Distributed Computation in Dynamic Networks

Fabian Kuhn
Faculty of Informatics,
University of Lugano
Lugano, Switzerland 6904

fabian.kuhn@usi.ch

ABSTRACT

In this paper we investigate distributed computation inaiyic
networks in which the network topology changes from round to
round. We consider a worst-case model in which the communica
tion links for each round are chosen by an adversary, andsmbale
not know who their neighbors for the current round are befloey
broadcast their messages. The model captures mobile rhetasod
wireless networks, in which mobility and interference rendom-
munication unpredictable. In contrast to much of the exgstiiork

on dynamic networks, we do not assume that the network eventu
ally stops changing; we require correctness and termimati@n

in networks that change continually. We introduce a stighjliop-
erty calledT-interval connectivity(for T' > 1), which stipulates

Nancy Lynch
Computer Science and Al
Laboratory, MIT
Cambridge, MA 02139

lynch@csail.mit.edu

Rotem Oshman
Computer Science and Al
Laboratory, MIT
Cambridge, MA 02139

rotem@ecsail.mit.edu

1. INTRODUCTION

The study of dynamic networks has gained importance and pop-
ularity over the last few years. Driven by the growing ubtygui
of the Internet and a plethora of mobile devices with communi
cation capabilities, novel distributed systems and appbos are
now within reach. The networks in which these applicationsim
operate are inherently dynamic; typically we think of thesibaing
large and completely decentralized, so that each node canam
accurate view of only its local vicinity. Such networks charover
time, as nodes join, leave, and move around, and as comntionica
links appear and disappear.

In some networks, e.g., peer-to-peer, nodes participaygfoma
short period of time, and the topology can change at a high hat

that for everyl” consecutive rounds there exists a stable connected Wireless ad-hoc networks, nodes are mobile and move around u

spanning subgraph. Fa@r = 1 this means that the graph is con-
nected in every round, but changes arbitrarily betweendsun

We show that in 1-interval connected graphs it is possibte fo
nodes to determine the size of the network and compute any com
putable function of their initial inputs i®(n?) rounds using mes-
sages of siz&(log n + d), whered is the size of the input to a sin-
gle node. Further, if the graph B-interval connected fol" > 1,
the computation can be sped up by a factof’'pfind any function
can be computed i®(n + n?/T) rounds using messages of size
O(log n+d). We also give two lower bounds on the token dissem-
ination problem, which requires the nodes to dissemikgieces
of information to all the nodes in the network.

The T-interval connected dynamic graph model is a novel inode
which we believe opens new avenues for research in the tlefory
distributed computing in wireless, mobile and dynamic reks.

Categories and Subject Descriptors:

F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problemsemputations on dis-
crete structures

G.2.2 [Discrete Mathematics]: Graph Theorgraph algorithms
G.2.2 [Discrete Mathematics]: Graph Theorpetwork problems

General Terms: Algorithms, Theory

Keywords: distributed algorithms, dynamic networks

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

STOC’10,June 5-8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

predictably. Much work has gone into developing algorithtiret
are guaranteed to work in networks that eventually stabiind
stop changing; this abstraction is unsuitable for reagpaibout
truly dynamic networks.

The objective of this paper is to make a step towards undetsta
ing the fundamental possibilities and limitations for daited al-
gorithms in dynamic networks in which eventual stabiliaatof
the network is not assumed. We introduce a general dynamic ne
work model, and study computability and complexity of esisén
basic distributed tasks. Under what conditions is it pdedibelect
a leader or to compute an accurate estimate of the size of#he s
tem? How efficiently can information be disseminated reyiai
the network? To what extent does stability in the commuiooat
graph help solve these problems? These and similar qussiien
the focus of our current work.

1.1 The Dynamic Graph Model

In the interest of broad applicability our dynamic networkdsl
makes few assumptions about the behavior of the networkwand
study it from the worst-case perspective. In the currenepaye
consider a fixed set of nodes that operate in synchronizeadsou
and communicate by broadcast. In each round the commuoricati
graph is chosen adversarially, under an assumptidfi-ofterval
connectivity throughout every block ¢f' consecutive rounds there
must exist a connected spanning subgraph that remaing stabl

We consider the range from 1-interval connectivity, in Whilce
communication graph can change completely from one round to
the next, tooo-interval connectivity, in which there exists some
stable connected spanning subgraph that is not known tootihesn
in advance. We note that edges that do not belong to the stable
subgraph can still change arbitrarily from one round to & rand
nodes do not know which edges are stable and which are not. We
do not assume that a neighbor-discovery mechanism is bisatia

the nodes; they have no means of knowing ahead of time which in the network, and each node starts with exactly one tokdms T

nodes will receive their message.

In this paper we are mostly concerned with deterministio-alg
rithms, but we also include a randomized algorithm and agand
ized lower bound. The computation model is as follows. Imgve
round, the adversary first chooses the edges for the rounthifo
choice it can see the nodes’ internal states at the begirofitige
round. At the same time and independent of the adversargiseh
of edges, each node tosses private coins and uses them tatgene
its message for the current round. Deterministic algoritiymner-
ate the message based on the interal state alone. In bothtbase

variant of token dissemination allows any function of thdiah
states of the nodes to be computed. However, it requiregiogyn
since nodes do not know in advance how many tokens they need
to collect. We show that both problems can be solvedim?)
rounds inl-interval connected graphs. Then we extend the algo-
rithm for T-interval connected graphs with known > 1, obtain-

ing anO(n+n?/T)-round protocol for counting or all-to-all token
dissemination. Wheff' is not known, we show that both problems
can be solved i®(min {n”,n + n”*log(n)/T'}) rounds. Finally,

we give a randomized algorithm for approximate counting &sa

nodes do not know which edges were chosen by the advesaty. Eac sumes ambliviousadversary, and terminates with high probability

message is then delivered to the sender’s neighbors, asrchys
the adversary; the nodes transition to new states, and sthequad
begins. Communication is assumed to be bidirectional, igti$
not essential. We typically assume that nodes initiallykmoth-
ing about the network, and communication is limited2@log n)
bits per message.

To demonstrate the power of the adversary in the dynamidgrap
model, consider the problem tifcal token circulation each node
u has a local Boolean variabteken.,, and if token,, = 1, nodeu
is said to “have the token”. In every round exactly one nodénén
network has the token, and it can either keep the token oriptass
one of its neighbors. The goal is for all nodes to eventuatiyeh
the token in some round. This problem is impossible to satve i
l-interval connected graphs: in every round, the adversanysee
which nodeu has the token, and provide that node with only one
edge{u, v}. Nodew then has no choice except to eventually pass
the token tov. After v receives it, the adversary can turn around
and remove all ob’s edges excepfu, v}, so thatv has no choice
except to pass the token backo In this way the adversary can
prevent the token from ever visiting any node exaepi.

Perhaps surprisingly given our powerful adversary, eveft-in
interval connected graphs it is possible to reliably corapany
computable function of the initial states of the nodes, amthénave
all nodes output the result at the same time (simultaneity).

in almost-linear time.

We also give two lower bounds, both concerning token-forwar
ding algorithms for token dissemination. tAken-forwarding al-
gorithmis one that does not combine or alter tokens, only stores
and forwards them. First, we give &(n log k) lower bound on
k-token dissemination in 1-interval connected graphs. Tdvier
bound holds even against centralized algorithms, in whathe
node is told which token to broadcast by some central authori
that can see the entire state of the network. We also gi¥&(ant
nk/T) lower bound onk-token dissemination iff™-interval con-
nected graphs for a restricted class of randomized algosithn
which the nodes’ behavior depends only on the set of tokens th
knew in each round up to the current one. This includes the-alg
rithms in the paper, and other natural strategies such asi naibin,
choosing a token to broadcast uniformly at random, or assiga
probability to each token that depends on the order in whieh t
tokens were learned.

