
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

Distributed Clock Synchronization for Wireless
Sensor Networks using Belief Propagation

Mei Leng and Yik-Chung Wu

Abstract—In this paper, we study the global clock synchro-
nization problem for wireless sensor networks. Based on belief
propagation, we propose a fully-distributed algorithm which has
low overhead and can achieve scalable synchronization. It is also
shown analytically that the proposed algorithm always converges
for strongly connected networks. Simulation results show that
the proposed algorithm achieves better accuracy than consensus
algorithms. Furthermore, the belief obtained at each sensor
provides an accurate prediction on the algorithm’s performance
in terms of MSE.

Index Terms—Global clock synchronization, Wireless Sensor
Network, fully-distributed, belief propagation

I. INTRODUCTION

Wireless Sensor Network (WSN), emerged as an important
research area in recent years, consists of many small-scale
miniature devices (known as sensor nodes) capable of onboard
sensing, computing and communications. WSNs are used in
industrial and commercial applications to monitor data that
would be difficult or inconvenient to monitor using wired
equipment. These applications include habitat monitoring,
controlling industrial machines and home appliances, object
tracking and event detection, etc. [1] [2]. Most of these
applications require collaborative execution of a distributed
task amongst a large set of synchronized sensor nodes. Fur-
thermore, data fusion, power management and transmission
scheduling require all the nodes running on a common time
frame. However, every individual sensor in a WSN has its
own clock. Different clocks will drift from each other with
time due to many factors, such as imperfection of oscillators
and environmental changes. This makes clock synchronization
between different nodes an indispensable piece of infrastruc-
ture [3] [4].

A. The clock synchronization problem

Considering a network with M + 1 sensors
{S0, S1, · · · , SM}, these sensors are randomly distributed
in the field and can be self-organized into a network by
establishing connections between neighboring sensors that
are in each other’s communication range. An example of a
network with 10 sensors is shown in Figure 1(a), where each

Copyright (c) 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Electrical and Electronic En-
gineering, The University of Hong Kong, Hong Kong. Email: {meileng,
ycwu}@eee.hku.hk.

The work was supported in part by the Hong Kong University Seed Funding
Programme under Project 201011159014.

0S3S

1S 4S

2S
5S

6S
7S

8S

9S

(a) A network with 10 sensors {Si}9i=0.

0S3S

1S 4S

2S
5S

6S
7S

8S

9S

Level 2Level 1
Level 3

(b) Tree-structure-based synchronization,
where S0 is the root node.

0S3S

1S 4S

2S
5S

6S
7S

8S

9S

(c) Cluster-structure-based synchronization,
where S0 is the reference node, S4 and S8

are gateway nodes.

Fig. 1. Network topology for different synchronization schemes.

circle represents a sensor and each edge represents the ability
to transmit and receive packets between the corresponding
pair of sensors.

In the problem of clock synchronization, each sensor Si
has a clock which gives clock reading ci(t) at real time t. The
first-order model for the function ci(t) is

ci(t) , t+ θi, (1)

where θi represents the clock offset of Si. This first-order

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

clock model has been widely used in the literature (see [3],
[4], [7], [8], [10], [13], [14], [16] and references therein), and
in order to achieve global clock synchronization, the clock
offsets of all M+1 sensors (i.e., {θi}Mi=0) should be estimated
and compensated. Without loss of generality, suppose S0 is
the reference node with θ0 = 0, the task of global clock
synchronization is then to synchronize the other M sensors
{Si}Mi=1 to the reference node S0, that is, to recover clock
offsets {θi}Mi=1.

B. Related works
A wide variety of clock synchronization protocols have

been proposed in the literature. Depending on how sensors
are networked, we can put existing protocols into three cate-
gories: tree-structure-based, cluster-structure-based, and fully-
distributed. In tree-structure-based protocols, one sensor is
elected as the reference node, then a spanning tree rooted at
this node is constructed, and each sensor synchronizes with its
parent in the tree, as shown in Figure 1(b). One of the most
representative protocols in this class is Time-synchronization
Protocol for Sensor Network (TPSN) [4], where each sensor
obtains its clock offset with respect to the root by adding
message delays along its unique path to the root. Other
similar schemes are Flooding Time Synchronization Protocol
(FTSP) [7], Lightweight Tree-based Synchronization (LTS)
[8] and Tiny-sync [9]. This approach suffers from two main
limitations. The first limitation is that it requires high overhead
to maintain the tree structure and it is sensitive to root failure.
The second limitation is that two sensors which are close to
each other geographically may belong to different levels which
are far in terms of tree distance from the root, for example S8

and S9 in Figure 1(b). Since clock errors are directly related to
the tree distance, such structures can be harmful in applications
where clocks are required to degrade smoothly as a function
of geographic distance, such as object tracking [15].

On the other hand, in cluster-structure-based protocols, sen-
sors are grouped into clusters according to their geographical
locations. Generally, several reference nodes are selected first,
then sensors in the listening distance of the same reference
node are grouped into one cluster and are synchronized by the
reference node. Sensors belonging to multiple neighborhoods
act as gateways to convert local clocks of one cluster into that
of another cluster, as shown in Figure 1(c). Typical protocol
in this class include Reference Broadcast Synchronization
(RBS) [10], Pairwise Broadcast Synchronization (PBS) [11]
and Hierarchy Referencing Time Synchronization (HRTS)
[12]. Unfortunately, these protocols suffer from similar dis-
advantages to TPSN that they require substantial overhead to
group sensors into clusters and are sensitive to reference nodes
failures.

Finally, in fully-distributed protocols, no global structure
needs to be maintained and there is no special node such as
root or gateway. With all sensors running exactly the same
algorithm and communicating with nodes in their neighbor-
hoods only, these protocols are robust to dynamic topology
changes and are highly scalable. Existing protocols in this
category can be further divided into two classes: physical-
layer-based synchronization and packet-based synchronization.

In the former scheme, based on the fact that clocks are
generated by oscillators, only pulses emitted by oscillators are
exchanged at the physical layer, and sensors are synchronized
to transmit and receive at the same rate. Existing algorithms
of this class are presented in [17] [18] [19]. Since oscillators
cannot be adjusted, clocks are usually left unsynchronized
in this scheme. Therefore, this scheme has limitations in
application where timing information is required. On the other
hand, in the latter scheme, time messages between two sensors
are exchanged in the form of packets, and sensors synchronize
with each other using timing information extracted from these
packets. Several distributed algorithms have been proposed in
[13] [14] [15]. However, these algorithms are based on the
average consensus principle, where clock offsets are adjusted
to an average common value, which may result in abrupt
changes in local clocks and hence discontinuity in local
times. For example, when a sensor with maximum clock
offset goes down, the average of remaining clock offsets then
reduces, and the common clock will head backwards after
resynchronization. This can lead to serious faults, such as a
node missing important deadlines or recording the same event
multiple times. Moreover, message delays are not considered
in these algorithms. As shown in [16], when message delays
exist, the steady state in such consensus protocols will de-
viate from the average value and hence sensors cannot be
synchronized with high accuracies. Since our objective is to
provide global clock synchronization, we adopt the packet-
based synchronization scheme in this paper and propose a
fully-distributed algorithm which overcomes aforementioned
limitations of existing average consensus algorithms.

