs convey spike sequences with a constant fir-

ing rate during presentation of the conditioned stimulus (Medina

and Mauk, 1999; Yamazaki and Tanaka, 2007, 2009). Accordingly,

in the present model, MF activity was represented by a con-

stant firing rate. The MFs received constant signals (1) dur-

ing the execution of each learning trial, and their input was

set to 0 after the trial. It was assumed that, owing to inter-

nal dynamics, the granular layer circuit is capable of gener-

ating time-evolving states even in the presence of a constant

MF input (Fujita, 1982). The CFs were assumed to transmit an

error signal (0–1) representing the normalized difference between

the desired and actual positions and velocities of each arm

joint.

The onset of MF activity started the generation of the granular

layer state sequence (see below) and also provided the excitatory

drive to DCN cells (Figure 2). The DCN generated the cere-

bellar output by emitting positive (or zero) corrective torques

that were added (with a positive or negative sign depending

on whether it corresponded to agonist or antagonist muscles)

to the crude inverse dynamic signal coming from the motor

cortex.

The granular layer

The granular layer was implemented as a state generator

(Yamazaki and Tanaka, 2005). When MF activity reaches the

granular layer, it produces non-recurrent time patterns that

are repeated exactly in each learning trial (Figure 2A). Thus,

the relative time offset along the arm plant trajectory is rep-

resented by the correlative activation of 500 different states,

mimicking the behavior of 500 PFs sequentially activated dur-

ing movement execution. It should be noted that the proce-

dure adopted here formally corresponds to a labeled-line coding

scheme (Figures 2A,B).

The Purkinje layer

The PC layer has been suggested to correlate the PF input activ-

ity with the CF error-based teaching signal (Marr, 1969; Albus,

1971). Taking advantage of the state representation occurring

in PFs, the PC layer was implemented by means of a look-up

table, which associates each actual state with an output firing

rate progressively learned along the trial (Figure 2B; see also

below the synaptic plasticity section for a comprehensive descrip-

tion of mechanisms). The activity of the PC layer is defined as

follows:

Puri(t) = fi (PF(t)) , i ∈ 1, 2, . . . Number of muscles (1)

where Puri(t) represents the firing rate of the PCs associated with

the i-th muscle and fi associates each granular layer state (i.e.,

one active PF) with a particular output firing rate at the i-th PC

(Figure 2B). In the present 3-joint arm, there are six PCs account-

ing for the three pairs of agonist-antagonist muscles (one pair per

joint).

DCN cells

The DCN cells integrate the excitatory activity coming from MFs

and the inhibitory activity coming from PCs (Figure 2C). By lin-

early approximating the influence of excitatory and inhibitory

synapses on DCN firing rate, the output of the DCN cell popu-

lation was described as follows:

DCNi(t) = WMF − DCNi
− Puri(t) · WPCi − DCNi

,

i ∈ 1, 2, . . . , Number of muscles (2)

where DCNi(t) represents the average firing rate of the DCN

cell associated with the ith muscle, WMF − DCNi
is the synap-

tic strength of the MF-DCN connection at the ith muscle, and

WPCi − DCNi
is the synaptic strength of the PC-DCN connec-

tions at the ith muscle. Thus, the DCN layer was implemented

as an adder/subtractor and the afferent activity coming from the

MFs and PCs was scaled by synaptic strengths (MF-DCN and

PC-DCN synapses, respectively). These synaptic weights were

progressively adapted during the learning process, following the

synaptic plasticity mechanisms explained below. It is impor-

tant to note the absence of an MF activity term. As previously

explained, we assume a constant input rate from MFs during

the learning process. Thus, the excitatory component of the

DCN firing rate is dependent only on the MF-DCN synaptic

weight.

SYNAPTIC PLASTICITY

The cerebellar model included plasticity mechanisms at three

different sites: the PF-PC, PC-DCN, and MF-DCN synapses.

As a whole, this set of learning rules led the cerebellum
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FIGURE 2 | Working hypothesis of cerebellar learning in a

manipulation task. In our model, the system is further simplified

by computing states without explicit spike representation. (A) During

each manipulation trial, the onset of the movement initiates a

non-recurrent sequence of firing states in the PFs (Yamazaki and

Tanaka, 2007) due to the incoming activity in MFs. Each state is

correlated with the error signal, representing the difference between

the desired and actual positions of the robotic joint, and reaches the

PCs through the CFs. This correlation is thought to occur through

plasticity at the PF-PC synapses (Marr, 1969). After repeated pairing

of PF states and CF error signals, an association is formed

between the two; a learned corrective torque occurs and precedes

the wrong movement. This association involves either reduction or

increase of PC firing rate at different times. Finally, the temporally

correlated signals from PCs are inverted (due to the inhibitory nature

of the PC-DCN connection) and rescaled before reaching the motor

neurons. The figure presents two alternative coding strategies: in our

model, there are no spikes and the states correspond directly to

the offset from movement onset indicated by the time bin. Formally,

this corresponds to passing from a sparse coding to a labeled-line

coding. (B) Binary representation of activity in a PF subset (1:

active synapses, 0: inactive synapses) and firing rates in the

corresponding PC and DCN neuron (in PCs the values are

normalized in the range 0–1). A low PC firing rate corresponds to a

high DCN firing rate. (C) Block diagram of the elements involved in

the model. A state generator (which is reinitialized with the onset

of a new trial) mimics the functionality of the cerebellar granular

layer. A state-error correlator emulates the PC function: PF-PC

long-term plasticity under supervision of CFs. Finally, an

adder/subtractor receives the inputs coming from the MFs (multiplied

by the MF-DCN synaptic weights) and subtracts the signal coming

from the PCs (multiplied by the PC-DCN synaptic weights).

toward a relatively fast adaptation using PF-PC plasticity and

a subsequent slow adaptation using MF-DCN and PC-DCN

plasticity. This allowed the PF-PC synaptic weights to be

kept within their optimum functional range through feed-

back coming from the actual movement. Importantly, the

inclusion of the proposed learning rules allowed the cerebel-

lar model to learn, independently, the timing (in the PF-PC

synapses) and gain (in the MF-DCN and PC-DCN synapses) of

the task.

PF-PC synaptic plasticity

This is the most widely investigated cerebellar plasticity mecha-

nism and different studies have supported the existence of mul-

tiple forms of LTD (Ito and Kano, 1982; Boyden et al., 2004;

Coesmans et al., 2004) and LTP (Hansel et al., 2001; Ito, 2001;

Boyden et al., 2004; Coesmans et al., 2004). PF-PC plasticity was

recently observed in alert animals (Márquez-Ruiz and Cheron,

2012). The main form of LTD is heterosynaptically driven by CF

activity, and is therefore related to the complex spikes generated

by CFs, while the main form of LTP is related to the simple spikes

generated by PFs. The present model implements PF-PC synaptic

plasticity as follows:

�WPFj − PCi
(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

LTPMax
(εi(t) + 1)α

− LTDMax · εi(t) if PFj is active at

t, i ∈ 1, 2, . . . ,

Num. of

muscles

0 otherwise

(3)

where �WPFj − PCi(t) is the weight change between the jth PF and

the target PC associated with the ith muscle, εi is the current

activity coming from the associated CF (which represents the nor-

malized error along the executed arm plant movement), LTPMax

and LTDMax are the maximum LTP/LTD values, and α is the LTP

decaying factor. It should be noted that in previous cases when a

synaptic weight had to be modified according to a teaching signal,

a linear function was used (Masuda and Amari, 2008). However,

this implied that while LTD was generated proportionally to the

incoming error signal through CFs, LTP was constantly generated
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when spikes reached the target PC. In this way, plasticity was not

able to fully remove the manipulation task error since LTD was

always counterbalanced by “unsupervised” LTP. In order to avoid

this problem, LTPMax and LTDMax were set to 0.01 and 0.02 and

α was set at 1000. This led to a marked decrease of LTP (evolving

with the change in ε) and prevented plasticity saturation (e.g., see

Figure 3).

