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Abstract—The increasing number of Internet of Things (IoT)
objects has been a growing challenge of the current spectrum sup-
ply. To handle this issue, the IoT devices should have cognitive
capabilities to access the unoccupied portion of the wideband
spectrum. However, most IoT devices are difficult to perform
wideband spectrum sensing using either conventional Nyquist
sampling system or sub-Nyquist sampling system since both
power-hungry sampling components and intricate sub-Nyquist
sampling hardware are unrealistic in the power-constrained IoT
paradigm. In this paper, we propose a blind joint sub-Nyquist
sensing scheme by utilizing the surround IoT devices to jointly
sample the spectrum based on the multicoset sampling theory.
Thus, only the off-the-shelf low-rate analog-to-digital convert-
ers on the IoT devices are required to form coset samplers
and only the minimum number of coset samplers are adopted
without the prior knowledge of the number of occupied chan-
nels and signal-to-noise ratios. Moreover, to further reduce the
number of coset samplers and transfer part of the computa-
tional burden from the IoT devices to the core network, we
adopt the data from geo-location database when applicable. The
experimental results on both simulated and real-world signals
verify the theoretical results and effectiveness of the proposed
scheme. At the meanwhile, it is shown that the adaptive number
of coset samplers could be adopted without causing the degra-
dation of the detection performance and the number of coset
samplers could be further reduced with the assists from geo-
location database even when the obtained information is partially
correct.

Index Terms—Compressive sensing (CS), Internet of Things
(IoT), sub-Nyquist wideband spectrum sharing.
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I. INTRODUCTION

T
HE RECENT developments of Internet of Things (IoT)

has drawn world-wide attention of both academia and

industry with the vision of extending Internet connectivity to

a vast number of “things” in our physical world [1]–[4]. With

turning IoT paradigm into a reality, the amount of IoT devices

is expected to grow in large numbers, which leads to diffi-

culty in allocating sufficient spectrum bands to these devices.

Additionally, transmission performance degeneration will be

caused due to the overcrowding in the unlicensed industrial,

scientific and medical bands [5]. On the other hand, not every

channel in every portion of the spectrum is fully utilized all the

time even for the “busy” spectrum below 6 GHz in the urban

areas, as shown in Fig. 1. This observation has encouraged

the standardization bodies such as Federal Communications

Commission in U.S. and Office of Communications in the

U.K. to release the underutilized licensed bands such as TV

white space (TVWS) [6] and 3.5-GHz shared spectrum [7] for

temporary secondary access through the use of dynamic wide-

band spectrum sharing. For example, It has shown that over

50% of locations in the U.K. are likely to have more than

150 MHz of vacant TV spectrum and that even 90% of loca-

tions might have around 100 MHz of spectrum available [6].

Moreover, the superior penetration propagation characteris-

tic over ultrahigh frequency spectrum enables TVWS to have

longer communication distance and better penetration through

obstacles [8], which makes TVWS be an ideal candidate for

the long-range wide-area IoT network, especially for the smart

agriculture in rural area. Therefore, it is the vision that smart

IoT devices should have cognitive capabilities to enable spec-

trum sharing over wideband spectrum [9]–[11]. With cognitive

capabilities, interference among the IoT devices can be alle-

viated by seeking for the vacant channels through dynamic

spectrum access.

The precondition for implementing the dynamic spectrum

access in IoT paradigm over TVWS or other shared spectrum

is the real-time observation of spectrum occupancy status. One

of the current operational mechanism to attain this information

is using the geo-location databases. However, it only protects

registered primary systems and those databases are only avail-

able in certain locations and spectrum, e.g., TVWS in the U.K.

and U.S. [12]. For the concern of limited access to database

and the database update speed, spectrum sensing, as one of

the vital important technologies in cognitive radio (CR), was

proposed to efficiently explore the underutilized spectrum [13].
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Fig. 1. Real-time spectrum occupancy recorded at Queen Mary University
of London (51.523021◦N 0.041592◦W). The figure shows that the spectrum
is sparsely occupied below 6 GHz.

However, it is unrealistic to directly acquiring the wideband

signals by conventional Nyquist sampling scheme, especially

in the energy-constrained IoT devices, since that requires high

sampling rates (double or more than the bandwidth of the

signal in frequency domain) and high power consumption

in the analog-to-digital converter (ADC). In [14] and [15],

sequential sensing approaches were proposed to individually

sense the channels by using the tunable narrowband band-

pass filter with low-rate ADC. Due to the sequential nature of

those schemes, the large sensing latency would be introduced,

which may lead to missed opportunities or interferences [16].

Therefore, compressive sensing (CS) [17], [18] was applied

to realize wideband spectrum sensing without the high rate

signal sampling and processing. It enables the fast and accu-

rate spectrum detection with sub-Nyquist sampling rates by

exploiting the sparse nature of the underutilized wideband

spectrum in practice [19], [20]. However, the specialized sam-

pling schemes for CS are difficult to be implemented in

most of compact IoT devices with limited energy supply

and cost constraints. For example, the random demodulation

sampling [21] which employs the high rate pseudorandom

sequence to modulate the input signal, and the conventional

multicoset sampling [22]–[24] which have to assemble numer-

ous ADCs into a single sensing equipment due to the unknown

number of occupied channels in practice.