For simplicity, the results we present here assume thabdiks
start the computation in the same round. It is generally st p
sible to solve any non-trivial problem if some nodes areiattit
asleep and do not participate. However, if 2-interval catiity
is assumed, it becomes possible to sd@iuweken dissemination and
counting even when computation is initiated by one node hed t
rest of the nodes are asleep.

The dynamic graph model we suggest can be used to model var-

ious dynamic networks. Perhaps the most natural scenanm{is
bile networks, in which communication is unpredictable thuthe
mobility of the agents. There is work on achieving contincemh-
nectivity of the communication graph in this setting (e[&4]), but
currently little is known about how to take advantage of sacler-
vice. The dynamic graph model can also serve as an abstractio
for static or dynamic wireless networks, in which collissoand
interference make it difficult to predict which messages bélde-
livered, and when. Finally, dynamic graphs can be used toeinod
traditional communication networks, replacing the tradial as-
sumption of a bounded number of failures with our connetstivi
assumption.

Although we assume that the node set is static, this is nat-a fu
damental limitation. We defer in-depth discussion to fatwork;
however, our techniques are amenable to standard methcldssu
logical time, which could be used to define the permissibtpuats
for a computation with a dynamic set of participants.

1.2 Contribution

In this paper we focus on two problems in the context of dyami
graphs. The first problem ounting in which nodes must deter-
mine the size of the network. The seconditoken disseminatign
in which k pieces of information, calletbkens are handed out to
some nodes in the network, and all nodes must colleét kens.

We are especially interested in the varianketbken dissemina-

1.3 Related Work

For static networks, information dissemination and bast n
work aggregation tasks have been extensively studied (geg5e
20, 34)). In particular, the token dissemination problemrialyzed
in [40], where it is shown that tokens can always be broadcast in
time O(n + k) in a static graph. The various problems have also
been studied in the context of alternative communicationlef®
A number of papers look at the problem of broadcasting a sing|
message (e.g. [9, 27]) or multiple messages [13, 30] in es<l
networks. Gossiping protocols are another style of allgoriin
which it is assumed that in each round each node communicates
with a small number of randomly-chosen neighbors. Variofwr
mation dissemination problems for the gossiping model leen
considered [21, 23, 25]; gossiping aggregation protoduds ¢an
be used to approximate the size of the system are descrilj2d,in
36]. The gossiping model differs from our dynamic graph niaue
that the neighbors for each node are chosen at random andnot a
versarially, and in addition, pairwise interaction is uguassumed
where we assume broadcast.

A dynamic network topology can arise from node and link fail-
ures; fault tolerance, i.e., resilience to a bounded nurabfults,
has been at the core of distributed computing research tovery
beginning [5, 34]. There is also a large body of previous work
on general dynamic networks. However, in much of the exgstin
work, topology changes are restricted and assumed to bd-“wel

tion where the number of tokens is equal to the number of nodes behaved” in some sense. One popular assumption is evetddal s

bilization (e.g., [1, 7, 8, 41, 22]), which asserts that deseven-
tually stop occuring; algorithms for this setting typigagjuarantee
safety throughout the execution, but progress is only gueeal

to occur after the network stabilizes. Self-stabilizatisra useful
property in this context: it requires that the system cogedp a
valid configuration from any arbitrary starting state. Weereo
[15] for a comprehensive treatment of this topic. Anothesuasp-
tion, studied for example in [26, 28, 35], requires topolaggnges

to be infrequent and spread out over time, so that the systam h

2. PRELIMINARIES

We assume that nodes have unique identifiers (UIDs) drawm fro
a namespack. We usezx,, (r) to denote the value of nodes local
variablez at the beginning of round.

A synchronous dynamic network is modeled as a dynamic graph
G = (V,E), whereV is a static set of nodes, and : N —
{{u,v} |u,v € V}is afunction mapping a round numbee N
to a set of undirected edgéXr). We make the following assump-
tion about connectivity in the network graph.

enough time to recover from a change before the next one siccur

Some of these algorithms use link-reversal [18], an algorifor
maintaining routes in a dynamic topology, as a building kloc

Protocols that work in the presence of continual dynamiagka
have not been as widely studied. Early work (e.g., [6]) cdesd
the problem of end-to-end message delivery in continudbng-
ing networks under an assumptionesfentual connectivifywhich
asserts that the source and the destination are connectegai
whose links appear infinitely often during the executionefkhis
some work on handling nodes that join and leave continually i
peer-to-peer overlay networks [19, 31, 33]. Most closelates
to the problems studied here is [37], where a few basic reguk
similar setting are proved; mainly it is shown thatlkinterval con-
nected dynamic graphs (the definition in [37] is slightlyfeliént),
if nodes have unique identifiers, it is possible to globaHlyaucast
a single message and have all nodes eventually stop sendis)g m
sages. The time complexity is at least linear in the valuehef t
largest node identifier. In [2], Afek and Hendler give loweubds
on the message complexity of global computation in asynaius
networks with arbitrary link failures.

The time required for global broadcast has been studied in
probabilistic version of the edge-dynamic graph model,neteglges
are independently formed and removed according to simphadta
processes [10, 11, 12]. Similar edge-dynamic graphs hae al
been considered in control theory literature, e.g. [38, 38][12]
the authors also consider a worst-case dynamic graph mduehw
is similar to ours, except that the graph is not always coreakeand
collisions are modelled explicitly. This lower-level mddes not
admit a deterministic algorithm for global broadcast; heere[12]
gives a randomized algorithm that succeeds with high piiityab

A variant of T-interval connectivity was used in [29], where two
of the authors studied clock synchronizationasynchronougly-
namic networks. In [29] it is assumed that the network sassfi
T-interval connectivity for a small value @, which ensures that

DEFINITION 2.1 (I-INTERVAL CONNECTIVITY). We say a
dynamic graphG = (V, E) is T-interval connectedor 7" > 1
if for all » € N, the static graphG,.z := (V,/2 " E(r)) is
connected. The graph is said to be-interval connectedf there
is a connected static grap¥’ = (V, E’) such that for allr € N,
E' C E(r).

For the current paper we are mainly interested in the folowi
problems.

Counting. An algorithm is said to solve the counting problem if
whenever it is executed in a dynamic graph comprisimgpdes, all
nodes eventually terminate and output

k-verification. Closely related to counting, the-verification
problem requires nodes to determine whether ormet k. All
nodes begin withk as their input, and must eventually terminate
and output “yes” or “no”. Nodes must output “yes” if and onfy i
there are at mogt nodes in the network.

k-token dissemination. An instance ofk-token dissemination

ais a pair(V,I), wherel : V — P (7T) assigns a set of tokens
from some domair? to each node, anflJ,,., I(v)| = k. An
algorithm solves:-token dissemination if for all instancé¥’, I'),
when the algorithm is executed in any dynamic grépk- (V, E),

all nodes eventually terminate and outy_,, 7(u). We assume
that each token in the nodes’ input is represented uSifigg n)
bits. Nodes may or may not knoky depending on the context.