In accordance with the assumption that the granular layer

operates as a state generator (Yamazaki and Tanaka, 2007), this

synaptic plasticity rule modified the strength only of the active

PFs. The synaptic weight variation was positive (LTP) when

CF activity approached 0 (low error levels in the movement).

Otherwise the weight variation was negative (LTD) and was

linearly proportional to CF activity.

FIGURE 3 | The learning rule for PF-PC plasticity. Comparison of four

different α values in Equation 3 (LTPMax and LTDMax were set at 0.01

and 0.02). Equation 3, which represents the synaptic weight change

as a function of normalized error reaching the cerebellum through the

CFs, shows better learning performances at high α values (black solid

line). With α = 1000, Equation 3 crosses the X -axis at a very low

value (curve 1: εi ≈ 4.7 · 10−3). When α is lowered, the curves cross

the X -axis at progressively higher εi values (curve 2: α = 100,

εi ≈ 137.7 · 10−3; curve 3: α = 1, εi ≈ 366 · 10−3; curve 4: α = 0,

εi ≈ 500 · 10−3). The inset shows that with α = 1000 there is a rapid

decrease of LTP toward zero, while the LTD evolves linearly with the

error.

MF-DCN synaptic plasticity

MF-DCN synaptic plasticity, which has been reported to depend

on the intensity of DCN cell excitation (Racine et al., 1986;

Medina and Mauk, 1999; Pugh and Raman, 2006; Zhang and

Linden, 2006), was implemented as:

�WMF − DCNi
(t) =

LTPMax

(Puri(t) + 1)α
− LTDMax · Puri(t),

i ∈ 1, . . . , Number of muscles (4)

where �WMF−DCNi
(t) represents the weight change between the

active MF and the target DCN associated with the ith muscle,

Pur(t) is the current activity coming from the associated PCs,

LTPMax, and LTDMax are the maximum LTP/LTD values, and α

is the LTP decaying factor. In order to maintain the stability of

the learning process, the LTPMax and LTDMax values had to be

lower than those defined at the PF-PC synapse and were set at

10−3 and 10−4, respectively. As in Equation 3, α was set at 1000,

thus allowing a fast decrease of LTP and preventing early plasticity

saturation (e.g., see Figure 3).

The MF-DCN learning rule, although formally similar to the

PF-PC learning rule, bore two relevant differences. The first is

due to the reduced ability of MFs, compared with PFs, to gen-

erate sequences of non-recurrent states (Yamazaki and Tanaka,

2007, 2009; Yamazaki and Nagao, 2012). The learning rule in

Equation 4 would lead synaptic weights to their local maximum

values (one activity value per different state) allowing plasticity

to store temporally correlated information. In order to simplify

the interpretation of the results, we used a single MF activity

state, which was then associated by plasticity mechanisms with

different gain values at MF-DCN synapses. The second difference

concerns the connection driving LTD and LTP. While PF-PC plas-

ticity was driven by CF activity, MF-DCN plasticity was driven

by PC activity. This mechanism can optimize the activity range

in the whole inhibitory pathway comprising MF-PF-PC-DCN

connections: high PC activity causes MF-DCN LTD, while low

PC activity causes MF-DCN LTP. This mechanism implements

an effective cerebellar gain controller, which adapts its output

activity to minimize the amount of inhibition generated in the

MF-PF-PC-DCN inhibitory loop.

PC-DCN synaptic plasticity

PC-DCN synaptic plasticity was reported to depend on the inten-

sity of DCN cell and PC excitation (Morishita and Sastry, 1996;

Aizenman et al., 1998; Ouardouz and Sastry, 2000; Masuda and

Amari, 2008) and was implemented as:

�WPCi − DCNi
(t) =

LTPMax · Puri(t)α

(DCNi(t) + 1)α
− LTDMax · (1 − Puri(t)),

i ∈ 1, . . . , Number of muscles (5)

where �WPCi−DCNi
(t) is the synaptic weight adjustment at the

PC-DCN connection reaching the DCN cell associated with the

ith muscle. LTPMax and LTDMax are the maximum LTP/LTD val-

ues that this learning rule can apply at any time (as with the

MF-DCN learning rule, these values were set at 10−3 and 10−4
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respectively), Puri(t) is the current activity coming from the asso-

ciated PC (in the range [0,1]), DCNi(t) is the current DCN output

of the target DCN cell, and α represents the decaying factor of the

LTP (again, it was set at 1000 as in MF-DCN and PF-PC learning

rules). This learning rule led the PC-DCN synapses into a synap-

tic weight range appropriate to match the synaptic weight range

at PFs. Equation 5 caused LTP only when both the PCs and their

target DCN cell were simultaneously active.

CONTROL LOOP AND INPUT-OUTPUT ORGANIZATION

The brain can plan and learn the optimal trajectory of a move-

ment in intrinsic coordinates (Houk et al., 1996; Nakano et al.,

1999; Todorov, 2004; Hwang and Shadmehr, 2005). This oper-

ation consists of three major tasks: computation of the desired

trajectory in external coordinates, translation of the task space

into body coordinates, and generation of the motor command

(Uno et al., 1989). In order to deal with dynamic variations, the

system needs to incorporate a feedback error learning scheme

(Kawato et al., 1987) in conjunction with a crude inverse dynamic

model of the arm plant.

It was recently reported that multiple closed loops character-

ize the input-output organization of cerebro-cerebellar networks

(Bostan et al., 2013). It has been proposed that the associa-

tion cortices provide the motor cortex with the desired tra-

jectory in body coordinates (Figure 4A). In the motor cortex,

the motor command is calculated using an inverse dynamic

arm model (for a review see Siciliano and Khatib, 2008). The

spinocerebellum-magnocellular red nucleus system provides an

accurate model of musculoskeletal dynamics, which are learned

with practice by sensing motor command consequences in terms

of executed movements (proprioception). The cerebrocerebellum-

parvocellular red nucleus system, which projects back to the motor

cortex, provides a crude inverse-dynamic model of the muscu-

loskeletal system, which is acquired while monitoring the desired

trajectory (Kawato et al., 1987). The crude inverse-dynamic

model works together with the dynamic model, thus updating

motor commands according to predictable errors occurring when

executing a movement. In our control system, only the dynamic

model involving cerebellar feedback to actual movement was

implemented.

On the basis of these theories, we implemented a control loop

using a forward architecture (see Figure 4A), in which only infor-

mation about sensorial consequences of non-accurate commands

was available (i.e., the difference between actual and desired arm

plant joint positions). The natural error signal for learning was

obtained as the difference between the actual movement and

the motor command. This implies that if M muscles control a

motor system endowed with N sensors, the N sensory errors must

be converted into M motor errors (MxN complexity). How to

use this sensory information to drive motor learning is the so-

called distal error problem or motor error problem (Porrill et al.,

2004; Haith and Vijayakumar, 2007). In order to circumvent this

problem, the present cerebellar model used the adaptation mech-

anisms described above, which correlated the actual and desired

states toward the generation of an accurate corrective motor

command.

The system controller comprised different modules in accor-

dance with studies indicating that the brain first plans the opti-

mal trajectory in task-space coordinates, translates these into

intrinsic-body coordinates, and finally generates the appropri-

ate motor commands to achieve these transitions (Houk et al.,

1996; Nakano et al., 1999; Todorov, 2004; Hwang and Shadmehr,

2005; Izawa et al., 2012). The system controller was composed of

some pre-defined non-adaptive modules and a cerebellar model

FIGURE 4 | Control scheme and robotic arm. (A) Essential control loop

used for simulated manipulation tasks. The association cortex generates the

desired trajectory (in terms of position, velocity, and acceleration) in body

coordinates and the corresponding command signal is transmitted to both

the motor cortex and to the cerebellum through the MFs. In the motor cortex

command torques are calculated using an inverse dynamic arm model. The

cerebellum generates corrective torques compensating for deviations from

target trajectory (error) caused by the dynamic interaction of the arm with the

object during manipulation. The signals from the motor cortex and cerebellum

are added together in the red nucleus and then the output is delivered to the

robot arm. The cerebellar corrective torques can be adapted in order to

minimize the motor error. This requires a teaching signal generated by the IO.