Therefore, the wideband spectrum sensing scheme with-

out employing either high-rate ADCs or specialized sampling

schemes is urgently needed for low-power IoT scenario. On

the other hand, as the rapid growth of low-power IoT mar-

ket, large number of IoT devices would be deployed closely

in order to achieve multiple environment sensing and machine

control functions, which are equipped with commercial low-

rate ADCs for data transmission [25]. Motivated by the above

challenges, the contribution of this paper is threefold.

First, we propose a distributed sub-Nyquist sampling

scheme by utilizing adjacent IoT devices which have cogni-

tive capabilities with wide-range radio frequency front-end,

to jointly sample the spectrum based on the multicoset sam-

pling theory. It means that only the off-the-shelf low-rate

ADC on each IoT device is required for sampling and

formed as the coset sampler. Second, we consider the situ-

ation in which the number of occupied channels is unknown.

As the multicoset sampling theory indicates that the num-

ber of cosets should be at least more than two times of

the number of occupied channels [22], in the conventional

multicoset sampling scheme [22]–[24], the prior knowledge

of occupied channel number is required to adopt the mini-

mum number of cosets, which is difficult to know in practice.

Furthermore, even the number of occupied channels is known,

the least number of coset to achieve the same detection

performance is varying under different signal-to-noise ratios

(SNRs) [23]. Therefore, the aforementioned schemes tend to

further increase the amount of cosets in order to keep sta-

ble detection performance. In the proposed scheme, only the

minimum number of coset samplers are adopted without the

prior knowledge of occupied channel number by gradually

increasing the number of involved coset samplers and indi-

rectly estimating the reconstruction errors until the spectrum

recovery is satisfactory. Third, we propose to incorporate the

channel occupancy information from geo-location database

when it is applicable. In [26], a database-assisted CS algo-

rithm employs the channel historical power information from

geo-location database to reduce the iterations of weights updat-

ing in the iteratively reweighted least square (IRLS) algorithm.

However, the dynamic change of channel power information

from geo-location database could severely degrade the recon-

struction accuracy, i.e., newly added PUs and the errors in the

prior information from geo-location database. Therefore, we

proposed a hybrid reconstruction scheme with the awareness

that the prior information from geo-location is not perfectly

reliable. Moreover, the proposed can track the changes of spec-

trum occupancy state in real-time, i.e., newly added users.

With the assists from geo-location database, part of the com-

plexity of local wideband sensing is transferred to the core

network, thus further decreasing the processing complexity

and energy consumption required on the IoT devices.

The rest of this paper is organized as follows. Section II

describes the preliminary system and signal model. In

Section III, the proposed blind joint sub-Nyquist sensing

scheme is introduced. Section IV introduces the joint iterative

reweighted sparse recovery incorporated with geo-location

database. Section V analyzes and validates the proposed algo-

rithms over simulated and real-world TVWS signals. The

conclusion is drawn in Section VI.

II. PRELIMINARY SYSTEM MODEL

AND PROBLEM FORMULATION

A. System Model

In this paper, we consider that the observed wideband

spectrum signal x(t) is a continuous-time signal whose total

bandwidth is denoted as W Hz, such that

x(t) =
Nsig
∑

i=1

[si(t) + ni(t)] (1)

where Nsig is the number of transmission signals from primary

users (PUs). si(t) and ni(t) refers to the ith signal and additive

white Gaussian noise in the corresponding band, respectively.

In the conventional Nyquist sampling system, the sampling

rate is adopted as fN ≥ 2W over the observation time To to
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Fig. 2. Block diagram of compressive spectrum sensing framework.

generate the uniform samples x[(n/fN)]. The corresponding

discrete Fourier transform (DFT) of the signal x[(n/fN)] could

be obtained as

X[k] =
N−1
∑

n=0

x

[

n

fN

]

e−2
√

−1πkn/N, k = 0, 1, . . . , N − 1

(2)

where N = fN · To and X[k] typically bears a near sparse

property due to the underutilization of wideband spectrum

as shown in Fig. 1. Without loss of generality, the wideband

spectrum is evenly segmented into H channels. Since the prob-

abilities that PUs present in any channel are assumed to be

unknown, we model the multiband sensing on each channel as

a binary hypothesis test [27]. The general compressive spec-

trum sensing framework utilized in the proposed scheme is

illustrated in Fig. 2. The aim of compressive spectrum sens-

ing is to reconstruct signal x[(n/fN)] or its spectrum X[k] from

the sub-Nyquist samples and then perform the spectrum sens-

ing techniques, e.g., energy detection and feature detection,

on the reconstructed signal in order to decide the occupancy

status. Compared with other conventional spectrum detection

technologies [28], the energy detection does not require any

prior knowledge of the PUs, i.e., modulation type, with lower

implementation and computational complexity [29], therefore,

we adopt the energy detection method [30] in this paper.

In the context of wideband spectrum sensing in shared spec-

trum, some of the frequency bands are heavily used by the

PUs such as local radio stations, local TV stations, etc., so

the related information at the geo-location database will be

stable due to TV broadcasting arrangement in the long run

(e.g., years). Therefore, although the side-information from

geo-location database is possibly with some errors due to the

dynamic changes of the spectrum state, such information can

be incorporated at the sensing terminals to reduce the sensing

costs.

B. Problem Formulation

According to the general CS-based spectrum sensing frame-

work shown in Fig. 2, we know that the spectrum recovery

performance would have direct impact on the sensing results.