All-to-all token dissemination. A restricted class of-token dis-
semination in whictk = n and for allu € V we havelI(u)| = 1.
The nodes know that each node starts with a unique tokenhéyt t
do not known.

k-committee election. As a useful step towards solving count-
ing and token dissemination we introduce a new problem aalle

a connected subgraph exists long enough for each node to send;-committee election. In this problem, nodes must partitiem-

one message. This is analogous to 1-interval connectinigyn-
chronous dynamic networks.

Finally, a somewhat related computational model resutimfr
population protocols, introduced in [3], where the systermbd-
eled as a collection of finite-state agents with pairwisergnttions.
Population protocols typically (but not always) rely on@eg fair-
ness assumption which requires every pair of agents tcaicit@r-
finitely often in an infinite execution. We refer to [4] for arsay.
Unlike our work, population protocols compute some functio
the limit, and nodes do not know when they are done. This cal
make sequential composition of protocols challengingeesiit is
not possible to execute a protocol until it terminates, ttade the
final result and use it as input for some other computation- (I
stead, one may uself-stabilizingpopulation protocols, which are
resilient to inputs that fluctuate and eventually stabiizesome
value; but this is not always possible [16]). In our model ed
must eventually output the result of the computation, ampgise-
tial composition is straightforward.

selves into sets, calletbmmitteessuch that

() The size of each committee is at mbsand
(b) If £ > n, thenthere is just one committee containing all nodes.

Each committee has a unique committee ID, and the goal is for
all nodes to eventually output a committee ID such that the tw
conditions are satisfied.

. 3. BASIC FACTS

In this section we state several basic properties of therdima
graph model, which we later use in our algorithms. The firgt ke
fact pertains to the way information spreads in connecteduhyc
networks.

PropPosITION 3.1. It is possible to solvd-token dissemina-
tion in 1-interval connected graphs in — 1 rounds, if nodes are
not required to halt after they output the token.

!Prop. 3.1 is intended only as an illustration; in the restuf al-
gorithms nodes can halt after they perform the output action

PROOF skeTcH We simply have all nodes that know the to-
ken broadcast it in every round; when a node receives thetitke
outputs it immediately, but continues broadcasting it. g given
round, consider a cut between the nodes that already rectiee
token and those that have not. Frdainterval connectivity, there
is an edge in the cut; the token is broadcast on that edge amel so
new node receives it. Since one node initially knows the agess
and there ar@ nodes, aften — 1 rounds all nodes have the token.

([l

To make this intuition more formal we use Lamport's causal or
der [32], which formalizes the notion of one node “influeryin
another through a chain of messages originating at the fadé n
and ending at the latter (possibly going through other nadés-
tween). We usdu,r) ~ (v,r’) to denote the fact that nodes
state in round influences node’s state in round-’, and the formal
definition is as follows.

DEFINITION 3.1 (LAMPORT CAUSALITY). Given adynamic
graph G = (V, E) we define an order~C (V x N)2, where
(u,7) — (v,r")iff ¥ = r + 1 and {u,v} € E(r). Thecausal
order~~C (V x N)? is defined to be the reflexive and transitive
closure of—.

The following lemma shows that 1-interval connectivity igffs
cient to guarantee that the number of nodes that have infidenc

PROPOSITION 3.5. Counting and all-to-all token dissemina-
tion can be solved i®(n) rounds in 1-interval connected graphs,
using messages of sigfn logn).

PrROOF Consider a simple protocol for counting. Each node
maintains a sefl containing all the UIDs it has heard about so far,
where initially A,,(0) = {u} for all uw € V. In each round, node
u broadcastsd,, and adds t4,, any UIDs it receives from other
nodes. Ifr > |A,|, nodeu halts and outputkA,, |; otherwise node
u continues on to the next round.

Itis not hard to see that for all, v € V and rounds, if (v, 0) ~
(u,r)thenv € Ay (r). Thus{v € V : (v,0) ~ (u,r)} C Au(r).
Correctness of the protocol follows from Lemma 3.2: if nade
halts in round-, thenr > |A,(r)| > [{v € V : (v,0) ~ (u,7)}],
and Lemma 3.2 shows that> n. Next, using Corollary 3.3 we
have that in this cas& C A.(r). And finally, since obviously
Ay (r) CV,itfollows thatA, (r) = V and node.’s output is cor-
rect. Termination also follows from Lemma 3.2 and the faett th
Ay (r) C Vin every round-.

To solve all-to-all token dissemination, we have node<hte-
ery token they have heard so far to every message they serd.

In the sequel we describe solutions which use an(jog n) bits
per message.

a nodeu grows by at least one in every round, and so does the 4. COUNTING THROUGH Ek-COMMITTEE

number of nodes that itself has influenced.

LEMMA 3.2. For any nodeu € V and roundr > 0 we have
@ [{veV : (u,0)~ (v,r)}| > min{r+1,n}, and
(b) |[{veV : (v,0)~ (u,7)}| > min{r + 1,n}.

The proof of the lemma is similar to that of Proposition 3.4d &
is omitted here. We can now re-state the principle behingé%io
tion 3.1 as a corollary of Lemma 3.2.

CoROLLARY 3.3. For all u,v € V it holds that(v,0) ~»
(u,m —1).
PROOF Lemma 3.2 shows that in round= n — 1 we have
[{veV : (v,0)~ (u,n—1)}| > n, and the claim follows.
(|

If we have an upper bound on the size of the network, we can use

Corollary 3.3 to compute simple functions which serve afding
blocks for algorithms.

PROPOSITION 3.4. Given an upper bound’ on the size of the

In this section we show how-committee election can be used
to solve counting and token dissemination.

Our counting algorithm works by successive doubling: ateac
point the nodes have a guekdor the size of the network, and
attempt to verify whether or ngt > n. If it is discovered that
k < n, the nodes doublé and repeat; it > n, the nodes halt
and output the count. We defer the problem of determining the
exact count until the end of the section, and focus for nowhen t
k-verification problem, that is, checking whether or kot n.

Suppose that nodes start out in a state that representdiasttu
k-committee election: each node has a committee ID, suchnthat
more thank nodes have the same ID, andkif> n then all nodes
have the same committee ID. The problem of checking whether
k > n is then equivalent to checking whether there is more than
one committee: ik > n there must be one committee only, and if
k < n there must be more than one. Nodes can therefore check if
k > n by executing a simplé-round protocol that checks if there
is more than one committee in the graph.

network, functions such as the minimum or maximum of inputs t The k-verification protocol.Each node has a local variable

the nodes can be computedin— 1 rounds.

Corollary 3.3 guarantees that if nodes always broadcasrttadl-
est (resp. largest) value they have heard, all nodes wié tavtrue
min or max value aften — 1 rounds; the upper boun is needed

for nodes taknowwhen they have the true min or max. One ap-

plication is leader election, which can be implemented kyosing

the node with the smallest UID as the unique leader. We als® no
that having an upper bound on the size allows the use of random

ized algorithms for data aggregation which rely on computime

max or the min of random variables chosen by the nodes [17, 36]

see Section 7.

z, which is initially set tol. While z, = 1, nodeu broadcasts its
committee ID. If it hears from some neighbor a different catter
ID from its own, or the special valug, it setsz,, < 0 and broad-
castsl in all subsequent rounds. Aftérrounds, all nodes output
the value of their: variable.

LEmMMA 4.1. If the initial state of the execution represents a
solution tok-committee election, at the end of theverification
protocol each node outputs 1 i#f> n.