In the IO, the actual state is compared with the desired state in order to

obtain the teaching error-dependent signal which reaches the cerebellum

through the CFs. (B) The LWR arm. The three joints used in our experiments

are indicated (red arrows); all the other joints were fixed (made rigid).
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adapting over the learning trials (Figure 4A). The pre-defined

modules, which maintained fixed parameters throughout the tri-

als, independently of the load under manipulation, were the

following:

• Association cortex. This module operated as a trajectory planner

delivering desired positions and velocities of the target trajec-

tory and it included an inverse kinematic model translating this

trajectory from Cartesian into arm-joint coordinates.

• Motor cortex. This module, based on a recursive Newton-Euler

algorithm (RNEA), generated crude step-by-step motor com-

mands implementing the desired trajectory through an inverse

dynamic model. The corresponding torque values could drive

the robot arm along the desired trajectory in the absence of any

external load, but failed to do so when loads were added during

manipulation.

• Red nucleus. This module added the motor commands pro-

vided by motor cortex module to the corrective torques coming

from the adaptive cerebellar module.

The cerebellar model is the only adaptive module in the sys-

tem controller. This module learnt to correct the inverse dynamic

model, pre-calculated for the desired trajectory in the absence of

external load, in order to manipulate the actual load. The inclu-

sion of three different learning rules allowed the cerebellar model

to store the temporal properties of corrective torques in the PF-

PC synapses and the gain of corrective torques in the MF-DCN

and PC-DCN synapses.

The system integrated a lightweight robot (LWR) simula-

tor within a feedforward control loop (Albu-Schäffer et al.,

2011). The physical characteristics of the simulated robot plant

were dynamically modified to match different contexts (e.g.,

the payload to be handled, which translated into a variation

of the arm+object dynamics model). The LWR is a 7-degrees

of freedom (7-DOF) arm composed of revolute joints. In our

experiments, for simplicity, we only used the first, second and

fifth joints, while the other joints were kept fixed (Figure 4B).

The robot’s dynamics were taken into account as indicated in

appendix B.

MANIPULATION TASK AND EXPERIMENTAL PROTOCOL: TRAINING

TRAJECTORY

Several reports in the literature have provided evidence of the role

played by the cerebellum in complex manipulation-like tasks: (i)

animal studies have shown that rapid target-reaching movements

(Kitazawa et al., 1998) and circular manual tracking (Roitman

et al., 2009) induced error encoding by PCs, (ii) imaging tech-

niques have shown increased cerebellar activation in response to

errors occurring during the execution of various tasks including

tracking (Imamizu et al., 2000; Diedrichsen et al., 2005), and (iii)

more specifically, prediction error has been shown to drive motor

learning in saccades (Wallman and Fuchs, 1998) and reaching

(Tseng et al., 2007). Thus, PCs are able to produce corrective sig-

nals in response to error signals (assumed to reach PCs through

the CFs). The proposed model offers an explanation, based on

evidence from complex learning tasks but also on theories pro-

posed in relation to EBCC and VOR experiments, of how gain

control (required for VOR and manipulation tasks) and timing

control (also required for EBCC tasks) might occur in a plausible

cerebellar model.

The model was tested in a smooth pursuit task (Luque et al.,

2011a,b,c), in which the LWR targeted a repeated trajectory using

its three revolute joints (Figure 4B). The benchmark 8-shape

trajectory (Figure 5A) was composed of vertical and horizontal

sinusoidal components, whose equations in angular coordinates

are given for each joint by:

q1(t) = A1 · sin(πt) + C1 (6)

q2(t) = A2 · sin(πt) + C2 (7)

q3(t) = A3 · sin(πt) + C3 (8)

where Ai and Ci are the amplitude and phase of the trajectories

followed by each robot joint. The movement for the whole tra-

jectory took just one second with masses requiring considerable

corrective torques. This task was chosen to be sufficiently chal-

lenging to allow proper assessment of the learning capability of

the cerebellar model. The corrective action driven by the cere-

bellum is especially relevant with respect to inertial components,

Coriolis force and friction generated by movement (Schweighofer

et al., 1998a). Changing the payload made it possible to assess

the dynamics model abstraction capability of the cerebellum. As

an example, Figure 5B shows the corrective torque values that

the cerebellum should infer when manipulating a 10-kg payload.

This corrective torque is calculated for each mass by means of the

RNEA, which is able to solve the inverse dynamics problem.

In order to quantitatively evaluate movement performance,

the mean absolute error (MAE) of each robot joint was calcu-

lated. This performance estimator was monitored in each trial and

allowed evaluation of movement accuracy and of its improvement

during the learning process.

RESULTS

As a first step in simulating the 8-shape task, the corrective

torques needed for smooth manipulation of different masses (0.5,

1.5, 2.5, 6, and 10 kg) were calculated (Figure 5B). The maxi-

mum and minimum torque values for each joint and mass (see

Table A1 in Appendix A) were used to estimate the ideal weight

values at DCN afferents. It was assumed that, as a consequence

of learning, the maximum torque values corresponded to the

MF-DCN synaptic weights, while the difference between the max-

imum and minimum torque values corresponded to PC-DCN

synaptic weights. It should be noted that the PC-DCN synapse, by

forming the only inhibitory pathway to the cerebellar nuclei, pro-

vides the only mechanism capable of reducing the output torques

in the model.

NETWORK ACTIVITY AND MOTOR PERFORMANCE WITH FIXED

WEIGHTS AT DCN SYNAPSES

In order to evaluate the impact, on the cerebellar circuit, of

weights at synapses afferent to DCN, the PC firing rate was mon-

itored after setting the MF-DCN and PC-DCN weights at their

ideal values pre-calculated to handle different masses. The PF-

PC weights were then allowed to change along a learning process
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FIGURE 5 | Calculation of the target trajectory. Three-joint periodic

trajectory defining an 8-shape movement [redrawn with permission from

Luque et al. (2011c)] (A) Angular coordinates of each joint of the LWR (left),

and 3D view of the robot end-effector trajectory in Cartesian coordinates

(right). This 8-shape trajectory demands a movement difficult enough to allow

robot arm dynamics to be revealed in fast movements (Hoffmann et al.,

2007). (B) Ideal corrective signals that the cerebellar model had to infer for

each of the three joints in order to correct the produced error when

manipulating a 10-kg payload. According to the proposed hypothesis, the

MF-DCN synaptic weights (WMF − DCN) had to adapt to the gain of the

maximum torque value at every joint, while the PC-DCN weight (WPC − DCN)

had to set the maximum inhibition (or torque value subtraction) needed.

composed of 1-s trial trajectories repeated 150 times. Figure 6A

shows the normalized firing rate of one PC during a 1-s trial.

The PC firing range changed clearly depending on the payload. It

should be noted that in this configuration learning occurred only

at the PF-PC synapse. As explained in the Methods, the change in

PF-PC synaptic weights corresponds linearly to the change in PC

firing rate.

Using the pre-calculated synaptic weight setting for a 1.5-kg

payload allowed the PCs to operate over the whole range of fir-

ing rates producing, as a consequence, a fine adjustment of the

DCN firing rate. This allowed the circuit to approach the ideal

theoretical values of PC and DCN activity (Figure 6B) thus opti-

mizing the learning corrective action in terms of stability and

accuracy (Figure 6C). However, when DCN afferents were set

at values pre-calculated for the manipulation of a heavier mass

(10 kg), the PC activity was limited to a small frequency range in

order to counteract the gain overscaling at DCN afferent synapses.