The rest paper is organized as follows. The cooperative
clock synchronization algorithm is proposed in Section II.
Convergence analysis is presented in Section III. In Section IV,
simulations results are presented to demonstrate the superior
performances of the proposed algorithm in terms of accuracy.
Finally, conclusions are drawn in Section V.

II. DISTRIBUTED CLOCK SYNCHRONIZATION USING
BELIEF PROPAGATION

A. System model

Before discussing global clock synchronization across the
whole network, we first consider two-way timing message
exchange between two sensors Si and Sj , which is shown
in Fig. 2. In the first round of message exchange, Si sends a
synchronization message to Sj at real time t11 with its clock
reading ci(t11) embedded in the message. On reception of that
message at real time t21, Sj records its corresponding clock
reading cj(t

2
1), and replies Si at real time t31. The replied

message contains both cj(t21) and cj(t31). Then Si records the
reception time of Sj’s reply as ci(t41). The next round message
exchange is the same as the first round except that Si also
embed time-stamp ci(t41) in its synchronization message to Sj .
After N rounds of message exchange, Si informs Sj about
ci(t

4
N) with one more message, and then both nodes obtain

a set of time stamps {ci(t1n), cj(t2n), cj(t3n), ci(t4n)}Nn=1. With

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

1
nt

,i j nd X+ ,i j nd Y+

i jθ θ−

iS

jS
2
nt 3

nt

4
nt

Fig. 2. The nth round of two-way time-stamps exchange between two nodes
i and j.

ci(t) = t+ θi, the above procedure can be modeled as

cj(t
2
n)− θj = ci(t

1
n)− θi + di,j +Xn, (2)

cj(t
3
n)− θj = ci(t

4
n)− θi − di,j − Yn, (3)

where θi and θj represent the clock offsets at Si and Sj ,
respectively; di,j stands for the fixed portion of message delay
between Si and Sj ; and Xn and Yn are variable portions of
the message delay. Since Xn and Yn are due to numerous
independent random processes, we can assume that Xn and
Yn are independent and identically distributed (i.i.d.) Gaussian
random variables, and this assumption was experimentally
verified in [10].

Based on (2) and (3), pairwise clock synchronization has
been extensively studied in [11] [20] [21] [22]. However,
extending these algorithms to network wide requires con-
struction of spanning tree, and the disadvantages have been
discussed in the previous section. In the following, we will
develop a fully distributed algorithm which estimates the
clock offsets using the Bayesian framework. First, denote
T{i,j},n , cj(t

2
n)+cj(t

3
n)−ci(t1n)−ci(t4n) and Zn , Xn−Yn.

By observing that the uplink and downlink undergo the same
amount of fixed delay, we can rewrite the original model by
adding (2) to (3), and obtain

T{i,j},n = 2θj − 2θi + Zn, for n = 1, · · · , N, (4)

where {Zn}Nn=1 are i.i.d. Gaussian random variables with zero
mean and variance σ2. Stacking the observations in a vector
as Ti,j , [T{i,j},1, · · · , T{i,j},N], we have the following
likelihood function

p(Ti,j |θi, θj)

=
1

(
√
2πσ)N

exp

{
− 1

2σ2
‖Ti,j − 2(θj − θi)1‖2

}
=

1

(
√
2πσ)N

exp

{
−1

2

N

σ2

[
2(θi − θj) +

1

N
1TTi,j

]2}
,

(5)

where 1 is a vector with length N and elements 1, and the
superscript {·}T represents the transpose operation. Denote the

prior distributions of θi and θj as p(θi) and p(θj), respectively,
the joint posterior distribution p(θi, θj |Ti,j) is given by

p(θi, θj |Ti,j) ∝ p(Ti,j |θi, θj)p(θi)p(θj). (6)

To make inferences on θi and θj , we need to obtain their
respective marginal distributions, which are denoted as gi(θi)
and gj(θj). Mathematically,

gi(θi) =

∫
p(θi, θj |Ti,j) dθj

∝
∫
p(Ti,j |θi, θj)p(θj)p(θi) dθj . (7)

and the clock offset θi can be estimated by maximizing gi(θi),
which is equivalent to maximizing the posterior distribution
p(θi|Ti,j) and hence achieves the optimal solution in Bayesian
sense. Similar derivation can be obtained for θj .

Extending the above idea to a network with M sen-
sors, we need to find the joint posterior distribution
p (θ1, · · · , θM |{Ti.j}i=1,··· ,M,j∈Bi

), where Bi denotes the in-
dices of neighboring sensors of Si. Then the marginal distri-
bution gi(θi) is obtained by integrating out all other variables,
that is,

gi(θi) =∫
· · ·
∫

θ1,··· ,θi−1,θi+1,··· ,θM

p (θ1, · · · , θM |{Ti.j}i=1,··· ,M,j∈Bi
)

dθ1 · · · dθi−1 dθi+1 · · · dθM . (8)

Apparently, the joint distribution depends on interactions
among all the variables and is complicated. Even when the
joint distribution is obtained in closed-form, it is almost
impossible to find the marginal distributions {gi(θi)}Mi=1 by
brute-force integration.

In order to provide a computationally efficient algorithm
to calculate the marginal distributions, we observe that the
state of clock offset at any sensor depends directly only on its
neighboring sensors whose number is usually far less than
the total number of variables. To explore such conditional
independence structure, we make use of belief propagation in
the following and propose an efficient algorithm which com-
putes a set of marginal distributions from the joint posterior
distribution without full integration in (8).

B. Cooperative clock synchronization using belief propagation

Belief Propagation (BP) works on graphical models, and
one of the most widely used graphical models, factor graph,
is used in this paper. Let us consider the factor graph for
pairwise clock synchronization first. The two random variables
θi and θj are represented by variables nodes (circles), and they
are connected to factor nodes (squares) which represent prior
information and relationships between variable nodes. This is
shown in Figure 3, in which the factor node fi,j represents
the likelihood function p(Ti,j |θi, θj) and is connected to both
θi and θj . On the other hand, the factor node fi represents the
prior distribution of θi, i.e., p(θi), and is connected only to the
variable node θi. This can be easily extended to a network with
multiple sensors, since any two neighboring sensors establish

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

jf

ifiS

jS
jθ

iθ

,i jf

Fig. 3. The factor graph for two sensors Si and Sj in pairwise clock
synchronization. The functions represented by factor nodes fi, fj and fi,j
are p(θi), p(θj) and p(Ti,j |θi, θj), respectively.