PROOFSKETCH. First suppose thadt > n. In this case there
is only one committee in the graph; no node ever hears a €ifter

The remainder of the paper focuses on counting and solving th committee ID from its own. Afterk rounds all nodes still have

token dissemination problem. The two problems are intewadj
and both are useful as a starting point for distributed cdimgu

z = 1, and all output 1.
Next, supposé < n. We can show that after théh round of

in dynamic networks. We remark that when message sizes are no the protocol, at least nodes in each committee haye= 0. In

limited, both problems can be solved in linear time by havindes
constantly broadcast all the information they have codiécto far.

any round of the protocol, consider a cut between the nodss th
belong to a particular committee and still hawve= 1, and the rest

of the nodes, which either belong to a different committebawe

z = 0. From l-interval connectivity, there is an edge in the cut,
and some node in the committee that still has, = 1 hears either

a different committee ID oi.. Nodew then setsr, < 0, and the
number of nodes in the committee that still have= 1 decreases
by at least one. Since each committee initially contains @t
nodes, aftek rounds all nodes in all committees have= 0, and

all output0. [l

Our strategy for solving the counting problem is as follovist
k= 1,2,4,8,..., solve thek-committee election problem, then
execute the-verification protocol. Ifk > n, terminate and output
the count; else, continue to the next valuekofHere we use the
fact that our model is amenable to sequential composition.

The strategy outlined above requires all nodes to beginkthe
verification protocol in the same round. Our protocol forvatg
k-committee election ensures that this occurs. The protalsal
has the useful property thatif > n, every node knows the UIDs
of all other nodes in the graph at the end of the protocol. Thus
whenk > n, nodes can determine the exact count.

5. AEk-COMMITTEE PROTOCOL FOR
1-INTERVAL CONNECTED GRAPHS

To solve k-committee election in 1-interval connected graphs,
we imagine that there is a unigue leader in the network, aisd th
leader invitest nodes to join its committee. Of course we do not
truly have a pre-elected leader in the network; we will sobovs
how to get around this problem. The protocol proceedsdycles,
each consisting of two phases.

e Polling phase: For & — 1 rounds, all nodes in the network

propagate the UID of the smallest node they have heard about

that has not yet joined a committee. Initially each node ttroa
casts its own UID if it has not joined a committee, Diif it

has; in each round nodes remember the smallest value they

Corollary 3.3, this is sufficient for all nodes to hear the Udb
the smallest node in the network. Thus, after the first ppltihase
there is only one leader, and no other node ever issues aatioai
Using Corollary 3.3 we see that tlhe- 1 rounds of each polling
phase are sufficient for the leader to successfully idettigysmall-
est node that has not yet joined its committee. Similarly,itivi-
tation phase is long enough for that node to receive the fsade
invitation, so in every cycle one node joins the leader’s oottee.
Since there arg > n cycles, all nodes join the leader's committee,
and all output the leader’s UID as their committee ID. O

We remark that whek > n, the k-committee election protocol
can also be used to solve all-to-all token disseminatiordorso we
simply have nodes attach their token to their UID in everysagse
they send. Each node is “singled out” for— 1 > n — 1 rounds
during which it is invited to join the leader's committee,dathe
invitation reaches all nodes in the graph. Thus, nodes checto
all the tokens by recording the tokens attached to all itieihs
they hear. In particular, if node UIDs are used as tokensesgdn
collect all the UIDs in the network.

COROLLARY 5.2. When used together with theverification
protocol from Section 4, the-committee election protocol yields
an O(n?)-round protocol for counting or all-to-all token dissemi-
nation.

6. COUNTING AND TOKEN DISSEMINA-
TION IN MORE STABLE GRAPHS

In this section we show that ii-interval connected graphs the
computation can be sped up by a factoffofTo do this we employ
a neat pipelining effect, using the temporarily stable saphs that
T-interval connectivity guarantees; this allows us to disisate
information more quickly. For convenience we assume that th
graph is2T-interval connected for somg > 1.

have sent or received so far in the execution, and broadcast§.1 Fastr-Token Dissemination in27-Interval

that value in the next round.
e Invitation phase: The leader selects the smallest UID it

Connected Graphs
Procedureli sseni nat e gives an algorithm for exchanging at

heard during the polling phase, and issues a message invit-least7" pieces of information im rounds when the dynamic graph
ing that node to join its committee. The message carries the js 27-interval connected. The procedure takes three argumants:

UID of the leader and of the invited node. The invitation is
propagated by all nodes fér— 1 rounds. At the end of the
invitation phase, a node that received an invitation jolres t
leader’s committee.

At the end of the: cycles, nodes that have joined the leader’'s com-
mittee output the leader’s UID as their committee ID. Any eétiuat
has not been invited to join a committee joins its own conemsitt
using its UID as the committee ID.

Because we do not initially have a unique leader in the né¢wor
all nodes start out thinking they are the leader, and continp&ago
the role of a leader until they hear a UID smaller than thein ot
that point they switch to playing the role of a non-leadenweeer,
once nodes join a committee they do not change their minds.

THEOREM 5.1. The protocol sketched above solkesommittee
election inO(k?) rounds.

PROOF SKETCH The first condition ofk-committee election
requires each committee to be of size at masthis condition is
satisfied because no node ever invites more thaades to join its
committee (each node issues at most one invitation per)cyete
the second condition we must show thakif> n then all nodes
join the same committee. Thus, suppose that n. The polling
phase of the first cycles lasts for— 1 > n — 1 rounds, and from

set of tokensA, the parametel’, and a guess for the size of the
graph. Ifk > n, each node is guaranteed to learn Themallest
tokens that appeared in the input to all the nodes.

The execution of procedurt sseni nat e is divided into[k /7"
phases, each consisting 21" rounds. During each phase, each
node maintains the set of tokens it has already learned and a set
S of tokens it has already broadcast in the current phaséa(lpit
empty). In each round of the phase, the node broadcasts e sm
est token it has not yet broadcast in the current phase, tds a
that token taS.

S—0
fori=0,...,[k/T] —1do
forr=0,...,2T —1do

if S # Athen
t «— min (A\ S)
broadcast
S — Su{t}

receivety, ..., ts from neighbors

A— AU{ty,... ts}

S0
return A

Proceduredi ssenmi nat e(A, T, k)

Because the graph 2§ -interval connected, in each phagtbere
is a stable connected subgra@hthat persists throughout the phase.
We used’, (r), S% (r) for the values of node’s local variablesd, S
at the beginning of round of phasei. We say that, knowstoken
t whenever € A,,.

Let K;(t) denote the set of nodes that knovat the beginning
of phasei, and lettdist;(u, t) denote the minimal distance @;
between node and any node it; (¢). Correctness hinges on the
following property.

LEMMA 6.1. For any nodeu € V, tokent € |,y 44(0)
and roundr such thatdist; (u,) < r < 2T, eithert € S (r+1)
or Su(r + 1) includes at leas{r — tdist;(u, t)) tokens that are
smaller thart.

The intuition behind Lemma 6.1 is that/if> tdist;(u, t), thenr
rounds are “enough time” far to receivet. If u has not received
and sent it on, the path betweermnd the nearest node that knaivs
must have been blocked by smaller tokens, which nodeceived
and sent on.

Using Lemma 6.1 we can show:

LEMMA 6.2. If k > n, atthe end of procedu@ ssemni nat e
the setA,, of each node: contains thel” smallest tokens.