Likewise, when DCN afferents were set at values pre-calculated

for the manipulation of a lighter mass (0.5 kg), the learning pro-

cess constrained PC activity to saturate to its minimum (no

inhibition at DCN cells) along the trial (Figure 6A). These effects

reduced the cerebellar output precision (Figure 6B) and made the

corrective action unstable, decreasing the learning performance

(Figure 6C). These experiments showed that synaptic weights at

MF-DCN and PC-DCN connections were crucial to allow the

cerebellar model to generate accurate and stable corrective motor

outputs when manipulating different masses.

NETWORK ACTIVITY AND MOTOR PERFORMANCE WITH ADAPTABLE

WEIGHTS AT DCN SYNAPSES

In order to investigate the effectiveness of learning rules regulating

DCN synaptic weights, a simulation involving manipulation of a

10-kg payload was performed (Figure 7). The synaptic weights

of MF-DCN and PC-DCN connections were allowed to self-

adjust along a learning process composed of 1-s-trial trajectories

repeated 1500 times.

Remarkably, the MF-DCN and PC-DCN synaptic weights

tended to stabilize more slowly than those of the PF-PC synapse

(Figure 7A) for two main reasons. First, the LTDMax and LTPMax

parameters were higher in the PF-PC (10−2 and 2 · 10−2 in

Equation 3) than in MF-DCN and PC-DCN plasticity mecha-

nisms (10−3 and 10−4 in Equations 4, 5). These LTDMax and

LTPMax values were needed in order to stabilize the learning

rules. Second, learning at the MF-DCN and PC-DCN synapses

depended on PC normalized activity. Thus, the MF-DCN and

PC-DCN synaptic weights changed only when some PF-PC
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FIGURE 6 | Performance and learning with different weight

configurations. Plasticity occurred only at PF-PC synapses, and was disabled

at the MF-DCN and PC-DCN synapses. The synaptic weights were set at

values appropriate for the manipulation of 0.5-kg (blue lines), 1.5-kg (red

lines), and 10-kg (green lines) masses. In all three cases, 1.5-kg masses were

actually manipulated. (A) Normalized activity of the PCs associated with the

2nd joint after 149 learning trials. For clarity, only the behavior of the second

joint is shown, but similar results were found along the learning process also

in joints 1 and 3. Note that by using the proper weight configuration (red line),

PC activity effectively ranged from 0 to 1. It should be noted that the time

course of the PC firing rate corresponds to the synaptic weights at the PF-PC

synapses (see Methods for explanation). (B) Corrective torque values

provided by the DCN associated with the 2nd joint after 149 learning trials.

(C) Evolution of the MAE during the learning process (left). The box highlights

the different stability of motor control during the last 50 trials. The histogram

(right) shows the average MAE calculated over the last 50 trials for different

payloads, revealing that smallest MAE values and variability occurred with the

proper setting.

weights tended to saturate (toward 0 and 1, respectively; see

above) (Figure 7A). Indeed, the evolution of weights was signifi-

cantly slower at the PC-DCN than at the MF-DCN synapses. As

exemplified for the agonist of joint 2, the MF-DCN weights sta-

bilized in about 800 trials while the PC-DCN weights stabilized

in more than 10,000 trials (for a comprehensive list of evolution

of weights at the MF-DCN and PC-DCN synapses with differ-

ent masses, see Table A2 in Appendix A). This slow evolution was

caused by the dependence of PC-DCN learning on DCN activity,

which in turn depended on MF-DCN and PC-DCN adaptation

(detailed information about the PC-DCN synaptic weights after

the learning process is shown in Table A3 in Appendix A). In par-

allel to the evolution of MF-DCN and PC-DCN synaptic weights,

PF-PC weights evolved to stable values that were reached after 800

trials (Figure 7A).

After the DCN synaptic weight adaptation process, the cere-

bellum was able to provide corrective torques pretty similar to

those theoretically calculated to solve the manipulation problem

(Figure 7B; cf. Figure 5C). These torque values rapidly brought

the MAE of the movement toward 0 (Figure 7C). When the

synaptic weights were stabilized, the PC and DCN exploited their

whole firing frequency range (Figure 7D). Thus, MF-DCN and

PC-DCN plasticity allowed the system to efficiently self-rescale

for optimal performance. Movies of learning simulations dur-

ing manipulation of a 10-kg load are shown in the Supplemental

Material.

DCN SYNAPTIC PLASTICITY IMPROVES PREDICTIVE MASS

MANIPULATION

To further evaluate the effectiveness of the DCN learning rules, we

considered how the difference between the predicted and actual

manipulated mass influenced the accuracy of movement. To this

end, learning trials with different payloads (0.5, 1.5, 2.5, 6, or

10 kg) were performed testing four different cerebellar model

configurations. This made it possible to test the impact of adap-

tation occurring at multiple synaptic sites: (i) plasticity only at

PF-PC synapses, (ii) plasticity at PF-PC and MF-DCN synapses,

(iii) plasticity at PF-PC and PC-DCN synapses, and (iv) plasticity

at PF-PC, MF-DCN, and PC-DCN synapses.

The synaptic weights that were not allowed to change were set

at their theoretical values pre-calculated for the accurate manipu-

lation of 10-kg masses. In this way both MFs and PCs were able to

provide enough excitation and inhibition, respectively, in order

to avoid saturation at DCN. These experiments allowed us to

evaluate the complementary and cooperative role of the different

plasticities.

For each combination of plasticities and masses, the learn-

ing process was simulated during 1500 trials, and the MAE at

each joint was calculated at the end of the adaptation pro-

cess. Figure 8A shows the average MAE during the last 100

trials. Plasticity at either MF-DCN or PC-DCN synapses reduced

the average MAE, especially during the manipulation of lighter

masses. Remarkably, enabling adaptation at just one of the two
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FIGURE 7 | Weight evolution in the cerebellar model with multiple

plasticity mechanisms. Simulations were carried out using all the plasticity

mechanisms (PF-PC, MF-DCN, and PC-DCN) for manipulation of a 10-kg

external payload during 1500 trials. Initial synaptic weights allowed accurate

movement of the arm without manipulation of any object (0-kg external

payload). (A) Evolution of synaptic weights at MF-DCN (top), PC-DCN (middle)

and PF-PC (bottom) connections related to joint 2 agonist muscle. In PF-PC

synapses, four different PFs that become active 100 ms (purple), 350 ms

(brown), 600 ms (cyan), and 800 ms (pink) after movement initiation are

shown. (B) Corrective torques along a 1-s movement, provided by the

cerebellar model at the 1500th trial in the learning process. Note the

similarity of these values with the ideal ones calculated in Figure 5C. (C)

Evolution of the average MAE of the three joints during the learning process.

(D) Normalized PC firing rate (top) and DCN firing rate (bottom) during trials

taken at different stages of the learning process: trial 1 (red), trial 100

(yellow), trial 300 (gray), and trial 1000 (green).

DCN afferent synapses was enough to improve manipulation

precision. In line with this, plasticity at both MF-DCN and PC-

DCN synapses simultaneously further increased the precision of

manipulation. In order to obtain an objective evaluation of task

performance independently of the manipulated mass, the “MAE

reduction index” (MAERI) was defined:

MAERI = 1 −
MAEC+

MAEC−

(9)

where MAEC+ is the MAE of the manipulation task when using

the cerebellar model corrective action and MAEC− is the MAE in

the absence of cerebellar adaptation (1 is the perfect error correc-

tion by the cerebellar action and 0 represents lack of correction).

Using MAERI it is possible to compare the adjustment capacity of

the cerebellar model independently of the payload.

