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Distributed Computing and the Graph
Entropy Region

Ofer Shayevitz, Member, IEEE

Abstract— Two remote senders observe X and Y , respectively,
and can noiselessly send information via a common relay node
to a receiver that observes Z. The receiver wants to compute
a function f (X, Y, Z) of these possibly related observations,
without error. We study the average number of bits that need
to be conveyed to that end by each sender to the relay and by
the relay to the receiver, in the limit of multiple instances. We
relate these quantities to the entropy region of a probabilistic
graph with respect to a Cartesian representation of its vertex
set, which we define as a natural extension of graph entropy.
General properties and bounds for the graph entropy region are
derived, and mapped back to special cases of the distributed
computing setup.

Index Terms— Distributed source coding, zero-error informa-
tion theory, graph entropy.

I. INTRODUCTION

THE ENTROPY of a probabilistic graph was introduced
by Körner [1] as a natural generalization of the Shannon

entropy, by associating an information source V with a
graph G over its alphabet, where two symbols are adjacent
in the graph if and only if they can be distinguished. One
is then interested in compressing the source such that the
source sequence and its associated reconstruction sequence are
indistinguishable; the optimal compression rate in the limit
of multiple instances such that the probability of indistin-
guishability approaches one, is called the graph entropy of
the pair (G, V ), and is denoted by H (G, V ). For a complete
graph, the graph entropy trivially coincides with the Shannon
entropy H (V ) of the source. More generally, H (G, V ) admits
a single letter expression as the minimum mutual information
over all channels whose input is V and whose output is an
independent set of G containing V [1]. Since its introduction,
graph entropy has been applied in diverse problems such as
perfect hashing [2], Boolean circuit size [3], counting of ‘very
different’ sequences [4], and complexity of sorting from a
partial order [5]. For an extensive review of graph entropy
and its applications, see [6].

A different information-theoretic interpretation of graph
entropy was put forward in [7], where the authors considered a
point-to-point source coding problem in which a sender would
like to describe X to a receiver that knows a dependent Z ,
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without error. In that work, the minimal one-shot rate from
sender to receiver was characterized as the chromatic entropy
of (G X |Z , X), where G X |Z is the associated confusability
graph, also known as Witsenhausen’s characteristic graph [8].
The minimal asymptotical (per-instance) rate was then shown
to be the limit of the (normalized) chromatic entropy of
(G(n)

X |Z , Xn), where (·)(n) is the n-fold graph AND-product.
This quantity was further studied in [9], where it was shown
to coincide with the complementary graph entropy defined
in [10]. A closed form expression for the complementary
graph entropy is unknown; in fact, such an expression would
yield in particular the zero-error capacity of a graph [11],
a notorious open problem. In [7], the authors also considered
a smaller family of protocols for unrestricted inputs, where
the side information sequence zn is allowed to be arbitrary,
and exact reconstruction is guaranteed on each instance k
where (Xk, zk) is in the support set of pX Z . It was shown
that the associated minimal asymptotical rate is the limit of
the (normalized) chromatic entropy of (Gn

X |Z , Xn), where (·)n
is the n-fold graph OR-product, and that this limit is exactly
the graph entropy H (G X |Z , X). This serves as an upper bound
for the corresponding complementary graph entropy, whereas
the conditional Shannon entropy H (X |Z) serves as a trivial
lower bound. Both bounds can be arbitrarily loose [7].

A more general problem of zero-error distributed source
coding was studied in [12, Section III]. In that setup, two
separated senders observe two dependent sources X and Y
respectively, and would like to describe their observations
to a common receiver, without error. The achievable rate
region under unrestricted inputs1 was given a single letter
formula, by considering a natural bipartite graph coloring
problem. Specifically, it was demonstrated that in contrast to
the standard vanishing error setup of Slepian and Wolf [13],
the entire zero-error rate region cannot generally be achieved
by time-sharing two point-to-point side information protocols.

In this paper we discuss the problem of zero-error distrib-
uted source coding/computing over a simple unidirectional
noiseless network consisting of two senders, a relay, and a
receiver. In this setting the senders know some dependent
X and Y respectively, while the receiver knows a dependent
Z , and would like to compute some function f (X,Y, Z),
without error. The senders can communicate with the receiver
only via the relay. The setting is depicted in Fig. 1. We
are interested in the asymptotical rates, i.e., the per-instance
expected number of bits, that need to be sent to and from
the relay to that end, in the limit of multiple i.i.d. instances,

1The paper [12] also discusses the restricted input setting.
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Fig. 1. Distributed computing with side information over a simple relay
network.

and under an unrestricted inputs assumption. To that end, we
introduce the concept of an entropy region of a probabilistic
graph w.r.t a Cartesian representation of is vertex set, a natural
generalization of the scalar graph entropy, and show it pertains
to the optimal rate region for our distributed computing
problem. We derive several inner and outer bounds for the
graph entropy region, and discuss some of its properties.