PROOF SKETCH Let NZ(t) := {u € V| tdist;(u,t) < d}
denote the set of nodes at distance at rdsbm some node that
knowst at the beginning of phageand lett be one of the” small-
est tokens.

From Lemma 6.1, for each nodec N[(t), eithert € S% (2T +
1) or S (2T + 1) contains at lea2T — T' = T tokens that are
smaller thart. Butt is one of thel smallest tokens, so the second
case is impossible. Therefore all nodesNi (¢) know tokent at
the end of phase Because?; is connected we havieVy (¢)| >
min {n — |K;(t)|, T}; that is, in each phasg new nodes learn,
until all the nodes know. Since there are no more thamodes
and we havd k/T] phases, at the end of the last phase all nodes
know ¢. (|

Remark 1. If each stable subgrapfi; enjoys good expansion
thendi ssem nat e requires fewer tham phases. For example,
if G, is alwaysf-connected for some paramejgrthen each token
is learned byf - T' new nodes in each phase until all nodes know
it, and we only requirdn/f] phases. Similarly, it7; is always a
vertex expander we only requit@(log n) phases.

6.2 Counting and Token Dissemination

To solve counting and token dissemination with up:ttokens,
we use Procedurdi ssem nat e to speed up thé&-committee
election protocol from Section 5. Instead of inviting onedaan
each cycle, we can usk ssemi nat e to have the leader learn the
UIDs of theT smallest nodes in the polling phase, and use proce-
duredi sseni nat e again to extend invitations to dll smallest
nodes in the selection phase. Thus((k + T') rounds we can
increase the size of the committee’ By

THEOREM 6.3. It is possible to solvé&-committee election in
O(k + k*/T) rounds inT-interval connected graphs. When used
in conjunction with the:-verification protocol, this approach yields
anO(n+n?/T)-round counting all-to-all token dissemination pro-
tocol.

6.3 Unknown Interval Connectivity

if the graph is noRT-interval connected, invitations may not reach
their destination, and the committees formed may contais tlean

k nodes even wheh > n. However, even when the graph is not
2T-interval connected, no committee ever contaimsre than &
nodes, simply because no node ever issues morekthatitations.
Thus, if nodes guess a value fBrand use the protocol to check if
k > n, their error is one-sided: if their guess fBris too large they
may falsely conclude thdt < n when in factk > n, but they will
never conclude thdt > n whenk < n.

This one-sided error allows us to try different values¥@ndT
without fear of mistakes. We can count@{n log n+n?log n/T)
time in graphs wher& is unknownby iterating over various com-
binations ofk andT" until we reach a paik, T') such thatt > n
and the graph ig-interval connected.

In the worst case, the graph is l-interval connected, and we
need to try all the value¥ = 1,2,4,...,k for eachk; we pay
alogn factor in the round complexity. This only improves upon
the originalO(n?) algorithm when the graph is(log n)-interval
connected. However, we can execute the original algorithpar-
allel with the adaptive one, and terminate when the first eftito
terminates. In this way we can solve counting or token dissem
nation inO(min {n* nlogn + n”logn/T}) rounds wherfl is
unknown.

Using similar ideas we can also adapt to unknown expansion
of the graph, e.g., we might guess that it is alwgysonnected
for some initial value off, and decreas¢ until we find the right
value.

7. APPROXIMATE COUNTING

In this section we show that under certain restrictions an th
dynamic-graph adversary, it is possible to use randonoizatid
compute an approximate count in almost-linear time, evearwh
the dynamic graph is only 1-interval connected. The teaesqve
use are based on a gossiping protocol from [36]. We assunie tha
nodes know some (potentially loose) upper boidn the sizen
of the network; this upper bound determines the message size

For anye > 0, the algorithm computes(@ + ¢)-approximation
of the number of nodes. There are two variants of the algorithm:
the first terminates i®(n) time with high probability (inV') and
uses messages of siglog N - (loglog N + log(1/¢)/?)); the
second require®(n- (log log N +log(1/¢)/£%)) rounds with high
probability, but uses messages of size adljfog V).

Both versions of the algorithm assume that the dynamic graph
is generated by aobliviousadversary, which determines the com-
plete sequence of graphs before the execution begins. ticydar,
the adversary is not privy to the results of the nodes’ coiises in
previous rounds, and it also cannot see their states andnties-
sages, which reveal the results of those coin tosses.

For simplicity, we describe here only the algorithm thatsim
O(n) rounds w.h.p. but uses slightly larger messages.

The algorithm relies on the following lemma from [36], which
shows how the size of the network can be estimated by congputin
the minimum of exponential random variables (and repedtiig
procedure to decrease the error probability).

LEMMA 7.1 ([36]). LetS be aset of-tuples of independent
exponential variables with rate 1§ = {(Yl(l), o Y}U) s

(Yf’"% - Y}"”) } Define

The protocol sketched above assumes that all nodes know the (S) == £

degree of interval connectivity present in the communicagraph;

¢ ;)"
Zi:l min; <;<|s| Y;

Then

o

For parameters € (0,1/2) andc > 0, we definel := [(2 +
2¢) - 271n(N)/e%].

The scheme for approximate counting is given in Alg 2. The
main idea is as follows. Initially, each nodec V' compute¥ in-
dependent exponential random variab]f—;@% ey Y}’”) with rate
1. The objective of all nodes is to compui¢V'), which is a good
estimate fom with high probability. To do this they must compute
min,cv Y, for eachi € [¢].

From Proposition 3.4 we know that nodes can fimith, ¢/ Yi(v)
by propagating the smallest value they have heard so fat ferl
rounds. Howevenm, is not known to the nodes (we could wait—

1 rounds, butN may be a very loose upper bound). We use a
combination of Lemma 3.2 and Lemma 7.1 to decide when to stop.
Let Cu(r) := {veV : (v,0)~ (u,r)} be the set of nodes

whose vaIueYL.(”) has reached: by roundr. In roundr nodew
is able to computenin,cc,, () Y,L.(”), but it cannot “see” values

v,"") for v & C,(r). Therefore we want node to halt only when
Cu(r)=V.

From Lemma 3.2 we know thd€\,(r)| > r + 1 for all r <
n — 1. Because we assume an oblivious adversary, thé'set)
is chosen before the nodes choose their random variablesakive
use Lemma 7.1 to show that with high probability(if — ¢)r >
7w (Cu(r)), thenCy (r) = V. We use this criterion to know when
to terminate. (Recall that in Proposition 3.5 we used a dstestic
version of this test: we halted exactly when> |C(r)].)

Sending exact values fdfi(”) would require nodes to send real
numbers, which cannot be represented using a bounded naber
bits. Instead nodes send rounded and range-restrictedamyar-
tions Y, for Y,"”); we omit the technical details here. Each value

Yi(”) can be represented usiaylog log N + log(1/¢)) bits.

a(S) — ||| > %e : |5|> < 2e7T,

Z(U) - (’f/l(“')’ o Yl(u))
forr=1,2,...do

broadcastz
receiveZ("V, ..., Z(*s) from neighbors
fori=1,...,4do

7" —min{z{", 2", .. Z(}

P (1) — £/ 30 72
if (1 —¢e)r > ny(r) then terminate and output, (r)

Algorithm 2 : Randomized approximate counting in linear time
(code for nodeu)

For lack of space, the following theorem is given withoutgfro

THEOREM 7.2. Fore € (0,1/2) andc > 0, with probability
at leastl — 1/N°¢,
(a) every node in the graph computes the same viajie) =: 7,
and furthermore,
(b) |7 —n| <en.