6f 7f

9f

5f

2f

1f

3f
0f

0θ

1θ

3θ
3,0f

2θ

4θ

5θ
9θ

8f

4,6f

1,0f
1,3f

2,1f

8,9f

4,8f

5,8f

5,9f

4,5f
2,4f

2,5f

6θ
7θ

8θ

6,7f

7,8f

0,4f

4f

, ,i j j if f=

Fig. 4. The factor graph for the network in Figure 1(a), where each variable
node represent one clock offset. The factor nodes fi represent the prior
distribution p(θi) for clock offset θi at the ith sensor Si, and the factor
nodes fi,j represent the likelihood function p(Ti,j |θi, θj) established by Si

and Sj through two-way message exchange.

a connection between each other in the same way as they
do during pairwise clock synchronization. Therefore, for the
network in Figure 1(a), we can build a factor graph as shown in
Figure 4. Notice that the function represented by factor nodes
fi,j and fj,i is the same likelihood function, either notation
can be used.

With this factor graph, BP calculates the marginal distri-
bution at every variable θi based on local message-passing.
Specifically, it involves two kinds of messages:

• bi(θi): belief of its own state at the variable node θi,
which equals to product of all the incoming messages
from neighboring factor nodes. That is,

bi(θi) = mfi→θi

∏
j∈Bi

mfi,j→θi(θi), (9)

where Bi is the set of indices of Si’s neighboring sensors.
• mx→θi(θi): message from the factor node x to the

variable node θi. For x = fi,j , it indicates fi,j’s belief
on θi’s state, resulting from interactions between θi and

other variable nodes connected to fi,j . The message is
defined as [26]

mfi,j→θi(θi) =

∫
p(Ti,j |θi, θj)bj(θj) dθj . (10)

For the message from the factor node fi to the variable
node θi (i.e., x = fi), we have

mfi→θi = p(θi)

∫
bj(θj) dθj ,

= p(θi), (11)

where (11) is due to the fact that beliefs are probability
functions.

In the BP procedure, beliefs and messages are iteratively
updated at variable nodes and factor nodes, respectively. For
the global clock synchronization problem, denoting the belief
of θi at iteration l as b(l)i (θi) and the message from fi,j to θi
at iteration l as m(l)

fi,j→θi(θi), each iteration is carried out in
three steps:

1) Every variable node θi broadcast its current belief b(l)i (θi)
to neighboring factor nodes {fi,j}j∈Bi

;
2) Acting like intermediate processors, the factor node fi,j

calculates m
(l)
fi,j→θi(θi) with (10) based on the belief

b
(l)
j (θj) it receives from θj , and then transmits this

message to θi. Notice that from (11), mfi→θi does not
depend on information from other nodes and thus is fixed
during iterations;

3) After collecting all the messages {m(l)
fi,j→θi(θi)}j∈Bi

from neighboring factor nodes, the variable node θi
updates its belief with (9), and obtain b(l+1)

i (θi).
After convergence, the belief at each variable node corre-
sponds to the marginal distribution of that variable exactly
(when the underlying topology is loop free) or approximately
(when the underlying topology has loops) [24] [25]. Therefore,
the estimations obtained by maximizing these marginal distri-
butions are optimal in Bayesian sense. Moreover, since each
sensor runs exactly the same algorithm and communicates
only with its neighbors, this procedure is fully distributed and
computationally efficient.

C. Computation of beliefs and messages

In the following, exact expressions of the beliefs and mes-
sages at different nodes will be derived. First, let us focus on
the beliefs before any message is exchanged. As introduced
in Section I, a reference node S0 with θ0 = 0 is assigned
in the network and all other sensors {Si}Mi=1 synchronize
their clocks to S0. Mathematically, this means that the belief
of θ0 is deterministic and given by b

(l)
0 (θ0) = δ(θ0, 0) for

l = 0, 1, 2, · · · , where δ(θ0, 0) is the Dirac delta function.
On the other hand, for the rest of M sensors, it is reason-
able to set their initial beliefs as their prior distributions,
i.e., b(0)i (θi) = p(θi). However, in practice, it is difficult
to obtain a prior distribution on the clock offset. It can
be assumed that θi is uniformly distributed in the range
[−∞,+∞]. Notice that the uniform distribution can be equally
represented as a Gaussian distribution with zero mean and

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

infinite variance p(θi) ∼ N (θi; 0,+∞). Therefore, we have
b
(0)
i (θi) ∼ N (θi; 0,+∞) for i = 1, · · · ,M .

At the first iteration, the message from the factor node fi,j
to a neighboring variable node θi is defined in (10). If Sj is
the reference node (for example from f1,0 to θ1 in Figure 4),
the message is given by

m
(0)
fi,0→θi(θi) =

∫
p(Ti,0|θi, θ0)δ(θ0, 0) dθ0

∝ exp

{
−1

2

(
σ2

N

)−1(
2θi +

1

N
1TTi,0

)2
}
.

(12)

It can be seen that the message in (12) is in the form of Gaus-
sian distribution. By denoting its mean as ν(0)0→i , − 1

2N 1TTi,0

and variance as C(0)
0→i ,

σ2

4N , we have

m
(0)
fi,0→θi(θi) ∼ N (θi; ν

(0)
0→i, C

(0)
0→i). (13)

On the other hand, if Sj is not the reference node (for example
from f2,1 to θ1 in Figure 4), the message is given by

m
(0)
fi,j→θi(θi) =

∫
p(Ti,j |θj , θi)b(0)j (θj) dθj

∝
∫
p(Ti,j |θj , θi) dθj (14)

∝ 1, (15)

where in (14) we used b
(0)
j (θj) ∼ N (θj ; 0,+∞) and (15) is

due to the fact that the result from integration in (14) does
not depend on θi. Therefore, from (9), (13) and (15), we can
write the updated belief b(1)i (θi) at Si in the Gaussian form,
that is,

b
(1)
i (θi) ∼ N (θi;µ

(1)
i , P

(1)
i), (16)

where µ
(1)
i = ν

(0)
0→i and P

(1)
i = C

(0)
0→i if Si is directly

connected to the reference node, and µ(1)
i = 0 and P (1)

i = +∞
otherwise.