For the compressive multicoset sampling theory, the recon-

struction performance mainly depends on three factors: 1) the

number of cosets; 2) the reconstruction algorithm; and 3) the

occupancy ratio, i.e., bandwidth of transmission signals/total

bandwidth. As the occupancy ratio is determined by transmis-

sion activities within the desired wideband spectrum. In this

paper, we focus on discussing how to choose the minimum

number of cosets samplers without the prior knowledge of

the occupied channel number and how to optimize the recon-

struction stage in terms of number of required measurements

and computational burden with the coexistence of dynamic

incumbent systems over TVWS.

The compressive measurement acquisition can be expressed

by the following analytical model:

y = �x + ξ subject to||x||0 ≤ s (3)

where � ∈ R
M×N is the measurement matrix to collect the

compressive samples y ∈ R
M from the original signal x. M ∈

Z (with s < M < N) refers to the dimension of y, and || · ||0
represents the number of nonzero elements in the vector, which

is also treated as the measure of sparsity. Parameter ξ ∈ R
M

is the noise perturbation, whose magnitude is constrained by

an upper bound η, i.e., ||ξ ||2 < η.

Under certain assumptions including the restricted isome-

try property on � and the signal sparsity bound [17], robust

signal reconstruction with respect to the above linear system

can be formulated as the following unconstrained minimization

problem:

x∗ := arg min
x∈RN

1

2
||�x − y||22 + λ||x||0 (4)

where x∗ is the reconstructed signal and constant parameter

λ > 0 is introduced to balance the objective of minimiz-

ing the reconstruction error ||x − x∗||22 and the solution

sparsity ||x||0 according to the Lagrange multiplier theo-

rem. However, problem (4) is NP-hard due to the l0-norm

minimization of x. It was shown in [17] that the result

of l0-norm minimization can be equivalent to the solution

obtained by the l1-norm minimization which can be solved

in polynomial time. Therefore, (4) can be approximated as

x∗ := arg min
x∈RN

1

2
||�x − y||22 + λ||x||1. (5)

Recent works [31] show that additional prior knowledge on

the original signal can be utilized to enhance the reconstruc-

tion capabilities of CS algorithms. For example, the signal

reconstruction stage could adapt to the incomplete or com-

plete prior information on the support of original signal in

sparse domain, e.g., frequency spectrum, which aims to obtain

a result that explains the samples, whose support contains the

smallest number of new additions to the known support T and

subject to the target sparsity, so the solution is given by

x∗ := arg min
x∈RN

1

2
||�(x)T c − y||22 + λ||(x)T c ||1. (6)

Suppose that the support set of x is denoted as S = supp(x),

where the known part of the support set is T , the unknown

support set is U , and the error in the known part set is Ue :=
T \S. The size of these sets are denoted as s := |S|, u := |U |,
and e := |Ue|, so that s = t+u−e. The theoretical lower bound

for exact reconstruction based on the l0-norm minimization
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can be expressed with the restricted orthogonality constant

δ as [32]

δt+2u < 1 (7)

which is much weaker than that of the original sparse recovery

δ2s < 1 [31] as the restricted orthogonality constant δ is non-

decreasing, and s ≫ u; s ≫ e. Sufficient condition for exact

reconstruction in terms of δ measures the theoretical mini-

mum number of samples needed. Therefore incorporating the

prior known part of the signal support can reduce the number

of samples to guarantee the successful reconstruction, so that

the sampling rate and computational burden will be further

reduced for the power-constrained IoT devices.

The notation used is summarized as follows. The super-

scripts (·)T and (·)H denote transpose and Hermitian transpose,

respectively. Ai,j is the (i, j)th entry of the matrix A. A(i) is the

ith column of the matrix A. A[i] is the ith row of the matrix

A. AT denotes the submatrix containing the columns of A

with indices from T . The notation T c denotes the complement

of the set T . T1 \ T2 = T1 ∩ T
c

2 denotes the set difference.

And |T | denotes the size of set T . vec(·) operator refers as

vec(A) � [AT
(1), AT

(2), . . . , ]T and supp(x) denotes the support

set of x.

III. PROPOSED BLIND JOINT SUB-NYQUIST

SENSING SCHEME

In this section, the proposed blind joint sub-Nyquist sens-

ing scheme is presented, which utilizes adjacent IoT devices to

jointly sense the wideband spectrum. Compared with the con-

ventional multicoset sampling scheme, the adaptive number of

cosets samplers are adopted without the prior knowledge of

the occupied channel number.

As shown in Fig. 3, the joint sub-Nyquist sensing system is

realized by utilizing multiple IoT devices which are served as

low-rate coset samplers, and the edge computing unit which

could be either the IoT device or independent computing

unit if the IoT device with sufficient power supply and com-

puting capability is not available in surrounding area. The

power-constrained IoT devices could benefit from transferring

the computing task to the edge computing unit, especially

for those IoT devices with sensing capability but sufficient

computing resource. Given the number of channels H and cor-

responding Nyquist sampling rate fN = 1/TN ≥ 2W, each

of the coset samplers takes uniform samples by a signifi-

cantly decreased sampling rate fs = (1/HTN) = fN/H with

a time offset of {ciTN}, i = 1, . . . , p, where p < H is

the number of coset samplers and the set C = {ci}p

i=1 con-

sists of p distinct integers randomly selected from [0, H − 1].