Restricted vs. Unrestricted Inputs. Let us discuss the dis-
tinction between restricted and unrestricted inputs in our
distributed computing setup. In the restricted input setting,
the senders and receiver observe n i.i.d. triplets drawn from
a given distribution p, and the receiver wants to compute
the function f for each triplet, without error. We are then
interested in finding the set of expected rates (as n→∞) that
can be achieved by protocols facilitating this. This interesting
setting is notoriously difficult to analyze even in the simplest
of cases, e.g., in the aforementioned special case of source
coding with side information [7]. Moreover, from a practical
standpoint a restricted input protocol is very sensitive to
model support errors, since the appearance of even a single
input triplet that lies outside the support of p can mess up
the computation for other (and possibly all) input triplets.
In a more realistic setting, zeros in p may in fact represent
outliers or corrupt data events that are unlikely to occur in
any given block, hence their absence can be safely assumed
for compression purposes; yet, in case they do appear one is
still interested in correctly recovering the computation results
for all uncorrupted triplets. This naturally leads us to consider
unrestricted inputs protocols which further guarantee that the
computation result is always correct for each triplet in the
support of p, regardless of whether other triplets follow suit.
Formally, in the unrestricted input setting the senders and
receiver may observe n arbitrary triplets, and the receiver
is required to compute the function f only for triplets that
lie in the support of p, without error. We are then interested
in finding the set of expected rates (as n → ∞) achieved
by protocols that facilitate this, assuming the triplets were
drawn in an i.i.d. fashion from p.2 Note that in this setup the
receiver is not necessarily able to detect corrupt data events;
one may either assume that it somehow learns their locations
in hindsight and discards them, or that it simply does not care
about the value of the function in these locations.

Related Work. Distributed source coding and function com-
putation problems over network setups have been extensively
studied in the past under the (markedly different) asymp-
totically vanishing error probability criterion. In particular,

2In fact, it is sufficient to assume that Xk ,Yk are drawn i.i.d. and zk is
arbitrary, similar to [7].

works that probably bear the most resemblance to the settings
considered herein are the cascade source coding paper [14],
and the distributed function computation papers [15]–[18].

Organization. In Section II some notations are introduced
and the necessary mathematical background is provided.
In Section III, the graph entropy region is defined, the
zero-error computing setup is introduced, and the relation
between them is established. In the few Sections that follow,
some subregions of the graph entropy region pertaining to
special cases of source coding/computing problems are dis-
cussed, and several bounds as well as various properties are
derived: Section IV characterizes the subregions pertaining to
the point-to-point case; Section V characterizes the subregion
associated with distributed computing of dependent sources
with side information, and establishes some graph entropy
region properties; Section VI provides an outer bound for
the entire graph entropy region and gives conditions for
tightness; Section VII provides inner bounds for the subregion
corresponding to the problem of cascade computing with side
information; and Section VIII provides inner bounds for the
entire graph entropy region. A brief discussion of some open
questions appears in Section IX.

II. PRELIMINARIES

A. Notations

A function f : X �→ Y naturally extends to a function
f : 2X �→ 2Y between the associated power sets via per-
element evaluation, i.e., f (S)

def= {y : y = f (x), x ∈ S}.
We denote the associated inverse image function by f −1 :
2Y �→ 2X . Note that we allow the domain of f −1 to be the
entire power set 2Y and not just 2 f (X ), which means it can
return the empty set. We write f n for the n-fold Cartesian
product of f . We denote the set of all finite length binary
strings by {0, 1}∗. The length of a string s ∈ {0, 1}∗ is denoted
by |s|. The cardinality of a finite set A is denoted by |A|.
The + operation between two regions in Rm is understood to
be the Minkowski addition, while multiplication by a constant
is interpreted as a coordinate-wise operation.