The effect of the different cerebellar models during the manip-

ulation of different masses is shown in Figure 8B. In all the

cerebellar models, the trajectory error decreased when manipu-

lating heavier masses. However, only the models incorporating

both MF-DCN and PC-DCN plasticity were able to improve

lighter mass manipulation. These results could be explained by

evaluating the variability of MAE (Figure 8C). On incorporat-

ing plasticity at all the synapses (PF-PC, MF-DCN, PC-DCN),

the variability of MAE after learning was markedly reduced, thus

enhancing the stability of movements.

Thus, the model, by adjusting the MF-DCN and PC-DCN

synaptic weights, thereby causing the indirect adjustment of PC

activity to its widest possible firing range, improved the smooth-

ness of the robot arm trajectory during the manipulation of

objects with different masses. This made it possible to produce

an accurate and stable learning process irrespective of the manip-

ulated payload, thus providing the cerebellar system with the

capability to self-adapt in order to manipulate different objects.

IMPLICIT REPRESENTATION OF A DOUBLE LEARNING TIME SCALE

In order to verify whether the model supported the emer-

gence of cerebellar learning consolidation, as indicated in recent

behavioral and computational studies (Medina and Mauk, 1999;

Ohyama et al., 2006; Xu-Wilson et al., 2009), the evolution of

weight changes at DCN synapses was analyzed. During a 10-kg

manipulation task (Figure 9A) the learning process was remark-

ably faster when DCN synaptic weights were pre-calculated. In

this case, only the PF-PC synaptic weights, which stored the
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FIGURE 8 | Performance with different masses. In synaptic

connections with fixed weights, the values correspond to the 10-kg

set up to avoid saturation during manipulation of heavier masses. The

last 100 of 1500 trials during learning processes were used for MAE

estimation with different combinations of active learning rules at

different masses. (A) MAE (B) MAERI (1 is perfect error correction by

the cerebellar action and 0 is no correction), (C) MAE standard

deviation (SD).

temporally correlated information, underwent adaptation, and

learning was completed in around 50 trials. Otherwise, when

weight changes at DCN synapses were enabled, learning required

200 trials (PC-DCN), 400 trials (MF-DCN), or 450 trials (PC-

DCN and MF-DCN). In parallel, the MAE was remarkably

reduced (Figure 9B).

Inspection of learning curves clearly showed that the learning

process consisted of three different stages (Figure 9):

(i) The cerebellar model tried first to correct the initial error

by using only PF-PC plasticity. This process took about 50

trials. When the MF-DCN or PC-DCN synaptic weights

were not properly preconfigured, the PC activity saturated

(Figure 9C).

(ii) When PC activity did not completely remove the error, the

MF-DCN synaptic weights were slowly adjusted after the PF-

PC synaptic weights became saturated. This process started

after 50 trials and took about 480 trials to complete. After

stabilization of MF-DCN synaptic weights, the error was

highly reduced; nonetheless, object manipulation remained

imprecise.

(iii) After about 300 trials, where the PC activity reached its max-

imum and in parallel with the MF-DCN weight evolution,

the PC-DCN weights started increasing until the 1000th

trial. Between 300 and 1000 trials the PC activity profile

maintained a smooth shape and its trajectory remained close

to the desired one.

Therefore, the model supported the existence of two different

learning time scales consisting of: (i) a fast learning process, in

which temporal information was inferred and stored at PF-PC

synapses, and (ii) a slow learning process, in which the cerebellar

excitatory and inhibitory gain values were adapted in the DCN

and the manipulation precision increased. This second process

was necessary only when the tool had never been manipulated

before. During this process the MF-DCN and PC-DCN weights

were simultaneously adapted at the same time as the PF-PC

weights.

The fast and slow learning curves were fit to exponential decay-

ing functions with time constants of 1–20 trials and 40–120

trials, depending on the object under manipulation (Figure 9D).

The slow learning process could be further split into two com-

ponents related to the MF-DCN and PF-PC connection with

time-constants of 55–120 trials and 50–80 trials, respectively.

DISCUSSION

In this work, a theoretical model of the cerebellum is presented

in the framework of a manipulation task, in which objects with

different masses are moved along a desired trajectory. The main

observation is that plastic mechanisms at DCN synapses effec-

tively complement the learning capabilities of PF-PC synapses

and contribute to the acquisition of the dynamics model of the

arm/object plant. A proper synaptic weight adjustment at DCN

synapses acts as a gain adaptation mechanism allowing the PFs

to work within their most effective operative range, thus mak-

ing the plasticity mechanisms between PFs and PCs more pre-

cise. This model, by incorporating distributed synaptic plasticity

and by generating closed-loop simulations, allowed progressive

error reduction based on feedback from the actual movement

and accounted for three main theoretical aspects of cerebellar

functioning.

First, the results support the principle that the cerebellum

operates as a corrective inverse dynamic model (Schweighofer

et al., 1996a,b, 1998b; Spoelstra et al., 2000). In the present model,

the cerebellar granular layer was effectively implemented as a non-

recurrent state generator (Yamazaki and Tanaka, 2007), in which

the states correspond to the offset from stimulus onset imple-

menting a labeled-line coding scheme. The granular layer states

are then correlated with the error-based teaching signal received

through the CFs. Thus, the model can be considered a particular

case of an adaptive filter (Dean et al., 2009), in which the base

functions in the granular layer are Dirac-deltas (impulse func-

tions) with different delays for each granular cell or, in other

words, a set of granular cells responding to different input stim-

uli along an arm trajectory trial (cf. D’Angelo and De Zeeuw,

2009).
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FIGURE 9 | Double time-scale learning. (A) Evolution of MF-DCN synaptic

weight (top), and PC-DCN synaptic weight (bottom) during the learning

process when a 10-kg payload is being manipulated. (B) Evolution of MAE in

the same trials as in A. (C) PC firing rate (top) and actual position error

(bottom) in joint 2 at three different times: after 45 trials (gray line), 480 trials

(yellow line), and 1000 trials (green line). (D) Time constants of the fitted

exponential functions of the MAE with different learning rule settings and

masses. The MAE evolution during the learning process has been fitted to

exponential decaying functions. The time constants are shown when

enabling the use of plasticity only at the PF-PC synapses (blue line), at the

PF-PC and MF-DCN synapses (red line), at the PF-PC and PC-DCN synapses

(purple line), and at the PF-PC, MF-DCN, and PC-DCN synapses (green line).

Secondly, in the model, PF-PC plasticity temporally corre-

lates the input state (or its representation in PFs) and the error

estimation obtained during execution of the manipulation task.

Instead, MF-DCN and PC-DCN plasticities store the excitatory

and inhibitory gain of the neural network required to gener-

ate accurate correction of movement. Thus, the DCN afferent

synapses infer the main properties of the object under manipula-

tion, while the PF-PC synapses store the temporal characteristics

of the task. As a consequence of this, plasticity at DCN synapses

provides a homeostatic mechanism capable of keeping PC activity

at its optimal range during learning. This effect can be observed

in closed-loop simulations allowing progressive error reduction

based on feedback from the actual movement.

Thirdly, the model supports the existence of a learning consoli-

dation process, which has been demonstrated in behavioral exper-

iments in human saccades (Brashers-Krug et al., 1996; Shadmehr

and Brashers-Krug, 1997; Shadmehr and Holcomb, 1997; Xu-

Wilson et al., 2009). While the cerebellar cortex plays a fundamen-

tal role at initial learning stages, the consolidation process seems

to occur elsewhere. Our model provides a possible explanation

of the learning consolidation process, locating it in the cerebellar

nuclei. In our model, PF-PC plasticity evolves rapidly, while DCN

plasticity evolves more slowly, because it depends on the previ-

ous evolution of plasticity at the PF-PC synapse itself. Therefore,

our model naturally implements a double time-constant plasticity

mechanism.