Thus the average compressive ratio could be given as α =
(fN/H)TN ·p/(fN ·TN) = p/H. For the ith coset sampler, the

uniform sampling sequence is defined as

xci[n] =
{

x(nTN), n = mH + ci, m ∈ Z

0, otherwise.
(8)

Furthermore, by applying Fourier transform to xci [n], the

relationship between its spectrum Xci(e
2
√

−1πkTN ) and the

Fig. 3. Block diagram of the proposed joint sub-Nyquist sensing system.

unknown Fourier spectrum X(k) of x(t) is presented as [33]

Xci

(

e2
√

−1πkTN

)

= 1

HTN

H−1
∑

h=0

Xh(k)e
√

−1 2π
H

cih, ∀k ∈ [0, W]

(9)

for every 1 ≤ i ≤ p, where Xh(k) = X(k + (h/HTN)) cor-

responds to the pieces of the original spectrum X(k) in the

hth channel, which is shifted to the left by (h/HTN) units.

Therefore, (9) could be simplified into the matrix form as

Y(k) = AX(k), ∀k ∈ [0, W] (10)

where Y(k) ∈ C
p×L is a matrix whose ith row is

Xci(e
2
√

−1πkTN ), X(k) = [X0(k), X1(k), . . . , XH−1(k)]
T is the

unknown spectrum vectors of x(t) in the H channels, and

A ∈ C
p×H is a matrix with (i, j)th element given by Ai,j =

(1/HTN)e
√

−1(2π/H)ci(j−1).

The multicoset sampling theory indicates that the number of

cosets p should be at least more than two times of the number

of occupied channels [22]. Therefore, in the conventional mul-

ticoset sampling scheme [22], [23], the number of occupied

channels κ is assumed as the prior knowledge to decide the

number of coset p needed in integrated sampling hardware.

However, as the number of occupied channels is unknown in

practice, p could be set unnecessary large when it is deter-

mined by κ . Moreover, even if the exact number of occupied

channels is known or estimated, the least number of cosets

to achieve the same detection performance are still varying

under different SNRs [23]. Therefore, fixing the number of

coset when produce the sampling hardware could cause either

performance degeneration or the waste of sampling resources.

In the proposed scheme, only the minimum coset samplers

are adopted without the prior knowledge of the number of

occupied channels or its upper bound value κ . Specifically,

through repeating the procedure of signal acquisition by gradu-

ally increasing the number of involved coset samplers and per-

forming signal reconstruction, we could obtain a sequence of

reconstructed signal, i.e., x̂1, x̂2, . . . , x̂p, where x̂ = vec(X̂(k)).

After each time of signal reconstruction, the proposed scheme

should decide whether the reconstruction of the original sig-

nal is accurate enough or not. If the reconstructed signal does

not satisfy certain accuracy requirement of spectral detection,

the scheme should require more coset samplers until the accu-

racy of the signal reconstruction is good enough. However, the
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actual reconstruction error e = ||x − x̂||22 is inaccessible since

the original signal x = vec(X(k)) is unknown. In this paper,

we propose to estimate the reconstruction error e indirectly

and set stopping criterion.

Before proposing the scheme to approximate reconstruction

error, we give the vectorization of (10) in the following lemma.

Lemma 1: Given the matrix form Y(k) = AX(k), we could

obtain the vector form as vec(Y(k)) = �vec(X(k)), where

the matrix � = IL⊗A and the operator ⊗ represents the

Kronecker product.

Proof: Let X(k) = [X(1)(k), X(2)(k), . . . , X(L)(k)] and

u1, u2, . . . , uL denote the unit vectors. We could obtain

vec(Y(k)) = vec(AX(k)) = vec(AX(k)IL)

= vec

(

L
∑

i=1

AXi(k)ui
TIL

)

=
L

∑

i=1

vec
(

(AXi(k))(ILui)
T
)

=
L

∑

i=1

(ILui⊗AXi(k))

= (IL⊗A)

L
∑

i=1

(ui⊗Xi(k))

= (IL⊗A)

L
∑

i=1

vec
(

Xi(k)ui
T
)

= �vec(X(k)).

(11)

Thus vec(Y(k)) = vec(AX(k)) = �vec(X(k)) is obtained.

In the following of this section, we denote vec(Y(k)) as y.

Specifically, the samples vector y in each step is divided into

two vectors yr (yr ∈ R
r×1) and yv (yv ∈ R

v×1). According to

Lemma 1, these two vectors therefore can be expressed as yr =
�rx and yv = �vx, respectively, where �r is a r × HL matrix

and �v is a v×HL matrix. Parameter r represents the number

of samples in yr for signal recovery and v is the number is

set to guarantee the sufficient accuracy of reconstruction error

estimation as illustrated later.

As mentioned before, the exact reconstruction error e =
||x− x̂||22 could not be obtained to determine how accuracy the

reconstructed signal is. Therefore, we propose to estimate the

actual reconstruction error e indirectly by using the verification

vector yv and the proposed stopping criterion is defined as

Sp = ||�vx̂ − yv||22. (12)

The Johnson–Lindenstrauss lemma presented in [34] asserts

that a high-dimensional space can be projected into a low-

dimensional one whose dimension is equal or larger than

O(ζ−2logHL) so that all distances are preserved up to a

multiplicative factor between 1 − ζ and 1 + ζ with the fac-

tor ζ ∈ [0,≤ 1/2]. To demonstrate the rigorous relationship

between the actual reconstruction error e and the proposed

stopping parameter Sp, we prove the point that the actual

reconstruction error e = ||x−x̂||22 could be approximated by Sp

within the boundary factor of 1 ± ζ in Theorem 1. Therefore,

in order to terminate the signal acquisition process, i.e., deter-

mine whether the number of coset samplers are sufficient or

not, one can compare the proposed stopping parameter Sp with

a predefined threshold which could be determined according

to the certain reconstruction accuracy requirement.