At the next iteration, variable nodes broadcast their new
beliefs to neighboring factor nodes and this results in new
messages at the intermediate factor nodes. Specifically, with
belief b(1)i (θi) at θi, the new message from fk,i to a neighbor-
ing node θk, m(1)

fk,i→θk(θk), can be obtained as

m
(1)
fk,i→θk(θk)

=

∫
p(Tk,i|θk, θi)b(1)i (θi) dθi

∝
∫

exp

{
−1

2

(
σ2

N

)−1(
2θk − 2θi +

1

N
1TTk,i

)2
}

× exp

{
−1

2

[
P

(1)
i

]−1 [
θi − µ(1)

i

]2}
dθi

∝ exp

{
−1

2

[
σ2

4N
+ P

(1)
i

]−1 [
θk − µ(1)

i +
1

2N
1TTk,i

]2}
.

(17)

It can be seen that the message in (17) is also in the Gaussian
form. By denoting its mean as ν(1)i→k = µ

(1)
i − 1

2N 1TTk,i and

variance as C(1)
i→k = σ2

4N + P
(1)
i , we have

m
(1)
fk,i→θk(θk) ∼ N (θk; ν

(1)
i→k, C

(1)
i→k). (18)

After collecting all the incoming messages from neighboring
factor nodes, variable node θk updates its belief b(1)k (θk) by
using (9). Since both the prior distribution and the incoming
messages have the form of Gaussian, the updated belief of θk
must be Gaussian distributed.

In general, it can be seen that all the messages and beliefs
during the iterative procedure are in Gaussian forms. Denoting

b
(l)
j (θj) ∼ N (θj ;µ

(l)
j , P

(l)
j), ∀j ∈ {1, · · · ,M}, (19)

and with similar calculations in (17), we can always obtain
the message

m
(l)
fi,j→θi(θi) ∼ N (θi; ν

(l)
j→i, C

(l)
j→i), (20)

with

C
(l)
j→i =

σ2

4N
+ P

(l)
j , (21)

and

ν
(l)
j→i = µ

(l)
j −

1

2N
1TTi,j . (22)

The message in (20) represents the general form for all the
messages circulating around the network. To see this, we
notice that the belief at the reference node S0, i.e., δ(θ0, 0),
can be equally represented in the Gaussian form with P (l)

0 = 0

and µ
(l)
0 = 0. Putting this into (21) and (22), it can be seen

that (20) reduces to (13) and it represents the message from S0

to its neighboring sensors. Moreover, for other sensors, their
beliefs are initially in Gaussian forms with infinite variance,
that is, P (0)

j = +∞ for j ∈ {1, · · · ,M}, hence (20) reduces
to a constant and is consistent with (15).

After collecting incoming messages from neighboring factor
nodes, the belief of θi is updated by using (9), that is,

b
(l+1)
i (θi) = p(θi)

∏
j∈Bi

m
(l)
fi,j→θi(θi). (23)

Substituting p(θi) ∼ N (θi; 0,+∞) and (20) into (23), the
variance of b(l+1)

i (θi) is obtained as[
P

(l+1)
i

]−1
= (+∞)

−1
+
∑
j∈Bi

[
C

(l)
j→i

]−1
,

=
∑
j∈Bi

[
σ2

4N
+ P

(l)
j

]−1
, (24)

and the mean of b(l+1)
i (θi) is obtained as

µ
(l+1)
i = P

(l+1)
i

(+∞)
−1 × 0 +

∑
j∈Bi

[
C

(l)
j→i

]−1
ν
(l)
j→i

 ,

= P
(l+1)
i

∑
j∈Bi

[
C

(l)
j→i

]−1
ν
(l)
j→i, (25)

= P
(l+1)
i

∑
j∈Bi

[
σ2

4N
+ P

(l)
j

]−1 [
µ
(l)
j −

1

2N
1TTi,j

]
(26)

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

where from (25) to (26), we have used (21) and (22). Notice
that an equivalent form of (25) is

µ
(l+1)
i =

∑
j∈Bi

[
C

(l)
j→i

]−1
ν
(l)
j→i∑

j∈Bi

[
C

(l)
j→i

]−1 , (27)

it can be seen from (27) that each variable θi updates its
mean of belief as weighted average of expectations from
neighboring factor nodes, and expectations with small variance
will contribute more to θi’s update, and hence uncertainties
due to noises and random delays are reduced. In contrast,
although algorithms based on the average consensus principle
have similar forms as in (27), the averaging coefficients are
usually fixed to be constant.

At the end of iteration l, sensor Si can estimate its clock
offset by maximizing the belief b(l)i (θi) with respect to θi.
Since b

(l)
i (θi) is Gaussian, the optimal estimation for θi at

iteration l is given by θ̂(l)i = µ
(l)
i . This iterative procedure is

formally given in Algorithm 1. Notice that factor nodes are
imaginary for derivation of algorithm only. In practice, the
update is performed at individual sensor directly.

Algorithm 1 Distributed clock synchronization using belief
propagation

1: Initialization:
2: Set the belief at the reference node S0 as b0(θ0) ∼
N (θ0;µ0, P0), where µ0 = 0 and P0 = 0.

3: Set the belief at Si as b(0)i (θi) ∼ N (θi;µ
(0)
i , P

(0)
i) for

i = 1, · · · ,M , where µ(0)
i = 0 and P (0)

i = +∞.
4: Iteration until convergence:
5: for the lth iteration do
6: sensors Si with i = 1 :M in parallel
7: broadcast the current belief b(l−1)i (θi) to neighboring

sensors;
8: receive b

(l−1)
j (θj) from its neighboring sensor Sj ,

where j ∈ Bi and j 6= i;
9: update its belief as b(l)i (θi) ∼ N (θi;µ

(l)
i , P

(l)
i), where[

P
(l)
i

]−1
=
∑
j∈Bi

[
σ2

4N
+ P

(l−1)
j

]−1
,

and

µ
(l)
i = P

(l)
i

∑
j∈Bi

[
σ2

4N
+ P

(l−1)
j

]−1 [
µ
(l−1)
j − 1TTi,j

2N

]
.

10: estimate its clock offset as θ̂(l)i = µ
(l)
i .

11: end parallel
12: end for

Remark 1: For a network with only two sensors, say Si
and Sj , it can be seen that b(0)i (θi) = p(θi)m

(0)
fi,j→θi(θi) =

p(θi)
∫
p(Ti,j |θi, θj)p(θj) dθj , which equals to the marginal

distribution gi(θi) in (7). Therefore, the algorithm based on
belief propagation includes the pairwise clock synchronization
as a special case.

Remark 2: The result in (15) indicates that if the belief at θj
has an infinite variance, the message from θj to its neighbor

sensor θi has no impact on θi’s belief update. Notice that every
sensor except the reference node has an infinite variance in
their beliefs initially, in order to save energy, a sensor can keep
silence and only receive messages at the beginning stage of
synchronization, and start to broadcast when its belief changes.