8. LOWER BOUNDS ON TOKEN

DISSEMINATION

Our algorithms for token dissemination do not combine tgken
or alter them in anyway, only store and forward them. We call
this style of algorithm @oken-forwarding algorithmFormally, let

A (r) denote the set of messages nedeas received by the be-
ginning of roundr, plus nodeu’s input I (u). A token-forwarding
algorithm satisfies: (a) for all € V andr > 0, the message sent
by w in roundr is a member ofd,(r) U {_L}, where L denotes
the empty message; and (b) nodeannot halt in round unless
Au(r) = U,ey I(v), that is, nodeu has received all the tokens
either in messages from other nodes or in its input.

In this section we give two lower bounds on token dissenmamati
with token-forwarding algorithms.

8.1 Lower Bound on Centralized Token
Dissemination

For this lower bound we assume that in each rotgbme cen-
tral authority provides each nodewith a valuet, (r) € A,(r) to
broadcast in that round. The centralized algorithm cantse=etate
and history of the entire network, but it does not know whidbes
will be scheduled in the current round. Centralized algong are
more powerful than distributed ones, since they have atogsere
information. To simplify, we begin with each of tidokens known
to exactly one node (this restriction is not essential).

We observe that while the nodes only know a small number of
tokens, it is easy for the algorithm to make progress; fongla,
in the first round of the algorithm at ledshodes learn a new token,
because connectivity guarantees thatodes receive a token that
was not in their input. However, as nodes learn more tokens, i
becomes harder for the algorithm to provide them with tokbeg
do not already know.

Accordingly, our strategy is to charge a costigfk — i) for the
i-th token learned by each node: the first token each nodeslearn
comes at a cheap/k, and the last token learned costs dearly (a
charge ofl). Formally, the potential of the system in rounds
given by

[Au(r)|—1
o(r) =
ueV

1
k—i

=0

In the first round we hav@(0) = 1, because: nodes know
one token each. If the algorithm terminates in rounthen we
must haved(r) = n - H, = ©(nlog k), because ath nodes must
know allk tokens. We construct an execution in which the potential
increase is bounded by a constant in every round; this gisesu
Q(n log k) bound on the number of rounds required.

THEOREM 8.1. Any deterministic centralized algorithm fér
token dissemination in 1-interval connected graphs rezpiat least
Q(n log k) rounds to complete in the worst case.

PROOF We construct the communication graph for each round
r in three stages (independently of previous or future rounds

Stage I: adding the free edgesn edge{u,v} is said to
befreeif ¢.(r) € A,(r) andt,(r) € A.(r); that is, if when we
connectu andv, neither node learns anything new. LE{r) de-
note the set of free edges in roundwe add all of them to the
graph. LetC4,...,C, denote the connected components of the
graph(V, F(r)). Observe that any two nodes in different compo-
nents must send different values, otherwise they would ktben
same component.

We choose representatives € C4,...,v, € C, from each
component arbitrarily. Our task now is to construct a cotetbc
subgraph overy, ..., v, and pay only a constant cost. We assume
that{ > 12, otherwise we can connect the nodes arbitrarily for a
constant cost. Letissing(u) := k — | A, (r)| denote the number
of tokens node: does not know at the beginning of round

Stage Il. We split the nodes into two set&pp and Bottom, ac-
cording to the number of tokens they know, with nodes thatkno
many tokens “on top™: Top := {v; | missing(v;) < £/6} and
Bottom := {v; | missing(v;) > £/6}.

Since top nodes know many tokens, connecting to them could
be expensive. We will choose our edges in such a way that no top
node will learn a new token. Bottom nodes are cheaper, Buisti
free; we will ensure that each bottom node will learn at mioste:
new tokens (see Fig. 1).

We begin by bounding the size Glop. To that end, notice that
> e Top MissIng(u) > (T;’p‘): for all 4, j such thatu,v € Top,
eithert,(r) &€ A,(r) ort,(r) & Au(r), otherwise{u, v} would
be a free edge and v would be in the same component. Therefore
each pairu,v € Top contributes at least one missing token to
the sum, ang_, . 5, missing(u) > (/"s*'). On the other hand,
since each node ifiop is missing at most/6 tokens, it follows
that>°, ¢ 1, missing(u) < |Top| - (¢/6). Putting the two facts
together we obtaih7op| < ¢/3 + 1, and consequently also

(212) ¢

6 .
Next we show that because there are many more bottom nodes tha

top nodes, we have enough flexibility to use only “cheap” sdge
connect to top nodes.

20

>1
| Bottom| — | Top| > € — 2| Top| > € — 3 -2 >

Stage lll: Connecting the nodeshe bottom nodes are rel-
atively cheap to connect to, so we connect them in an anpilirse
(see Fig. 1). In addition we want to connect each top node to a
bottom node, such that no top node learns something new,@nd n
bottom node is connected to more than one top node. That is, we
are looking for a matching betweefvp and Bottom, using only
edges inP = {{u,v} : uw € Top,v € Bottom andt, € A,(r)}.
Since each top node is missing at m&& tokens, and each bot-
tom node broadcasts a different value from all other bottodes,
for each top node there are at lefBbttom| — ¢/6 edges inP
to choose from. To construct the matching, we go throughdpe t
nodes in arbitrary ordero, ...,v, € Top, and choose for each
v; some unmatched bottom node such that{v;,u;} € P and
u; # uy forall j < i. Before each stepthe number of unmatched
bottom nodes is at leagBottom| — i > |Bottom|— | Top| > £/6.
We already saw that each top node is connected to all fsubot-
tom nodes inP, so there is always some unmatcheaheighbor of
v; to choose in step
What is the total cost of the graph? Top nodes learn no tokens,
and bottom nodes learn at most two tokens from other bottaasio
and at most one token from a top node. Thus, the total cost is
bounded by

>

u€ Bottom

min{3,missing(u)}

1
missing(u) — (1 — 1)

< |Bottom| -

8.2 Lower Bound on Token Dissemination
with Knowledge-Based Algorithms

A token-forwarding randomized algorithm fértoken dissemi-
nation is said to b&nowledge-basei the distribution that deter-
mines which token is broadcast by nodén roundr is a function
of the UID of u, the sequencel,(0), ..., A.(r — 1), whereA;

Top (nodes missing at mogy'6 tokens)

Bottom (nodes missing more thai(6 tokens)

Figure 1: lllustration for the proof of Theorem 8.1

is the set of tokens received hyby the beginning of round (in-
cluding its input), and the sequencew$ coin tosses up to round
r (inclusive).

Knowledge-based algorithms can base their decisions osethe
of tokens currently known, the order in which tokens were ac-
quired, and even the round in which each token was acquiced; h
ever, they cannot rely on other factors, such as the numhenes
a particular token was heard, or which tokens were receimed i
the previous round. Nevertheless, the class of knowledged
algorithms includes many natural strategies for solvirg tttken
dissemination problem, and it includes the algorithms is ga-
per. (Other knowledge-based strategies include rounuhrover
the known tokens, choosing a token to broadcast uniformigrat
dom, and choosing each token with a probability that depends
how long ago that token was acquired.)

Knowledge-based algorithms have the property that oncela no
learns all the tokens, the distribution of tokens broadmasiture
rounds is fixed and does not depend on the dynamic graph. We use
this property to show the following lower bound.