THE IMPACT OF PLASTICITY AT DCN SYNAPSES ON ADAPTABLE

GAIN CONTROL

Several experimental studies have reported LTD and LTP in DCN

neurons (Morishita and Sastry, 1996; Aizenman et al., 1998;

Ouardouz and Sastry, 2000; Bagnall and du Lac, 2006; Pugh and

Raman, 2006) and a few hypotheses have been advanced about the

role they play in the whole network. In previous studies, (Medina

and Mauk, 1999, 2000) it was suggested that MF-DCN plasticity

provides a mechanism for consolidating time-correlated informa-

tion in the cerebellum and proposed that PC activity could drive

the DCN learning process. Our model extends this hypothesis to

the process of gain consolidation. Moreover, our model includes

the possibility, by using a PC-driven learning rule, of storing gain

information at PC-DCN connections. A model proposed for the

VOR suggested that combined plasticity at the MF-DCN and

PC-DCN synapses plays an important role in learning consoli-

dation (Masuda and Amari, 2008). Our model further suggests
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that simultaneous MF-DCN and PC-DCN plasticity enhances

movement precision in a manipulation task using a simulated

robotic arm.

On the mechanistic level, our experimental approach allows

different roles to be attributed to the different plasticity sites: PF-

PC plasticity could act as a time correlator between the actual

input state and the system error, while MF-DCN and PC-DCN

plasticity together generated the gain controller. It is also possi-

ble that MF-DCN plasticity operates, at least in part, as a state

correlator, as suggested previously (Masuda and Amari, 2008).

Therefore, for improved performance, different aspects of com-

putation have to be distributed over multiple adaptable network

nodes.

BIOLOGICAL REALISM AND MODEL LIMITS

Before considering the further implications of this cerebellar

model, its plausibility needs to be examined, analyzing the system

design, learning rules, and coding strategies.

(1) In this model we implemented the PC as a table correlating

granular layer states with output torques evolving through

the learning process. This, in conjunction with the PF-PC

learning rule, allows the PC to behave as a state-error cor-

relator. However, PC recordings in awake animals (Lisberger

and Fuchs, 1978; Van Kan et al., 1993; Escudero et al., 1996;

Cheron et al., 1997; Medina and Lisberger, 2009) suggest

that PCs are more complex than state-error correlators. In

the present model, given the high level of abstraction, it is

impossible to evaluate PC features in terms of spike patterns.

Inferences about signal coding in PCs would probably require

the incorporation of realistic cerebellar network models into

the system controller.

(2) Since the learning rules used here at the MF-DCN and PC-

DCN synapses depend only on PC and DCN activity, our

model of gain control is compatible with different approaches

to the distal error problem. Following the detailed descrip-

tions provided on potential error detection mechanisms in

the IO (Ito, 2013), the IO was assumed to receive both

desired state information (encoding desired joint positions

and velocities) conveyed by the motor cortex (Saint-Cyr,

1983) and actual state information (encoding actual joint

positions and velocities) conveyed by the afferent sensory

pathways, e.g., by the external cuneate nucleus concerning

tactile and proprioceptive signals (Berkley and Hand, 1978;

Molinari et al., 1996). This choice was supported by a com-

putational model of the IO, which showed that the IO can

indeed compare incoming signals (De Gruijl et al., 2012). It

should be noted that alternative solutions to the distal error

problem can be envisaged (Jordan and Rumelhart, 1992;

Kawato, 1999), provided that PC activity saturates when the

MF-DCN and PC-DCN weights are not properly tuned.

(3) We used cerebellar feedback to correct the actual movement

and we assumed that the teaching signal comes only through

the CFs. However, there are indications that cerebellar feed-

back is also reverberated to the motor cortex (Kawato et al.,

1987; Siciliano and Khatib, 2008), and some investigations

suggest that the teaching signal is also received and corre-

lated at the granular layer level (Krichmar et al., 1997; Kistler

and Leo van Hemmen, 1999; Anastasio, 2001; Rothganger

and Anastasio, 2009). The introduction of these elements is

expected to increase the level of flexibility in motor control

and learning.

(4) We did not include the basal ganglia in our system controller.

Recent evidence has suggested the existence of di-synaptic

pathways connecting the cerebellum with the basal ganglia

(Bostan et al., 2013). Both cerebellum (Swain et al., 2011)

and basal ganglia (Bellebaum et al., 2008) have been sug-

gested to contribute to reward-related learning tasks, but

how these subsystems interact and reciprocally improve their

operations remains an open issue.

(5) We assumed that PF-PC plasticity tends to saturate toward

LTP and that salient codes are stored when the CFs drive

plasticity toward LTD at specific synapses. This mechanism

could correspond to classical postsynaptic LTD (Márquez-

Ruiz and Cheron, 2012) coupled with presynaptic LTP (Gao

et al., 2012). The effectiveness of this core plasticity mecha-

nism could be extended through multiple forms of LTP and

LTD occurring at the PF-PC synapses and could be integrated

with the inhibitory role played by MLIs (Wulff et al., 2009).

MF-DCN and PC-DCN plasticity is implemented accord-

ing to principles set out elsewhere (Medina and Mauk, 2000;

Masuda and Amari, 2008). In our model, MF-DCN LTD

followed increased PC activity. The full mechanism would

comprise a secondary DCN spike increase through a rebound

mechanism (Pugh and Raman, 2006), but this was irrele-

vant at our spike-less modeling level. Similarly, other details

about the mechanisms of plasticity have not been applied.

It remains to be established whether a biologically precise

representation of plasticity mechanisms (e.g., Solinas et al.,

2010) might modify the core conclusion of this model.

(6) LTP and LTD between MFs and GCs have been shown to

occur in slice experiments (D’Angelo et al., 1999; Armano

et al., 2000; Maffei et al., 2002; Rossi et al., 2002; Sola et al.,

2004; Gall et al., 2005; Mapelli and D’Angelo, 2007) and in

vivo (Roggeri et al., 2008). However, the inclusion of granu-

lar layer LTP and LTD (Hansel et al., 2001) in a biologically

realistic scenario would require (i) definition of the learning

rules and teaching signals through the MFs (e.g., see D’Errico

et al., 2009), (ii) definition of the spatiotemporal organiza-

tion of the granular layer activity (D’Angelo, 2011; D’Angelo

and Casali, 2012; D’Angelo et al., 2013; Garrido et al., 2013),

and (iii) introduction of an explicit representation of spike

timing (Nieus et al., 2006; D’Angelo and De Zeeuw, 2009).

It has been suggested that MF-GC LTP and LTD, in conjunc-

tion with GC intrinsic plasticity and regulation of GoC–GC

synaptic weights, could improve the learning capabilities

of the system in target-reaching tasks (Schweighofer et al.,

2001). In general, this hypothesis on the granular layer is

compatible with the present model. Indeed, the labeled-line

coding scheme that our model implements in the granular

layer (Figure 2) can be seen as a particular case of sparse

coding (although it is not very efficient in terms of the num-

ber of cells required to represent multiple states). Recent
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discoveries have revealed that sparse coding in the granular

layer is related to the amount of GCs available for a particu-

lar task (Galliano et al., 2013). Our model, in fact, represents

an extreme case of this hypothesis in which the population

of GCs is so extensive that each PF encoded a unique non-

recurrent condition. Moreover, it has been shown that the

same GC can receive convergent inputs from proprioceptive

sensory pathways coming from the external cuneate nucleus

and efferent motor copies coming from the cerebral cortex

via the pontine nucleus (Huang et al., 2013). In previous

studies we already predicted that multi-modal information in

the GCs could improve state representation capabilities (and,

as a consequence, manipulation performance) in a non-

adaptive model of the granular layer (Luque et al., 2011a).