Remark 3: The proposed algorithm is robust to both packet
losses and node failures. For the former issue, packets corre-
spond to time-stamps obtained in two-way message exchanges
between two sensors. From (21) and (22), it can be seen that
both C(l)

j→i and µ(l)
j→i, i.e., the variance and mean of the mes-

sage m(l)
j→i(θi), depend on the number of rounds of message

exchange N and the values of time-stamps. If time-stamps
in the kth round are lost, N in (21) and (22) would become
N−1, and the only consequence is that C(l)

j→i increases due to
less timing information. Moreover, this increased variance is
further reflected in the stage of belief update in (24) and (27).
For the latter issue, since our algorithm is fully-distributed,
communications occur only between neighboring sensors and
no global structure is required. When any sensor, for example
Sj (which is a neighbor of Si), failed after the lth iteration of
belief updates, Si will set C(l+1)

j =∞ in (27) and its updated
belief b(l+1)

i (θi) will automatically remove the contribution
from the failed node Sj .

III. CONVERGENCE ANALYSIS

It is well known that algorithms based on belief propagation
converge if the underlying topology has no loops, for example
in tree structure. However, for general topology, the issue of
convergence is poorly understood and difficult to prove. As
observed numerically in [27], when there exist loops, these
algorithms can diverge. A sufficient condition for convergence
was proposed in [28] for Gaussian graphical models. Un-
fortunately, it requires the knowledge of the joint posterior
distribution of all variables, and is difficult to verify for large
sensor networks. Nevertheless, we can establish convergence
of our proposed algorithm as follow.

Theorem 1 The beliefs at variable nodes {θi}Mi=1 in Algo-
rithm 1 always converge for strongly connected networks1 in
the sense that there exists a unique fixed point {P ∗i , µ∗i } such
that

lim
l→∞

P
(l)
i = P ∗i , (28)

and

lim
l→∞

µ
(l)
i = µ∗i . (29)

Proof: Notice from (24) that P (l)
i is updated indepen-

dently of µ(l)
i , we first analyze the convergence property of

P
(l)
i . Next, notice from (27) that the update of µ(l)

i involves
P

(l)
i , we analyze the convergence property of µ(l)

i under the
assumption that P (l)

i has converged.

1strongly connected network: a network is called strongly connected if a
path, with either single hop or multiple hops, exists between any two nodes.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

1) Convergence of P (l)
i : For notation simplicity, we denote

α , σ2

4N and K(l)
i ,

[
P

(l)
i

]−1
. The update equation for P (l)

i

in (24) is then rewritten as

K
(l+1)
i =

∑
j∈Bi

1

α+ 1

K
(l)
j

. (30)

Since P (l)
i is the variance, we always have 0 ≤ P

(l)
i ≤ +∞

and hence K
(l)
i ≥ 0 for any i ∈ {1, · · · ,M} and l =

0, 1, 2, · · · . Denote the size of Bi as |Bi|, which is the number
of Si’s neighboring sensors, and bring K(l)

j ≥ 0 into (30), we
have

0 ≤ K(l)
i ≤

|Bi|
α
≤ M

α
, ∀ l = 0, 1, 2, · · · . (31)

Therefore, the sequence {K(0)
i ,K

(1)
i ,K

(2)
i , · · · } is bounded

for any i ∈ {1, · · · ,M}. Furthermore, we show in the
following that this sequence is also monotonic increasing.
First, we have

K
(l+1)
i −K(l)

i =
∑
j∈Bi

1

α+ 1

K
(l)
j

−
∑
j∈Bi

1

α+ 1

K
(l−1)
j

=
∑
j∈Bi

K
(l)
j −K

(l−1)
j

(1 + αK
(l)
j)(1 + αK

(l−1)
j)

≥ 1

(1 +M)2

∑
j∈Bi

[
K

(l)
j −K

(l−1)
j

]
, (32)

where we used the upper-bound in (31). Denote the M -by-
M adjacency matrix of a graph as A with its (i, j)th element
given by

A(i, j) =

{
1, Si and Sj are neighbors, i 6= j

0, otherwise.

And denote K(l) , [K
(l)
1 ,K

(l)
2 , · · · ,K(l)

M], we can rewrite the
inequality in (32) as

K(l+1) −K(l) ≥ 1

(1 +M)2
×A

[
K(l) −K(l−1)

]
≥ 1

(1 +M)2l
×Al

[
K(1) −K(0)

]
. (33)

Notice that K(0) = [0, · · · , 0] due to P
(0)
i = +∞ for i =

1, · · · ,M . Together with the fact that K(l)
i ≥ 0 for all l, we

have

K(1) −K(0) ≥ 0. (34)

Moreover, the (i, j)th element of Al counts the number of
paths of length l between Si and Sj and hence is always non-
negative. Therefore, we have

Al
[
K(1) −K(0)

]
≥ 0. (35)

Putting (35) into (33) gives

K(l+1) −K(l) ≥ 0, (36)

and hence K
(l+1)
i − K

(l)
i ≥ 0 for any i ∈ {1, · · · ,M}.

Therefore, the sequence {K(0)
i ,K

(1)
i ,K

(2)
i , · · · } is monotonic

increasing.

From the monotone convergence theorem [29], every
bounded monotone sequence is convergent. Therefore, we can
draw the conclusion that the sequence {K(0)

i ,K
(1)
i ,K

(2)
i , · · · }

is convergent, and denoting its limit as K∗i , we have

lim
l→∞

K
(l)
i = K∗i , (37)

which equals to (28).
2) Convergence of µ(l)

i : For the update equation of µ(l)
i ,

putting the definition of Ti,j into (22), we have

ν
(l)
j→i = µ

(l)
j −

1

2N
1TTi,j

= µ
(l)
j − θj + θi −

1

2N

N∑
n=1

Zn︸ ︷︷ ︸
,Zj,i

, (38)

where Zj,i represents the average of Gaussian random delays
in the procedure of message exchange between Si and Sj , and
it is independent of the iteration number l. Putting (38) into
(27), the update equation can be rewritten as

µ
(l)
i − θi︸ ︷︷ ︸
,µ̃(l)

i

=
1∑

j∈Bi

[
C

(l−1)
j→i

]−1 ·∑
j∈Bi

[
C

(l−1)
j→i

]−1
[µ

(l−1)
j − θj︸ ︷︷ ︸
,µ̃(l−1)

j

−Zj,i],

(39)

with i ∈ {1, · · · ,M} and j ∈ {0, 1, · · · ,M}. Notice that for
j = 0, the variable node θ0 corresponds to the reference node
S0. Since the belief at S0 does not change, we have θ0 = 0,
µ
(l)
0 = 0 and P