THEOREM 8.2. Any knowledge-based algorithm feitoken dis-
semination iri-interval connected graphs requir€gn + nk/T)
rounds to succeed with probability/2. Further, if the size of the
namespace for UID§/| = Q(n*k/T), then deterministic algo-
rithms requireQ(n + nk/T’) rounds even when each node starts
with exactly one token.

PROOF SKETCH An Q(n) lower bound is trivially demonstra-
ted in a static line graph where some token starts at one et of
line. Thus we assume that> 1. For simplicity, we choose an
input assignment in which some nodenows all the tokens, and
the other nodes have no tokens.

Letro = (n — 1)(k —1)/(4T) — 2 = ©(nk/T). We say that
a tokent is infrequentin a given execution if node broadcasts
less thann — 1)/(27") times in rounds), . . ., 7o of the execution.

Since nodeu knows all the tokens, its behavior is determined:
regardless of the dynamic graph we choose in rounds. , ro,
the distribution of tokens broadcast by nodén these rounds is
fixed. In particular, sincey < (n — 1)(k — 1)/(4T) — 1, the
linearity of expectation and Markov’s inequality show tliaere
is some tokent such that in any dynamic graph, tokemwill be
infrequent with probability at least/2. We will construct a specific
dynamic graphG in which whenevet is infrequent, the algorithm
does not terminate by roun¢g. Thus, in the graph we construct,
the algorithm require€(nk/T") rounds w.p. at least/2.

Initially there aren — 1 nodes that do not know/(all nodes but
u). Our goal in constructing is to ensure that every time node
u broadcastg, at most2T" new nodes learh. Recall that is said
to be infrequent when it is broadcast less tlian- 1) /(27") times
by roundr,. Hence, whenevaeris infrequent, some node & has
still not learned by roundr, and algorithm cannot terminate.

We construct the dynamic graph in phases of two types. When

u has not broadcast for a while (" rounds to be precise), the
network is in aquiet phase A quiet phase extends until the first
time u broadcastg (including that round). During quiet phases
the communication graph remains static and comprises twe co
ponents (see Fig. 2(a)): componédnt(for “unaware”, shown as
white nodes in Fig. 2(a)) contains nodes that are guaramteetb
know ¢, arranged in a line;, , ..., v;,. The first node in the line,
vi,, IS connected to node. (Note thatu ¢ U, because:; knows

t from the start). The other componei, (for “knowledgeable”),

contains the remaining nodes. These nodes may or may not know

t, and we connect them to each other arbitrarily. Initialy—= {u}
andU = V \ {u}, with the nodes itV ordered arbitrarily.

A quiet phase ends immediately afteibroadcasts tokenh At
this pointv;; € U knowst; if we leave the network static, the
nodes inU may forward¢ to each other, until inU| — 1 rounds
all nodes inU know ¢. Recall that we want to ensure that at most
2T nodes learnt after every timeu broadcasts it. To contain the
propagation of, we begin aractive phase

If we wanted to satisfy only 1-interval connectivity, we wdu
simply movew;, from U to K and connect to v;, instead. This
would preventv;, from spreading to other nodes i/, but it vi-
olatesT-interval connectivity forl" > 1. In order to move nodes

from U to K we need more edges, so that we can remove some

without breaking connectivity.

Thus, at the beginning of an active phase we conneitt v;,,
closing the line to form a ring (see Fig. 2(b)). Then we waitTo
rounds. Finally, we remove eddevi, ., vi,,,, } (see Fig. 2(c)).
This ends the active phase. Note thainterval connectivity is
preserved along the line, ;. 1, Vigp oy - -+ Vigs Uy Vi -+ s Vigys
(shown in bold lines in the figures). This is why we use a ring
instead of a line.

At the beginning of an active phase, tokemay be known only
by nodesy;,, ..., vi, inthering. (If the preceding phase was quiet,
only nodew;, knowst; if the preceding phase was active more
nodes may know, see below.) An active phase lastsrounds.
During this time, tokent propagates in one of two ways:

(1) Nodesvi,, ..., v, may forwardt to nodesvi, ,, ..., Vi

(2) Nodeu may broadcast again during the phase, in which case
nodesv;,, . .., v, ,. (indicated in cross-hatching in Fig. 2(c))
may also learn it.

At the end of the phase we remove the liftk, ., v, , }, cut-

ting off the propagation of along that side of the ring, and set

U «— U\ {vi, ..., viyp }. Notice that now the only node iii to

which v is connected i®;,. To retain consistency in notation we

reverse the line, renaming as follows:«— ¢ — 2T, i} «— i, 15 +—

7:[,1, ce ,’L% — i2T+1.

If » did not broadcast during the phase (that is, case (2) above
did not occur), then no remaining nodelihknowst¢, and we be-
gin another quiet phase. ifdid broadcast, at mostv;; , . .., vy,
(which were labelled,, . .., v,—r before the renaming) know it,
and we begin another active phase.

The construction above allows us to charge at rB@shodes to
each timeu broadcasts: an active phase is only triggered when
u broadcasts, and each active phase ends with the removaliof
nodes fromU. If ¢ is infrequent in an execution, then there are
less thar(n — 1) /(2T active phases by round of the execution;
since initially [U| = n — 1, by roundro = Q(nk/T) there is
still some node irU which does not know, and the algorithm is
not done. Since is infrequent w.p. at least/2, this shows that
any knowledge-based algorithm frtoken dissemination requires
Q(nk/T) rounds w.p. at least/2. |

(d) The beginning of the next active phase.

Figure 2: The construction for Theorem 8.2, withT' = 2. Nodes
that do not know ¢ are shown in white, nodes that may know
are shown in grey. Edges along whicl-interval connectivity
is preserved are shown in bold.

9. CONCLUSION

In this work we consider a model for dynamic networks which
makes very few assumptions about the network. The model can
serve as an abstraction for wireless or mobile networkseasan
about the fundamental unpredictability of communicatiorthis
type of system. We do not restrict the mobility of the nodesegx
for retaining connectivity, and we do not assume that ggagcal
information or neighbor discovery are available. Nevdahg, we
show that one can efficiently compute any computable fundtio
our model, taking advantage of stability if it exists in tretwiork.

We believe that thd-interval connectivity property provides a
natural and general way to reason about dynamic networkis. It
easy to see that without any connectivity assumption notrigia
function can be computed, except possibly in the sense opaem
tation in the limit (as in [3]). However, our connectivitysasnption
is easily weakened to only require connectivity once evenstant
number of rounds, or to only require eventual connectivityhe
style of Prop. 3.1, with a known bound on the number of rounds.

There are many open problems related to the model. We hope[19] T. P. Hayes, J. Saia, and A. Trehan. The forgiving grajoh:

to strengthen our lower bounds for token dissemination drd o

tain anQ2(nk/T") general lower bound, and to determine whether

counting is in fact as hard as token dissemination. Othearraht
problems, such as consensus and leader election, can leg solv
linear time once a (possibly approximate) count is knowr,clam
they be solved more quickly without first counting? Is it pbkesto
compute an approximate upper bound for the size of the nktimor
less than the time required for counting exactly? These dmetr o
guestions remain intriguing open problems.

10. REFERENCES

[1] Y. Afek, B. Awerbuch, and E. Gafni. Applying static netvio
protocols to dynamic networks. Proc. of 28th Symp. on
Foundations of Computer Science (FOQ®)ges 358-370, 1987.

[2] Y. Afek and D. Hendler. On the complexity of gloabl comation in
the presence of link failures: The general cd3istributed
Computing 8(3):115-120, 1995.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. fara
Computation in networks of passively mobile finite-statesaes.
Distributed Computing18(4):235—-253, 2006.