The development of a cerebellar model accounting for all

these discoveries in the granular layer would require the use

of realistic models implementing synaptic plasticity mecha-

nisms and managing spike information (Solinas et al., 2010;

Luque et al., 2011b,c). The integration of the present model

into a spike-timing computational scheme including MF-GC

plasticity rule remains a future challenge.

THEORETICAL IMPLICATIONS

This model has been conceived in order to be simple enough to

become mathematically tractable while, at the same time, includ-

ing salient properties of the system so as to retain its links with

biology. In this sense it lies halfway between a classical black-box

model and a realistic biological model. A non-trivial consequence

of the way the model is constructed is that of providing a theo-

retical explanation for DCN plasticity, which increases cerebellar

adaptable solutions. Moreover, this model could be compared

to prototypical cases elaborated for dynamic neural networks

(Spitzer, 2000; Hoellinger et al., 2013). In these networks, learn-

ing of complex tasks is better accomplished when the number of

hidden neurons increases, as they form complex categories that

are needed to interpret the multi-parametric input space. In the

cerebellar network, the hidden units could intervene at different

levels, including that of GCs lying between extracerebellar neu-

rons and PCs, PCs lying between GCs and DCN, and also GoCs

or MLIs in their respective subcircuits. In fact, extrapolation from

theoretical works is limited by several biological constraints. For

example, category formation is probably much more efficient in

PCs than in GCs given the 105 higher number of inputs in the

PCs than in GCs, however there are many more GCs than PCs,

and this results in a delicate balance between these cell types (the

issue dates back to the seminal work of Marr, 1969). Conversely,

GoCs and MLIs could implement exclusive-or (XOR) hidden lay-

ers, as suggested by experimental network analysis (Mapelli et al.,

2010; Solinas et al., 2010). Moreover, PCs make synaptic con-

nections with adjacent PCs through axonal collaterals suggesting

that self-organizing properties might emerge in the molecular

layer.

It should be noted that theoretical networks are oversimplified

compared to the cerebellar model presented herein. For example,

in Hoellinger’s network plasticity can change the synapse from

excitatory to inhibitory, connections are all-to-all, and gain and

timing are stored in the same synapse (Hoellinger et al., 2013).

A complementary step will be the inclusion of spiking dynamics,

through the use of realistic network models (D’Angelo et al., 2009;

Garrido et al., 2013). In this way, the implications of physiol-

ogy (i.e., the role of the inhibitory PC collaterals, the complex

structure of the PC dendritic tree and the operation of DCN

cells with their characteristic postsynaptic rebounds) will be fully

addressed.

CONCLUSIONS

This model proposes a plausible explanation on how multiple

plasticity sites, including the PF-PC and the MF-DCN and PC-

DCN synapses, may effectively implement cerebellar gain control.

According to the proposed model, distributed synaptic plastic-

ity implements a gain controller, which (i) is self-adaptable, i.e.,

automatically rescales as a function of the manipulated masses

over a large dynamic range, (ii) operates over multiple time scales,

i.e., accounts for fast learning of time correlations and for sub-

sequent gain consolidation, and (iii) improves learning accuracy

and precision. These functions can be partly separated: the PF-PC

synapse is suggested to operate mostly as a time correlator, while

gain is more effectively regulated in DCN afferent synapses under

PC control. In this way, time correlation and gain can be par-

tially processed and stored independently. This organization of

learning could explain the impact of genetic mutations impairing

plasticity at cerebellar synapses. Indeed, irrespective of the spe-

cific synaptic plasticity mechanism involved (be it in the granular

layer, molecular layer or DCN), transgenic mice bearing LTP or

LTD alterations show deficits in cerebellar-related behavior and

learning. However, the learning of timing and gain appear to be

differentially affected, revealing that processing of these two com-

ponents of learning are at least partially segregated (for a review

see Boyden et al., 2004; Gao et al., 2012). Finally, it should be

noted that the coexistence of fast and slow learning mechanisms

can be reconciled with the double time-scale phenomenologi-

cal model of learning proposed by Shadmehr and Mussa-Ivaldi

(2012), which has been proposed to depend on localization of a

fast learning process in the PF-PC synapse and a slower one in the

DCN afferent synapses (Medina and Mauk, 1999; Medina et al.,

2000).

A controller with distributed plasticity is convenient from a

system designer’s point of view, since it allows efficient adjust-

ment of the corrective signal regardless of the dynamic features

of the manipulated object and of the way it affects the dynamics

of the arm plant involved. It should be noted that the adapta-

tion mechanism adopted herein is not constrained to any specific

plant or testing framework, and could therefore be extrapo-

lated to other common testing paradigms like EBCC and the

VOR. In order to do so, further details may be added to the

model accounting for specific synaptic plasticity mechanisms and

circuits involved in the different learning processes.
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Movie S1 | Learning simulation, joint-1-related activity and weight

evolution during manipulation of a 10-kg load. Simulations were carried

out using all the plasticity mechanisms (PF-PC, MF-DCN, and PC-DCN)

along 1000 trials. Only 1 every 10 trials is shown. The movement has been

recorded in real-time (each trial lasts 1 s) evidencing the difficulty of the

task. (top left) 3D view of the actual (black) and desired (red) robot

end-effector trajectory in Cartesian coordinates. (medium left) Ideal

(dotted lines) and actual (solid lines) corrective torques during the current

trial for joint 1 (blue), 2 (red), and 3 (green). (bottom left) Evolution of the

MAE. (top right) Evolution of four randomly chosen PF-PC synaptic

weights. (second to fifth rows right) Evolution of PC activity, DCN activity,

MF-DCN, and PC-DCN synaptic weights related to joint 1 agonist (solid

line) and antagonist (dotted line) muscles. Note that, at the end of

learning, joint-1 DCN neurons provided higher corrective torques to the

antagonist muscle during the first half of the trial and to the agonist

muscle during the second half of the trial.

Movie S2 | Learning simulation, joint-2-related activity and weight

evolution during manipulation of a 10-kg load. Simulations were carried

out using all the plasticity mechanisms (PF-PC, MF-DCN, and PC-DCN)

along 1000 trials. Only 1 every 10 trials is shown. The movement has been

recorded in real-time (each trial lasts 1 s) evidencing the difficulty of the

task. (top left) 3D view of the actual (black) and desired (red) robot

end-effector trajectory in Cartesian coordinates. (medium left) Ideal

(dotted lines) and actual (solid lines) corrective torques during the current

trial for joint 1 (blue), 2 (red), and 3 (green). (bottom left) Evolution of the

MAE. (top right) Evolution of four randomly chosen PF-PC synaptic

weights. (second to fifth rows right) Evolution of PC activity, DCN activity,

MF-DCN, and PC-DCN synaptic weights related to joint 2 agonist (solid

line) and antagonist (dotted line) muscles. Differently from what observed

for joint 1, at the end of learning, joint-2 DCN neurons provided higher

corrective torques to the agonist muscle during the whole trial.

Movie S3 | Learning simulation, joint-3-related activity and weight

evolution during manipulation of a 10-kg load. Simulations were carried

out using all the plasticity mechanisms (PF-PC, MF-DCN, and PC-DCN)

along 1000 trials. Only 1 every 10 trials is shown. The movement has been

recorded in real-time (each trial lasts 1 s) evidencing the difficulty of the

task. (top left) 3D view of the actual (black) and desired (red) robot

end-effector trajectory in Cartesian coordinates. (medium left) Ideal

(dotted lines) and actual (solid lines) corrective torques during the current

trial for joint 1 (blue), 2 (red), and 3 (green). (bottom left) Evolution of the

MAE. (top right) Evolution of four randomly chosen PF-PC synaptic

weights. (second to fifth rows right) Evolution of PC activity, DCN activity,

MF-DCN and PC-DCN synaptic weights related to joint 3 agonist (solid

line) and antagonist (dotted line) muscles. Similarly to what observed for

joint 2, joint 3 corrective torques provided by DCN neurons were

dominated by agonist muscle activity, but different gain values were

provided with respect to joint 2.
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APPENDIX A. IDEAL TORQUE VALUES AND FINAL SYNAPTIC

WEIGHTS

Table A1 | Theoretical torque values when manipulating different masses.