(l)
0 = 0 for all l, and hence µ̃(l−1)

0 = 0 and
C

(l−1)
0→i = α from (21). Therefore, if the reference node is a

direct neighbor of Si, i.e., 0 ∈ Bi, the update equation (39) is
equivalent to

µ̃
(l)
i =

∑
j∈Bi,j 6=0

[
C

(l−1)
j→i

]−1 [
µ̃
(l−1)
j − Zj,i

]
α+

∑
j∈Bi,j 6=0

[
C

(l−1)
j→i

]−1 . (40)

Otherwise, if Si and S0 are not directly connected, i.e., 0 /∈ Bi,
the update equation (39) is

µ̃
(l)
i =

∑
j∈Bi

[
C

(l−1)
j→i

]−1 [
µ̃
(l−1)
j − Zj,i

]
∑
j∈Bi

[
C

(l−1)
j→i

]−1 , (41)

with i, j ∈ {1, · · · ,M}. Furthermore, with l large enough,
it can be assumed that P (l)

j has converged to P ∗j for j =

1, · · · ,M , and hence C(l−1)
j→i converges to C∗j→i , α + P ∗j .

Putting {C∗j→i}Mj=1 into (40) and (41), and combining these
two cases, we can rewrite (39) as

µ̃
(l)
i =


∑

j∈Bi [C
∗
j→i]

−1
[
µ̃
(l−1)
j −Zj,i

]
α+

∑
j∈Bi [C

∗
j→i]

−1 , 0 ∈ Bi,∑
j∈Bi [C

∗
j→i]

−1
[
µ̃
(l−1)
j −Zj,i

]
∑

j∈Bi [C
∗
j→i]

−1 , 0 /∈ Bi,
(42)

where i, j ∈ {1, · · · ,M}.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

To further simplify (42), we define an M -by-M matrix Q
whose (i, j)th element is

Q(i, j) =


[C∗j→i]

−1

α+
∑

j∈Bi [C
∗
j→i]

−1 , 0 ∈ Bi, j ∈ Bi, i 6= j,

[C∗j→i]
−1∑

j∈Bi [C
∗
j→i]

−1 , 0 /∈ Bi, j ∈ Bi, i 6= j,

0, otherwise.

(43)

Moreover, denoting µ̃(l) , [µ̃
(l)
1 , µ̃

(l)
2 , · · · , µ̃(l)

M] and

Z ,


0 Z2,1 · · · ZN,1
Z1,2 0 · · · ZN,2

...
...

Z1,N · · · ZN−1,N 0

 ,
we can rewrite (42) as

µ̃(l) = Qµ̃(l−1) − diag {QZ} , (44)

where diag{A} represents an N -by-1 vector formed by diag-
onal elements of the matrix A. If µ̃(l) converges, it is easy to
see that the sequence {µ(0)

i , µ
(1)
i , µ

(2)
i , · · · } is convergent for

any i ∈ {1, · · · ,M}. And we show in the following that µ̃(l)

converges pointwise as l increases.
First, for finite integers l > 0 and n > 0, by using (44), we

have

µ̃(n+l) − µ̃(l)

=
[
µ̃(n+l) − µ̃(n+l−1)

]
+
[
µ̃(n+l−1) − µ̃(n+l−2)

]
+ · · ·+

[
µ̃(l+1) − µ̃(l)

]
= Qn+l−1

[
µ̃(1) − µ̃(0)

]
+ Qn+l−2

[
µ̃(1) − µ̃(0)

]
+ · · ·+ Ql

[
µ̃(1) − µ̃(0)

]
(45)

= Ql
n−1∑
k=0

Qk
[
µ̃(1) − µ̃(0)

]
< Ql

+∞∑
k=0

Qk
[
µ̃(1) − µ̃(0)

]
, (46)

where (45) uses the fact that Q and Z do not change during the
iteration. Since all elements in Q are non-negative, together
with the fact that its row sums

∑M
j=1 Q(i, j) ≤ 1 for all i ∈

{1, · · · ,M} and
∑M
j=1 Q(i, j) < 1 for the ith row with 0 ∈

Bi, the matrix Q is sub-stochastic. Moreover, notice that Q
corresponds to a graph matrix of a strongly connected network,
Q is irreducible [31]. Based on these two facts, denoting the
eigenvalues of Q as {λi}Mi=1, it follows from Perron-Frobenius
theorem that −1 < λi < 1 for i = 1, · · · ,M [31] [32].

Next, by factorizing Q with eigenvalue decomposition as
Q = VΛV−1, where Λ is a diagonal matrix with M
eigenvalues along the diagonal and V is a matrix formed by
eigenvectors, we can rewrite (46) as

µ̃(n+l) − µ̃(l) < V

(
Λl

+∞∑
k=0

Λk

)
V−1

[
µ̃(1) − µ̃(0)

]
. (47)

Since −1 < λi < 1 for i = 1, · · · ,M , the sum of power series
{λki }

+∞
k=0 must converge, and

∑+∞
k=0 Λk is a diagonal matrix

with its (i, i)th element given by 1
1−λi

. Defining this matrix
as Σ and putting it into (47), we have

µ̃(n+l) − µ̃(l) < VΛlΣV−1
[
µ̃(1) − µ̃(0)

]
. (48)

Notice that µ̃(1), µ̃(0), V and Σ are fixed, and moreover, Λl

is a diagonal matrix with its (i, i)th element given by λli, we
can rewrite (48) as

µ̃
(n+l)
i − µ̃(l)

i < ηiλ
l
i, ∀ i = 1, · · · ,M, (49)

where ηi is a constant defined by the product of the ith row of
V and the vector ΣV−1

[
µ̃(1) − µ̃(0)

]
. Since −1 < λi < 1

for i = 1, · · · ,M , for any real number ε > 0, we can always
find certain l > 0 such that ηiλli < ε, and hence µ̃(n+l)

i −µ̃(l)
i <

ε. Therefore, according to Cauchy’s criterion, we can finally
draw the conclusion that the sequence {µ̃(0)

i , µ̃
(1)
i , µ̃

(2)
i , · · · }

converges for any i ∈ {1, · · · ,M}. And hence the sequence
{µ(0)

i , µ
(1)
i , µ

(2)
i , · · · } is convergent for any i ∈ {1, · · · ,M}.