[4] J. Aspnes and E. Ruppert. An introduction to populatiostgcols. In
B. Garbinato, H. Miranda, and L. Rodrigues, editdvigdleware for
Network Eccentric and Mobile Applicationgages 97-120.
Springer-Verlag, 2009.

[5] H. Attiya and J. WelchDistributed Computing: Fundamentals,
Simulations, and Advanced Topid®hn Wiley and Sons, Inc., 2nd
edition, 2004.

[6] B. Awerbuch, Y. Mansour, and N. Shavit. Polynomial eneend
communication. IrProc. of 30th Symp. on Foundations of Computer
Science (FOCSpages 358—-363, 1989.

[7] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E. Saks. githg to
asynchronous dynamic networks.Rmoc. of the 24th Annual ACM
Symposium on Theory of Computing (STQ#2)ges 557-570, 1992.

[8] B. Awerbuch and M. Sipser. Dynamic networks are as fastaiic
networks. InProc. of 29th Symp. on Foundations of Computer
Science (FOCSpages 206—220, 1988.

[9] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time cdenfiy of

broadcast in radio networks: An exponential gap between

determinism and randomizatiodournal of Computer and System

Sciences (JCS3)5(1):104-126, 1992.

H. Baumann, P. Crescenzi, and P. Fraigniaud. Parsonsrfiooding

in dynamic graphs. IProc. of 28th Symp. on Principles of

Distributed Computing (PODCpages 260-269, 2009.

[11] A. Clementi, C. Macci, A. Monti, F. Pasquale, and R. &4tri.
Flooding time in edge-markovian dynamic graphsPhoc. of 27th
Symp. on Principles of Distributed Computing (PODgages
213-222, 2008.

[12] A. E.F. Clementi, A. Monti, F. Pasquale, and R. Silvestr
Broadcasting in dynamic radio networkls.Comput. Syst. Sgi.
75(4):213-230, 2009.

[13] A. E. G. Clementi, A. Monti, and R. Silvestri. Distrited
multi-broadcast in unknown radio networks.Rmnoc. of 20th Symp.
on Principles of Distributed Computing (PODQ)ages 255-263,
2001.

[14] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. A. Lynch. Keegimobile

robot swarms connected. Rroc. of 23rd Conference on Distributed

Computing (DISG)pages 496-511, 2009.

S. Dolev.Self-StabilizationMIT Press, 2000.

M. Fischer and H. Jiang. Self-stabilizing leader at@tin networks

of finite-state anonymous agents.Rroc. of 10th Int. Conf. on

Principles of Distributed Systems (OPOD|8ages 395-409, 2006.

P. Flajolet and G. N. Martin. Probabilistic countingjatithms for

data base applicationdournal of Computer and System Sciences

31(2):182 — 209, 1985.

[18] E. Gafni and D. Bertsekas. Distributed algorithms fengrating
loop-free routes in networks with frequently changing togg.
IEEE Transactions on Communicatia29(1):11-18, 1981.

[20]

[15]
[16]

[17]

distributed data structure for low stretch under adveasattack. In

Proc. of 28th Symp. on Principles of Distributed Computing

(PODC), pages 121-130, 2009.

S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestmansukvey of

gossiping and broadcasting in communication netwddetworks

18:319-349, 1988.

[21] J. HromkovE, R. Klasing, B. Monien, and R. Peine. Dissemination

of information in interconnection networks (broadcast&g

gossiping) Combinatorial Network Theorypages 125-212, 1996.

R. Ingram, P. Shields, J. E. Walter, and J. L. Welch. Aynakronous

leader election algorithm for dynamic networks.Rroc. of 23rd

IEEE Int. Symp. on Parallel and Distributed Processing (FP%)

pages 1-12, 2009.

R. Karp, C. Schindelhauer, S. Shenker, and B. Véckirapd®mized

rumor spreading. IProc. of 41st Symp. on Foundations of Computer

Science (FOCSpages 565-574, 2000.

D. Kempe, A. Dobra, and J. Gehrke. Gossip-based cortipntaf

aggregate information. IRroc. of 44th Symp. on Foundations of

Computer Science (FOCS)ages 482—-491, 2003.

D. Kempe and J. Kleinberg. Protocols and impossibiligults for

gossip-based communication mechanism&rc. of 43rd Symp. on

Foundations of Computer Science (FOQ®)ges 471-480, 2002.

[26] A. Korman. Improved compact routing schemes for dyratrées. In

Proc. of 27th Symp. on Principles of Distributed Computing

(PODC), pages 185-194, 2008.

D. Kowalski and A. Pelc. Broadcasting in undirected ad hadio

networks. InProc. of 22nd Symp. on Principles of Distributed

Computing (PODC)pages 73-82, 2003.

D. Krizanc, F. Luccio, and R. Raman. Compact routingesohs for

dynamic ring networksTheory of Computing Systen87:585-607,

2004.

F. Kuhn, T. Locher, and R. Oshman. Gradient clock syocization

in dynamic networks. IfProc. of 21st ACM Symp. on Parallelism in

Algorithms and Architectures (SPAAages 270-279, 2009.

F. Kuhn, N. A. Lynch, and C. C. Newport. The abstract MA@ér.

In Proc. of 23rd Conference on Distributed Computing (DI3t&ges

48-62, 2009.

F. Kuhn, S. Schmid, and R. Wattenhofer. A self-repairin

peer-to-peer system resilient to dynamic adversarialrcHarProc.

of 4th Int. Workshop on Peer-To-Peer Systems (IPTE®)5.

[32] L. Lamport. Time, clocks, and the ordering of events distributed
systemCommun. ACM21(7):558-565, 1978.

[33] X.Li, M. J, and C. Plaxton. Active and Concurrent Toppjo

Maintenance. IProc. of 18th Conference on Distributed Computing

(DISC), 2004.

N. A. Lynch. Distributed AlgorithmsMorgan Kaufmann Publishers,

1996.

N. Malpani, J. L. Welch, and N. Vaidya. Leader electidgagithms

for mobile ad hoc networks. IDIALM '00: Proceedings of the 4th

international workshop on Discrete algorithms and methfods
mobile computing and communicatiomages 96—-103, New York,

NY, USA, 2000. ACM.

D. Mosk-Aoyama and D. Shah. Computing separable fonstivia

gossip. InProc. of 25th Symp. on Principles of Distributed

Computing (PODG)pages 113-122, 2006.

R. O’Dell and R. Wattenhofer. Information dissemiatin highly

dynamic graphs. IiProc. of 9th Joint Workshop on Foundations of

Mobile Computing (DIALM-POMGC)pages 104-110, 2005.

R. Olfati-Saber and R. M. Murray. Consensus problemseiworks

of agents with switching topology and time-delalSEE

Transactions on Automatic Contra!9(9):1520-1533, 2004.

[39] W. Ren and R. W. Beard. Consensus of information under
dynamically changing interaction topologies.Rroc. of American
Control Conferencepages 49394944, 2004.

[40] D. M. Topkis. Concurrent broadcast for informationséimination.
IEEE Transactions on Software Engineer,ii®E-11(10), 1985.

[41] J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual exaon
algorithm for ad hoc mobile networkgVireless Networks
7(6):585-600, 2001.

[20]

[22]

[23]

[24]

[25]

[27]

(28]

[29]

[30]

(31]

[34]

[35]

(36]

[37]

(38]