External masses Torque (Nm) — Joint 1 Torque (Nm) — Joint 2 Torque (Nm) — Joint 3

Minimum Maximum Minimum Maximum Minimum Maximum

0.5 kg −1.40 1.45 1.8 5.85 0.72 3.05

1.5 kg −3.95 4.07 5.75 17.16 2.51 8.7

2.5 kg −6.7 6.9 9.55 28.64 4.15 14.56

6 kg −16 16.5 23.15 68.5 10.15 34.76

10 kg −26.66 27.46 38.68 114.08 17 57.85

The solution of the present manipulation problem required a continuous sinusoidal torque with different phases and amplitudes per each joint. The table shows

the maximum and minimum corrective torques for each combination of joints and masses. Note that joint 1 includes both positive values (clockwise forces) and

negative values (anti-clockwise) which should be applied by activating the pairs of agonist and antagonist muscles. Joints 2 and 3 required only the application of

positive torques. Thus, most of the torques will be applied by the agonist muscles, requiring the antagonist muscles only for stabilization.

Table A2 | MF-DCN synaptic weights.

External masses Weight — Joint 1 Weight — Joint 2 Weight — Joint 3

Agonist Antagonist Agonist Antagonist Agonist Antagonist

0.5 kg 1.7 1.5 6 0 3.6 0

1.5 kg 4.2 4.1 17.4 0 9.3 0

2.5 kg 6.95 6.8 28.9 0 15.1 0

6 kg 16.3 16.9 68.9 0 35 0

10 kg 26.8 26.4 113.8 0 57.4 0

The weights were obtained after a 10000-trial simulation involving manipulation of different masses with all learning rules enabled. After 10000 trials, the MF-DCN

synaptic weights remained stable. Synaptic weights are represented for each muscle in the agonist/antagonist pairs. In joint 1, both clockwise and anti-clockwise

corrective torques needed to be applied, so that agonist weights fitted the maximum torque and antagonist weights fitted the minimum torque values (ignoring the

direction). In joints 2 and 3, the antagonist muscles were automatically disabled because only positive torques were required to achieve the desired correction (see

Table A1).

Table A3 | PC-DCN synaptic weights.

External masses Weight — Joint 1 Weight — Joint 2 Weight — Joint 3

Agonist Antagonist Agonist Antagonist Agonist Antagonist

0.5 kg 1.7 1.5 4.5 0 3.6 0

1.5 kg 4.2 4.1 11.9 0* 9.3 0*

2.5 kg 6.95 6.8 19.4 0* 11.71 0*

6 kg 16.3 16.1 45.8 0* 25.2 0*

10 kg 26.8 26.4 74.9 0* 40.1 0*

The weights were obtained after a 10000-trial simulation involving manipulation of different masses with all learning rules enabled. After 10000 trials, some of the

PC-DCN synaptic weights were stabilized. However, the weights marked with (*) slowly decreased and reached their convergence values after the 10000 trials (up to

30000 trials depending on the mass). Synaptic weights are represented for each muscle in the agonist/antagonist pairs. In joint 1, both clockwise and anti-clockwise

corrective torques needed to be applied, so that inhibition coming from the PC-DCN connection completely inhibited MF-DCN activity and synaptic weight values

became similar to those of the MF-DCN synapse (cf.Table A2). In joints 2 and 3, the antagonist muscle inhibition was automatically disabled because no excitation

was needed (cf. Table A2).
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APPENDIX B. ROBOTIC ARM DESCRIPTION

The inverse dynamic equation defining the lightweight robot

(LWR) is given by the expression:

τ = M(Q) · Q̈ + C(Q) ·
[

Q̇Q̇
]

− D(Q) ·
[

Q̇2
]

+ G(Q) + F(Q, Q̇)

(B1)

where τ is the torque value vector to be applied by the robot joints,

Q, Q̇, and Q̈ are vectors representing the positions, velocities, and

accelerations of the joints,
[

Q̇Q̇
]

and
[

Q2
]

being vectors defined

as follows:

[

Q̇Q̇
]

=
[

Q̇1 · Q̇2, . . ., Q̇1 · Q̇n, Q̇2 · Q̇3, . . . , Q̇2 · Q̇n, . . . ,

Q̇n − 1 · Q̇n

]T
(B2)

[

Q̇2
]

=
[

Q̇2
1, Q̇2

2, . . . , Q̇2
n

]T
(B3)

where n represents the number of links included in the robotic

arm, M (Q) represents the inertia matrix (the mass matrix), C (Q)

is the Coriolis matrix, D (Q) represents the matrix of centrifugal

coefficients, G (Q) is the gravity action on the joints and finally

F
(

Q, Q̇
)

represents the friction term. The friction term is crucial

in controlling LWR arms with high-ratio gear boxes since con-

ventional methodologies fail to control these robots without a

massive modeling (van der Smagt, 2000). At the same time, the

friction term can be differentiated in two terms; dry and viscous

friction components obtaining:

F(Q, Q̇) = FD(Q, Q̇) ± FV (Q, Q̇) (B4)

where FD(Q, Q̇) and FV (Q, Q̇) are the dry/viscous friction

matrices, respectively. The first four terms of Equation B1

mainly include the inherent robot dynamic parameters (inertia

matrix, Coriolis/centrifugal matrix, and gravitational force vec-

tor). These parameters are up to eleven per joint (inertia matrix

is symmetrical):

1. Inertia tensor terms: (xxj, xyj, xzj, yyj, yzj, zzj)

2. Center of Mass: (mxj, myj, mzj)

3. Mass: (Mj)

4. Motor Inertia: (Ij)

where j ranges from 1 to the number of joints (3 in our model).

These parameters are usually grouped according to these four cat-

egories in order to make the computational task easier (Khalil

and Dombre, 2004). For our particular LWR (Albu-Schäffer et al.,

2007), the nominal values obtained applying parametric methods

(Bona and Curatella, 2005) are shown in Tables B1–B3.

Table B1 | Inertia tensor parameters (kg · m2).

Joint xxj xyj xzj yyj yzj zzj

1 0.0216417 0 0 0.0214810 0.0022034 0.0049639

2 0.0244442 0 0 0.0052508 0.0036944 0.0239951

3 0.0213026 0 0 0.0210353 0.0022204 0.0046970

4 0.0231668 0 0 0.0048331 0.0034937 0.0227509

5 0.0081391 0 0 0.0075015 0.0021299 0.0030151

6 0.0033636 0 0 0.0029876 0 0.0029705

7 0.0000793 0 0 0.0000783 0 0.0001203

Table B2 | Centers of masses (m), masses (kg) and motor inertias (kg · m2).

Joint mxj myj mzj mj Ij

1 0.0 0.01698 −0.05913 2.7082 415.50e-6

2 0.0 0.11090 0.01410 2.7100 415.50e-6

3 0.0 −0.01628 −0.06621 2.5374 361.60e-6

4 0.0 −0.10538 0.01525 2.5053 138.50e-6

5 0.0 0.01566 −0.12511 1.3028 54.10e-6

6 0.0 0.00283 −0.00228 1.5686 60.08e-6

7 0.0 0.0 0.06031 0.1943 60.08e-6

Table B3 | Friction parameters: dry friction (N · m) and viscous friction (N · m · s/rad).

Joint FDj FVj

1 ∓0.35 2.0e-3

2 ∓0.35 1.69800e-3

3 ∓0.35 1.66000e-3

4 ∓0.35 2.40000e-3

5 ∓0.35 1.80000e-3

6 ∓0.35 1.20000e-3

7 ∓0.35 1.20000e-3
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