Theorem 1: Given ζ ∈ (0, 1/2], and γ ∈ (0, 1) and v ≤
Cζ−2log(1/2γ ), we have

Sp

(1 + ζ )
≤ e ≤ Sp

(1 − ζ )
(13)

with confidence 1−γ , where the parameter C depends on the

concentration property of random variables in measurement

matrix ��M [34]. ê and e are defined as before.

Proof: With the aid of Johnson–Lindenstrauss lemma,

if the number of row v in �v is equal or larger than

Cζ−2log(1/2γ ), we have

(1 − ζ )||x − x̂||22 ≤ ||�v

(

x − x̂
)

||22 ≤ (1 + ζ )||x − x̂||22
(14)

with confidence 1 − γ , where ζ ∈ (0, 1/2] and γ ∈ (0, 1). As

matrix �v could be seen as a linear projection from R
HL to

R
v, we can get

(1 − ζ )||x − x̂||22 ≤ ||�vx̂ − yv||22
≤ (1 + ζ )||x − x̂||22. (15)

To obtain the observation that e = ||x− x̂||22 could be bounded

and estimated by Sp = ||�vx̂ − yv||22, we change the (15) to

another form (16) and simplify it to (17)

1

(1 + ζ )
||�vx̂ − yv||22 ≤ ||x − x̂||22

≤ 1

(1 − ζ )
||�vx̂ − yv||22 (16)

Sp

(1 + ζ )
≤ e ≤ Sp

(1 − ζ )
. (17)

Therefore, when the row number v in �v is equal or larger

than Cζ−2log(1/2γ ), the distance between Sp and e could be

bounded up to a multiplicative factor between 1− ζ and 1+ ζ

with the confidence 1 − γ .

To further reduce the computational complexity of the signal

reconstruction of (10), we compute the covariance matrix of

the sample sequences as [35]

R = E
[

Y(k)YH(k)
]

= ARXAH (18)

where RX = E[X(k)XH(k)] is the H × H primary signal cor-

relation matrix and σ 2
n is the noise variance. According to the

eigenvalue decomposition method [23], the covariance matrix

R could be decomposed as R = U�UH. Utilizing eigenval-

ues � and the corresponding eigenvectors U, the measurement

matrix could be constructed as χ = U
√

�, and we can define

the following linear system:

χ = Aν (19)

where the support of the sparest solution to (19) converges

to the original spectrum in matrix form, i.e., supp(ν) =
supp(X(k)) [23]. Compared with original sub-Nyquist samples
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Algorithm 1 Proposed Blind Joint Sub-Nyquist Sensing

Scheme

Require: Sampling rate fs, the maximum number of avail-

able coset samplers pmax, the stopping parameter threshold

δ, A.

Ensure: The reconstructed signal x̂

1: while p = 0, . . . , pmax do

2: Sampling the wideband signal using fs with p coset

samplers so as to obtain the compressive measurement

matrix Y(k) and the corresponding covariance matrix R.

3: Reconstruct the support and spectral from R by utilizing

SOMP algorithm according to (19), leading to a spectral

reconstruction x̂p.

4: Calculate the stopping parameter

Sp = ||�vx̂ − yv||22
5: if Sp smaller than predefined threshold is true

6: Terminate the signal acquisition process.

7: else

8: p = p + 1

9: end if

10: end while

Y(k) ∈ C
p×N , using χ ∈ C

p×p for support recovery reduces

the computation complexity required on the SUs. After the

support recovery, the exact signal reconstruction could be

achieved by the reconstruction algorithm. In CS, the origi-

nal signal could be recovered from sub-Nyquist samples by

solving the l1-norm minimization. Since the reconstruction of

the unknown matrix ν with jointly sparse columns in (19)

is referred to as the joint sparse problem [36], we extend

greedy-type algorithm such as simultaneous orthogonal match-

ing pursuit (SOMP) [37] to solve this joint sparse problem,

because of its lower complexity compared with the l1-norm

minimization [38]. Besides, the related exact recovery criterion

for the conventional orthogonal matching pursuit remains valid

for its extension to SOMP [39]. The procedure of proposed

blind joint sub-Nyquist sensing scheme is summarized as

Algorithm 1.

IV. JOINT ITERATIVE REWEIGHTED SPARSE RECOVERY

WITH GEO-LOCATION DATABASE

In this section, first we extend the single measurement

vector (SMV) problem to the multiple measurement vectors

(MMVs) problem in (10), where X(k) is row-sparse, i.e., hav-

ing nonzero entries in only a few rows. Then the lν-norm

(0 < ν < 1) minimization problem solving by the IRLS-type

algorithm is modified to incorporate the information from geo-

location database for enhancing the recovery performance with

fewer measurements. Based on the white space channel infor-

mation from the geo-location database, the sensor node can

get a response with details of available channels in the vicin-

ity. For simplifying the notation, X(k) and Y(k) are denoted

as X and Y, respectively.