IV. SIMULATION RESULTS AND DISCUSSIONS

To validate the performances of our proposed algorithm,
simulation results are presented and compared to consensus
algorithms. As introduced in Section I, existing algorithms
in [13] [14] [15] [16] are based on the average consensus
principle. Since message delays are not considered in [13]–
[15], their performances deteriorate significantly when there
exist fixed delays or random delays. Therefore, we compare
our algorithm with the consensus algorithm in [16] which
explicitly considers random delays. The error of the consensus
algorithm is measured by difference between the estimated
clock offset and the average value of all clock offsets. That is,

error(θi)consensus =

∣∣∣∣∣θ̂i − 1

M

M−1∑
i=0

θi

∣∣∣∣∣ , (50)

for i ∈ {0, 1, · · · ,M − 1}. On the other hand, our proposed
algorithm adjusts clocks to their true values, and hence avoids
the issue of time discontinuity in the consensus algorithm.
And the error is measured by difference between the estimated
clock offset and its true value. That is,

error(θi)proposed =
∣∣∣θ̂i − θi∣∣∣ , (51)

for i ∈ {1, · · · ,M − 1}. The parameters used in simulations
are as follows. Clock offsets and fixed delays are uniformly
drawn from ranges [−30, 30] and [0, 10], respectively. The
variance of the random delay is 1. The number of message
exchange rounds is 4. Each point in the figures is an average
of 10000 independent simulation runs. Mean Squared Error
(MSE) at each point is presented to measure the estimation
accuracy.

Simulations are carried out for a network of 25 nodes as
shown in Figure 5(a). All nodes are distributed in a standard
grid pattern and communicate through a tree-structured topol-
ogy. First, the convergence rate at two nodes is presented in
Figure 5(b). Node A is directly connected to the reference
node, while Node B lies far away. Since Node B is 4 hops

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

x−axis

y−
ax

is

Node AReference

Node B

(a) Network topology.

2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

Number of iteration

M
S

E
 o

f e
st

im
at

ed
 c

lo
ck

 o
ffs

et
 (

 θ
)

Numerical MSE
Theoretical MSE

Node A

Node B

(b) Convergence rate of the proposed algorithm at Node A and
Node B.

0 5 10 15 20 25
0

2

4

6

8

10

12

Node

M
S

E
 o

f e
st

im
at

ed
 c

lo
ck

 o
ffs

et
 (

 θ
)

Consensus algorithm
Numerical MSE
in proposed algorithm

Theoretical MSE
in proposed algorithm

(c) MSE of estimated clock offset at individual sensors.

Fig. 5. Convergence rate and MSE for network with tree topology.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x−axis

y−
ax

is

Node B

Node A

Reference

(a) Network topology.

2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

Number of Iteration

M
S

E
 o

f e
st

im
at

ed
 c

lo
ck

 o
ffs

et
 (

 θ
)

Numerical MSE
Theoretical MSE

Node B

Node A

(b) Convergence rate of the proposed algorithm at Node A and
Node B.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Node

M
S

E
 o

f e
st

im
at

ed
 c

lo
ck

 o
ffs

et
 (

 θ
)

Consensus algorithm
Numerical MSE in proposed algorithm
Theoretical MSE in proposed algorithm

(c) MSE of estimated clock offset at individual sensors.

Fig. 6. Convergence rate and MSE for network with loopy topology.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

away from the reference node, its belief stays unchanged
at the beginning. This is unavoidable as it takes time for
messages to propagate to distant sensors. However, once a
sensor starts to update its belief, it converges quickly in 4
iterations. Furthermore, due to the fact that beliefs are repre-
sented in the forms of Gaussian, their variances correspond
to the theoretical MSE for estimations in each iteration, and
it shows in Figure 5(b) that the numerical and theoretical
MSE overlap after convergence, which confirms that beliefs
converge to marginal distributions exactly for tree topologies.
Next, the converged MSE at individual sensors are shown
in Figure 5(c), where 20 iterations are carried to ensure
convergence for both algorithms. It can be seen that the
theoretical MSE of the proposed algorithm overlaps with its
numerical MSE at individual sensors. Moreover, the proposed
algorithm outperforms the consensus algorithm and reaches an
accuracy at the order of 10−1.

Another set of simulations is conducted on a loopy network
as shown in Figure 6(a). All 25 nodes are randomly distributed
in the squared area and form a communication topology
with multiple loops. Convergence performances at two nodes
are presented in Figure 6(b). Similar conclusion about their
convergence rate can be drawn as in Figure 5(b). On the other
hand, the numerical MSE of the proposed algorithm is lower
bounded by its theoretical MSE, and such a gap exists because
beliefs converge to marginal distributions approximately for
loopy topologies [24] [25]. When compared to the consensus
algorithm, the proposed algorithm still show improved per-
formance, and achieves an accuracy at the order of 10−2, as
shown in Figure 6(c).

V. CONCLUSIONS

In this paper, we propose a fully-distributed algorithm based
on belief propagation for global clock synchronization in
wireless sensor networks. The proposed algorithm requires
communications only between neighboring sensors and is
implemented distributedly in the network. Therefore, it has low
overhead and can achieve robust and scalable synchronization.
Moreover, it is shown analytically that the proposed algorithm
converges for strongly connected networks. Compared to ex-
isting algorithms based on the average consensus principle,
our proposed algorithm synchronizes clocks with a consistent
reference value instead of adjusting clocks to an average
value. This helps avoiding the issue of time discontinuity.
Simulation results show that our proposed algorithm achieves
better accuracy than consensus algorithms. Furthermore, the
belief updated at each sensor provides an accurate prediction
on the algorithm’s performance in terms of MSE.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Cumputer Networks, vo. 38, no. 4, pp.393-
422, Mar. 2002.

[2] N. Bulusu and S. Jha, Wireless Sensor Networks: A Systems Perspective.
Artech House, 2005.

[3] B. Sundararaman, U. Buy and A. D. Kshemkalyani, “Clock synchron-
zation for wireless sensor networks: a survey,” Ad Hoc Networss, vol.
3, pp. 281-323, 2005.

[4] S. Ganeriwal, R. Kumar and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” Technical Reports, Center for Embedded Network
Sensing, UC Los Angeles, 2003.

[5] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed
real-time systems,” IEEE Trans. on Computers, vol. 36, no. 8, pp. 933-
940, Aug. 1987.

[6] H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor
Networks, 1st edition, Wiley, June 2005.

[7] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, “The Flooding Time
Synchronization Protocol”, in Proceeding of the 2nd International
Conference on Embedded Networked Sensor Systems, pp. 39-49, 2004.

[8] J. V. Greunen and J. Rabaey, “Lightweight time synchronization for
sensor networks,” in Proceeding of International Workshop on Wireless
Sensor Networks and Applications (WSNA), San Diego, California, USA,
Sep. 2003.