Since the parameter H is set based on the number of chan-

nels in the spectrum of interest, the positions of nonzero

Algorithm 2 Iterative Reweighted Sparse Recovery With Prior

Information

Require: matrix of p samples sequence Y ∈ C
p×N , measure-

ment matrix A = [a1, . . . , aM] ∈ C
p×M , information from

geo-location databaseT , κ̂ from EFT, W(0) and λ(X(0)).

Ensure: S

1: for l = 1, . . . , lmax do

2: Compute

3: X(l) = W(l−1)AT(AW(l−1)AT + λ(X(l−1))I)−1Y

4: if ||�X(l+1)|| ≤ δ break;

5: Update

6: Weights: w
(l)
i = (||X(l−1)[i]||2)v−2

7: Penalty parameter:

8: λ(X(l)) = 1
2
||AX(l) − Y||22/[̺ −

∑

w
(l)
i (||X(l)

[i] ||2)2]

9: l = l + 1

10: end for

11: Estimate support S by selecting the position of the first κ̂

smallest components in W(l+1)

12: return S=S-1

rows in (10) is equivalent to the active channel index set S.

Therefore, the channel status information from geo-location

database could be incorporated on the indices of the corre-

sponding rows with large norm in the recovery process, in

order to enhance the recovery performance with fewer mea-

surements under sub-Nyquist sampling. To that end, SMV is

extended to the MMV problem, where the objective is to min-

imize the number of rows containing nonzero entries while

satisfying the measurement constraint in (10). The problem

can be formulated as [36]

arg min
X

1

2
||AX − Y||22 + λ||Rlν (X)||1. (20)

Rlν (X) is a vector in R
H whose ith entry is the lν norm of

the ith row of X

Rlν (X) = [v1, v2, . . . , vH]T (21)

where vi = ||X[i]||q = (
∑N

j=1 |xi,j|q)1/q.

Compared with the l1-norm minimization in (5), the lν-

norm minimization with 0 < ν < 1 leads to the better

sparsity approximation performance with the fewer samples

since it is an intermediate problem in the sense of norm

minimization between (4) and (5) [40]. Therefore the l1-norm

minimization is replaced with the lν-norm minimization for

signal reconstruction in this section. It can be given as

arg min
X

1

2
||AX − Y||22 + λ||Rlν (X)||vv (22)

where the penalty parameter λ > 0 is introduced to balance

the reconstruction accuracy and the sparsity of minimization

result as discussed in Section II. Since the choice of λ greatly

influences the behavior of the spectrum reconstruction [41], in

this paper, λ is defined as a function of the target signal to

optimize λ along with the signal reconstruction process, such

that the problem in (22) can be transformed into the following

form:

arg min
X

F(X) = 1

2
||AX − Y||22 + λ(X)||Rlν (X)||vv. (23)
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Without losing the numerical property of (22), we define the

linear function of the form: F(X) = ̺λ(X) [42] to preserve

the convexity in each iteration and exhibits only a global

minimizer regardless of the value of λ(X), where ̺ is the

coefficient representing the slope of the line and also controls

convexity. We substitute F(X) = ̺λ(X) to (23) and therefore

λ(X) can be expressed as

λ(X) =
1
2
||AX − Y||22

̺ − ||Rlν (X)||vv
0 < ν < 1. (24)

However, it is general computationally hard and not guaran-

teed to obtain its global minimum due to the nonconvexity of

the lν-norm minimization. It is shown in [40] that under certain

assumptions such as the null space property on measurement

matrix A, the solution sequence generated by the IRLS algo-

rithm converges to the local minimum as the sparsest solution

that is also the actual global lν-norm minimizer. With q = 2,

each iteration of the IRLS algorithm corresponds to a convex

weighted least squares subproblem that can be formulated as

arg min
X

1

2
||AX − Y||22 + λ(X)

H
∑

i=1

wi

(

||X[i]||2
)2

. (25)

The problem in (25) will be repeatedly solved by updating the

weight wi at each iteration using the solution from previous

iteration: at each iteration, wi will be set as

w
(l)
i =

(
∥

∥

∥
X

(l−1)
[i]

∥

∥

∥

2

)v−2
(26)

where w
(l)
i , i = 1, . . . , H is the value of the weighting vec-

tor to be used at the lth iteration and X(l−1) is the (l − 1)th

iterate. After convergence, X(l−1) will be sufficiently close to

X(l). The weighting parameter w(l) are computed from the row

norms of the solution obtained in the previous iteration, so

the corresponding rows with smaller norm are likely to be

de-emphasized as they are irrelevant in fitting the data and

vice versa. In (26), as 0 < v < 1, the weights will be chosen

inversely proportional to the l2-norm of the rows. Since it gives

a large weight to the small component, it will encourage a

sparse solution in the minimization problem of (25). Assuming

that T ⊂ [0, H − 1] is the prior knowledge of the occupied

channel indices from geo-location database, its relation to the

actual occupied channel set S can be expressed as

S = T ∪ △ \ △e (27)

where △ := S \ T is newly occupied channel set and △e :=
T \S are the newly released channel indices, i.e., the occupied

channel indices recorded at geo-location database but actually

released as vacant at current time.

As the ith row in X corresponds to the piece of the original

spectrum in the subchannel, the occupied channel informa-

tion from geo-location database indicates the indices of the

corresponding rows with large norm. Similar as (6), the objec-

tive function in (25) can therefore be changed as the lν
minimization over the remaining positions only, i /∈ T , i.e.,

arg min
X

1

2
||AX − Y||22 + λ(X)

∑

i/∈T
wi

(

||X[i]||2
)2

. (28)

By defining

wi = 0,∀i ∈ T (29)

the minimization in (25) is transformed in the form of (28).

Here, in order to add the prior channel occupancy informa-

tion from geo-location database, the weighing strategy in the

joint sparse reconstruction is modified as

w
(l)
i =

⎧

⎪

⎨

⎪

⎩

ϕ
(

||X(l−1)
[i] ||2

)v−2
, i ∈ T

(

||X(l−1)
[i] ||2

)v−2
, otherwise

(30)

where ϕ is a specified small constant. For ϕ = 0, the first

expression in (30) reduces to 0 as required by (29).

Given an initial guess of the signal X(0) (e.g., the least-

squares solution), the iterative reweighting algorithm generates

a sequence of iterations of as follows:

X(l+1) = arg min
X

1

2
||AX(l) − Y||22

+ λ
(

X(l)
)

∑

i/∈T
w

(l)
i

(

||X(l)
[i] ||2

)2
. (31)

The solution to (31) at the lth iteration can be expressed as

X(l+1) = W(l)AT
(

AW(l)AT + λ
(

X(l)
)

I
)−1

Y (32)

where W(l) = diag{[1/w
(l)
1 , . . . , 1/w

(l)
H ]}. The initial weight is

given by

w
(0)
i =

{

ϕ, i ∈ T

1, otherwise.
(33)

The algorithm is terminated once the convergence criterion has

been satisfied, i.e.,

||�X(l+1)|| =
||X(l+1) − X(l)||22

||X(l)||22
≤ δ (34)

where δ is a user-selected parameter. Here, based on the spar-

sity guess of the support dimension κ̂ from exponential fitting

test (EFT), the estimated active channel set is determined by

selecting the position of the first κ̂ smallest components in the

final weight w or comparing the components with predefined

threshold. The entire procedure of the proposed scheme in this

section is summarized in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, we test the proposed schemes using the sim-

ulated signals as well as the real-world signals as the proof of

concepts in this paper.

A. Experimental Setups

The simulated signals are assumed as x(t) ∈ F =
[0, 320] MHz, whose DFT is denoted as xsim

0
. To keep con-

sistency with the real TVWS setting, the spectrum is equally

divided into L = 40 channels with bandwidth B0 = 8 MHz,

which contains up to J active channels

x(t) =
J

∑

i=1

√

EiB0sinc(Bi(t − ti))e
j2π fit + n(t) (35)
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Fig. 4. Experimental setup for real-time processing and live compressive
spectrum sensing testbed on TVWS [43].

Fig. 5. Normalized power spectrum density (PSD) of the real-time TVWS
signal recorded at QMUL, S = [22, 23, 25, 26, 28, 29, 30, 33].

where sinc(x) = sin(πx)/(πx), Ei, ti, and fi represent the

energy, time offset, and central frequency of the ith channel,

respectively, and n(t) denotes the noise. The channel occu-

pancy ratio � is defined as J/L. The real-world signals xreal
0

is collected by the real-time wideband compressive spectrum

sensing testbed as shown in Fig. 4. There are 40 channels

(indexed as channels 21–60) in the recorded TVWS signal,

ranging from 470 to 790 MHz and each channel contains either

noise only or transmitting signal with noise. Fig. 5 shows

that the normalized downconverted real-world TVWS signal

in the baseband F = [0, 320] MHz. Strong DVB-T signal

reception at channel set S = [22, 23, 25, 26, 28, 29, 30, 33]

can be observed in the recorded spectrum. Thus the chan-

nel occupancy ratio is � = 20%. To quantify the detection

performance, we compute the detection probability Pd, i.e.,

the existing of occupied channels correctly being detected as

occupied, under 1000 trials.

B. Results and Analysis

1) Detection Performance Versus SNR and Number of Coset

Samplers: First, we demonstrate that channel occupancy ratio

� affects the required minimum number of coset samplers

to achieve the same detection probability Pd. It shows in

Fig. 6 that the detection performance Pd against SNR from

−5 to 20 dB with fixed number of coset samplers p = 20.

Moreover, it is observed that Pd improves as SNR increases

under different scenarios with channel occupancy ratios � =
12.5%, 25%, 37.5%, which means the minimum number of

coset samplers varying with the channel occupancy ratio � to

Fig. 6. Detection probability Pd versus SNR (dB) with p = 20 under different
channel occupancy ratios � = 12.5%, 25%, 37.5%.

Fig. 7. Detection probability Pd versus number of coset samplers p with
� = 12.5% under different SNRs.

Fig. 8. Detection probability Pd versus SNR (dB) with � = 12.5% under
different number of coset samplers.

achieve the same detection probability Pd. However, the infor-

mation of channel occupancy ratio � is usually unknown in

practice.

To verify the theory that the better detection performance

Pd always could be achieved by evolving more coset samplers,

we compare Pd against different number of coset samplers p

with fixed � and SNR. It is shown in Fig. 7 that detection

performance Pd increases with the number of coset samplers

but the extra coset samplers are unnecessary after the optimal

detection performance is obtained by minimum number of

coset samplers.