[9] S. Yoon, C. Veerarittiphan and M. L. Sichitiu, “Tiny-sync: tight time
synchronization for wireless sensor networks,” ACM Trans. on Sensor
Networks, vol. 3, issue 2, no. 8, June, 2007.

[10] J. Elson, L. Girod, D. Estrin, “Fine-Grained Network Time Synchroniza-
tion using Reference Broadcasts”, in Proceeding of the 5th Symposium
on Operating System Design and Implementation, Boston, MA, pp. 147-
163, Dec. 2002.

[11] K.-L. Noh, E. Serpedin and K. Qaraqe, “A New Approach for Time
Synchronization in Wireless Sensor Networks: Pairwise Broadcast Syn-
chronization”, IEEE Trans. on Wireless Communications, vol. 7, no. 9,
pp. 3318-3322, Dec. 2008.

[12] H. Dai and R. Han, “TSync: a lightweight bidirectional time synchro-
nization service for wireless sensor networks”, ACM Mobile Computing
and Communications Review, vol. 8, no. 1, pp. 125-139, 2004.

[13] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
IEEE Trans. on Computers, vol. 55, no. 2, pp. 214-225, Feb. 2006.

[14] A. Giridhar and P. R. Kumar, “Distributed clock synchronization over
wireless networks: algorithms and analysis,” in Proceeding of the 45th
IEEE Conference on Decision and Control, San Diego, CA. pp. 4915-
4920, Dec. 2006.

[15] L. Schenato and G. Gamba, “A distributed consensus protocol for clock
synchronization in wireless sensor network,” in Proceeding of IEEE
Conference on Decision and Control, New Orleans, LA. pp. 2289-2294,
Dec. 2007.

[16] G. Xiong and S. Kishore, “Analysis of distributed consensus time
synchronization with Gaussian delay over wireless sensor networks,”
EURASIP Journal on Wireless Communications and Networking, vol.
2009. Article ID 528161, 9 pages, 2009.

[17] Y.-W. Hong and A. Scaglione, “A scalable synchronization protocol
for large scale sensor networks and its applications,” IEEE Jouranl on
Selected Areas in Communications, vol. 23, o. 5, pp. 1085-1099, May
2005.

[18] A.-S. Hu and S. D. Servetto, “On the scalability of cooperative time syn-
chronization in pulse-connected networks,” IEEE Trans. on Information
Theory, vol. 52, no. 6, pp. 2725-2748, 2006.

[19] O. Simeone and U. Spagnolini, “Distributed synchronization in wireless
networks,” IEEE Signal Processing Magazine, vol. 25, issue 5, pp. 81-
97. Sep. 2008.

[20] K.-L. Noh, Q. M. Chaudhari, E. Serpedin and B. W. Suter, “Novel
clock phase offset and skew estimation using two-way timing message
exchanges for wireless sensor networks,” IEEE Trans. on Communica-
tions, vol. 55, no. 4, pp. 766-777, Apr. 2007.

[21] M. Leng and Y.-C. Wu, “On clock synchronization algorithms for Wire-
less Sensor Networks with unknown delay,” IEEE Trans. on Vehicular
Technology, vol. 59, no. 1, pp.182-190, Jan. 2010.

[22] Q. M. Chaudhari, E. Serpedin, and K. Qaraqe, “Some improved and
generalized estimation schemes for clock sychronization of listening
nodes in wireless sensor networks,” IEEE Trans. on Communications.
vol. 58, no. 1, pp. 63-67, Jan. 2010.

[23] F. R. Kschischang, B. J. Frey and H.-S. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. on Information Theory, vol.
47, no. 2, pp. 498-519, Feb. 2001.

[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, San Francisco, CA: Morgan Kaufmann, 1988.

[25] J. S. Yedidia, W. T. Freeman and Y. Weiss, “Understanding belief
propagation and its generalization,” Exploring Artificial Intelligence in
the New Millennium, ISBN 1558608117, Chap. 8, pp. 239-236, Jan.
2003.

[26] H. Wymeersch, J. Lien and M. Z. Win, “Cooperative localization in
wireless networks,” in Proceeding of the IEEE, vol. 97, no. 2, pp. 427-
450, Feb. 2009.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

[27] P. Rusmevichientong and B. V. Roy, “An analysis of belief propagation
on the turbo decoding graph with Gaussian densities,” IEEE Trans. on
Information Theory, vol. 47, no. 2, pp. 745-765, 2001.

[28] J. K. Johnson, D. M. Malioutov and A. S. Willsky, “Walk-sum inter-
pretation and analysis of Gaussian belief propagation,” in Advances in
Neural Information Processing Systems 18, 2006.

[29] J. Bibby, “Axiomatisations of the average and a further generalization
of monotonic sequences,” Glasgow Mathematical Journal, vol. 15, pp.
63-65, 1974.

[30] S. U. Pillai, T. Suel and S. Cha, “The Perron-Frobenius theorem and
some of its applications,” IEEE Signal Processing Magazine, vol. 22,
no. 2, pp. 62-75. March 2005.

[31] C. D. Meyer, Matrix Analysis and Applied Linear Algebra Book and So-
lutions Manual, SIAM: Society for Industrial and Applied Mathematics.
Feb. 2001.

[32] E. Seneta, Nonnegative matrices and markov chains, 2nd edn. Springer,
New York. 1981.

[33] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in International Conference on Information
Processing in Sensor Networks (IPSN), pp. 37-48, San Francisco, April
2009.

[34] R. Carli and S. Zampieri, “Networked clock synchronization based on
second order linear consensus algorithms,” in 49th IEEE Conference on
Decision and Control, pp. 7259-7264, Atlanta, December 2010.

Mei Leng received the B.Eng. degree from Uni-
versity of Electronic Science and Technology of
China (UESTC) in 2005 and Ph.D. degree from
The University of Hong Kong in 2011. She is
currently a research fellow at the School of Electrical
and Electronic Engineering, Nanyang Technological
University. Her current research interests include
statistical signal processing, optimization, machine
learning as well as Bayesian analysis, with appli-
cations to wireless sensor networks and wireless
communication systems.

Yik-Chung Wu obtained the B.Eng. (EEE) degree
in 1998 and the M.Phil. degree in 2001 from The
University of Hong Kong (HKU), and Ph.D. degree
in 2005 from Texas A&M University, USA. From
Aug. 2005 to Aug. 2006, he was with the Thomson
Corporate Research, Princeton, NJ, as a Member
of Technical Staff. Since Sep. 2006, he has been
with the University of Hong Kong as an Assistant
Professor. Yik-Chung’s research interests are in gen-
eral area of signal processing and communication
systems, and in particular receiver algorithm design,

synchronization techniques, channel estimation and equalization. He is cur-
rently serving as an associate editor for the IEEE Communications Letters.