The proposed scheme could prevent the waste of sam-

pling resources and guarantee the detection performance with

sufficient number of coset samplers under different channel

environments, i.e., SNRs. As demonstrated in Fig. 8, the

proposed scheme therefore can be terminated according to the

stopping criterion when the number of coset samplers reaches

p = 10 if the received SNR is equal or greater than 5 dB.

Besides, more coset samplers are required in the proposed



3242 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

Fig. 9. Detection probability Pd versus number of coset samplers p under
different ratio of known part τ = 0.3, 0.5, 0.8, 1.0 and sensing only.

scheme under the worse SNRs to achieve accurate detection

performance. Therefore, it is shown that the proposed scheme

is allowed to adaptively choose the number of coset samplers

under different SNRs.

2) Detection Performance With the Prior Information in the

Geo-Location Database: As the active channel set S is ran-

domly generated from {Z ∩ [1, L]}, among which the prior

known part T obtained from geo-location database are ran-

domly chosen from the elements of S. The ratio of the prior

known part T in the active channel set S, referred as τ , is

varied between 0 to 1. The case τ = 0 and τ = 1 corresponds

to the sensing only case without assists from geo-location

database and the case that current channel occupancy states

from geo-location database are fully reliable and no change

occurs on the spectrum at current time.

First, the received SNR is set as −5 dB and the number

of coset samplers p is varied from 15 to 35. As shown in the

Fig. 9, the detection performance Pd generally increases with

the involved number of coset samplers p, and also improves

as the percentage of the known part τ increases. With the

input from geo-location database, the number of coset sam-

plers is further reduced in the proposed joint sensing scheme to

achieve the same detection probability compared with the sens-

ing only case. For example, to achieve the desired detection

probability of 0.97, sensing only method needs around p = 20

coset samplers, while the proposed joint sensing scheme needs

only p = 15 coset samplers. Moreover, the proposed scheme

can update the lack of channel occupancy information in the

geo-location database, which helps to improve the detection

performance and reduce the required number of coset samplers

in the subsequent sensing activities.

Second, the detection performance is evaluated with varying

received SNR from −5 to 15 dB in Fig. 10 with fixing the

number of coset sampler as p = 15 to sample the received

signals. As shown in Fig. 10, the detection performance of

the proposed joint sensing scheme utilizing different ratio of

known part τ is always superior to that of the sensing only,

especially more sensitive to the low SNR region.

3) Detection Performance With the Partially Incorrect

Prior Information in the Geo-Location Database: Both

Figs. 9 and 10 follow that the prior information from geo-

location database is correct for all given channels. As stated

in Section IV, it may be the case that the information from

geo-location database is not fully reliable, e.g., some of the

Fig. 10. Detection probability Pd versus number of SNR (dB) under different
ratio of known part τ = 0.3, 0.5, 0.8, 1.0 and sensing only.

Fig. 11. Detection probability Pd versus number of coset samplers p under
different ratio of known part with partially incorrect prior information and
sensing only.

Fig. 12. Detection probability Pd versus number of coset samplers p under
different ratio of known part with partially incorrect prior information over
real-world signals.

channel occupancy states are changed but the geo-location

database has not been updated timely. In this situation, the

proposed joint sensing scheme can still recover the actual sig-

nals since it could remove the incorrect elements in T from

the minimization problem, but more cost samplers are adopted

compared with the case when no errors are present in T .

In Fig. 11, the cases in which T contains some incorrect

prior information are simulated, which means that apart from

the c channels correctly belonging to the support, there are

ω out of τ |S| channels in T that do not belong to the cur-

rent signal support. The simulation setting is same as that in

Figs. 9 and 10, but with different combinations of c and ω in

T . As shown in Fig. 11, the proposed scheme can still recon-

struct the underlying signals and shows an improvement in

detection performance with respect to the case with no prior

information.

4) Detection Performance With the Partially Incorrect Prior

Information in the Geo-Location Database Over Real-World
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Signal: Finally, we apply the proposed scheme on the col-

lected real-world signal to validate the proposed scheme in the

practical environment. It is shown in Fig. 12 that the proposed

scheme could recover the spectrum even with the partially

incorrect prior information from the geo-location database

and the detection performance of the proposed joint sensing

scheme still is superior to that of the sensing only.

VI. CONCLUSION

In this paper, we proposed a blind joint sub-Nyquist wide-

band spectrum sensing scheme for cognitive IoT, which only

requires the off-the-shelf low-rate ADCs in the wireless IoT

devices which have cognitive capabilities. Without the prior

knowledge of the number of occupied channels and the level

of SNRs, the proposed scheme could blindly select suffi-

cient number of coset samplers to achieve desired sensing

performance. To further reduce the required number of the

coset samplers, the processing complexity and the energy

consumption over the evolved IoT devices, we proposed

to incorporate the channel occupancy information from the

geo-location database and the wideband signal reconstruction

process. Moreover, with the awareness that the information

from geo-location is not fully reliable, the proposed scheme

could reconstruct the signal with partially correct informa-

tion and return the newly updated information to databases.

Experimental results have shown that the proposed scheme

could not only utilize the minimum number of coset sam-

plers without known number of occupied channels but also

guarantee the desired detection performance under wide range

of SNRs. Moreover, the performance of the proposed scheme

assisted with geo-location database is superior to the sensing

only method even when the obtained information is partially

correct, especially in low SNR region. These benefits from the

proposed scheme make it be a good candidate for the large-

scale deployment of the power constrained IoT devices and

spectrum management.
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