A random variable (r.v.) X taking values in a finite alphabet
X is associated with a probability mass function (p.m.f.)
pX (x) over X , and we write X ∼ pX (x). We omit the
subscript when there is no confusion. We write SX

def= {x ∈ X :
p(x) > 0} for the associated support set. Let (X,Y ) ∼ p(x, y)
be a pair of r.v.’s over a finite product alphabet X × Y .
For any y ∈ Y , we write SXY for the joint support, and
SX |Y (y) def= {x ∈ X : p(x, y) > 0} for the conditional support

given Y = y. A random sequence Xn def= (X1, . . . , Xn) is
said to be pX -independent-identically distributed (pX -i.i.d.)
if pXn (xn) = �n

t=1 pX (xt ) for all xn . Let (Xn,Y n) be two
jointly distributed random sequences, and let pY |X be some
conditional distribution. We say that Y n is pY |X -independent
given Xn if pY n|Xn (yn|xn) = �n

t=1 pY |X (yt |xt ) for all
yn and xn with pXn(xn) > 0. When we say that two or more
random variables/sequences/sets are (possibly conditionally)
independent, we mean mutually (possibly conditionally) inde-
pendent, unless otherwise stated. The indicator r.v. associated
with an event A is denoted 1A.
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Let U be a r.v. distributed over 2X . We write X ∈ U to
denote that U contains X with probability one, i.e., that for
any x ∈ X with p(x) > 0,�

u�x

p(u|x) = 1.

B. Information-Theoretic Notions

The (Shannon) entropy of X is denoted H (X). The mutual
information between two r.v.’s (X,Y ) is denoted by I (X; Y ).
For any xn ∈ X n , let νxn be the p.m.f. over X that corresponds
to the relative frequency of symbols in xn . For ε > 0, define
the (n, ε)-typical set associated with X to be3

T n
ε (X)

def= {xn ∈ X n : ∀x ∈ X , |p(x)− νxn (x)| ≤ εp(x)}.
An important property of this definition of typicality is that
p(x) = 0 implies that νxn (x) = 0 for all xn ∈ T n

ε (X). The
joint typical set T n

ε (X,Y ) associated with a pair of r.v. X,Y
is defined similarly.

The following well known Lemmas play a central role in
the sequel.
Lemma 1 (Conditional Typicality Lemma [20]). Let pXY

be some joint distribution. Suppose xn ∈ T n
ε′ (pX ) for some

ε′ > 0, and Y n is pY |X -independent given Xn = xn . Then for
every ε > ε′:

lim
n→∞ Pr

�
(xn,Y n) �∈ T n

ε (pXY )
� = 0.

Lemma 2 (Multivariate Covering Lemma, [20]). Let (U0,
U1, . . .Uk) ∼ p(u0, u1, . . . , uk) and 0 < ε′ < ε. Let Un

0 be
a random sequence satisfying P(Un

0 ∈ T n
ε′ (U0))→ 1 as n→

∞. For each j ∈ {1 . . . , k}, let {Un
j (m j )}2nr j

m j=1 be a set of pair-
wise conditionally independent random sequences given U n

0 ,
where each sequence is pU j |U0 -independent given Un

0 .
Assume that the sets {Un

1 (m1)}2nr1
m1=1, . . . {Un

k (mk)}2nrk
mk=1 are

mutually conditionally independent given Un
0 . Then there

exists δ(ε)→ 0 as ε→ 0 such that

lim
n→∞P

�
(Un

0 ,U
n
1 (m1), . . . ,U

n
k (mk)) �∈ T n

ε (U0,U1, . . . ,Uk)

for all (m1, . . .mk)) = 0,

if for any J ⊆ {1, . . . , k} with |J | ≥ 2�
j∈J

r j >
�
j∈J

H
�
U j
�− H

�{U j } j∈J
�+ δ(ε).

C. Graph-Theoretic Notions

Let G be a graph with a vertex set V . A set A ⊆ V is called
an independent set of G if no two vertices in A are adjacent
in G, and a maximal independent set if no other independent
set strictly contains it. We denote by �(G) (resp. �(G)) the
set of all independent (resp. maximal independent) sets of G.
A coloring of G is any function c over V set such that c−1(·)
induces a partition of V into independent sets of G. For two
graphs G, F over a common vertex set, G ⊆ F refers to the

3This definition of typically, also known as robust typicality, was originally
introduced in [19].

inclusion of edge sets. The complementary graph Gc is a graph
on the same vertex set, with the complementary edge set. The
n-fold OR-product of G, denoted Gn , is a graph with a vertex
set Vn where vn and v ′n are adjacent if and only if vk and v ′k
are adjacent in G for some k ∈ {1, . . . , n}.

Let (X,Y ) ∼ p(x, y) over a finite product alphabet X ×Y .
The confusability graph G X |Y has a vertex set X , where (x, x ′)
is an edge if and only if both x, x ′ ∈ SX |Y (y) for some y ∈ Y .
More generally, for any function f (x, y), the f -confusability
graph G f

X |Y has (x, x ′) as an edge if and only if both x,
x ′ ∈ SX |Y (y) and f (x, y) �= f (x ′, y), for some y ∈ Y .

A probabilistic graph is a pair (G, V ) where G is graph and
V is a r.v. distributed over the vertex set of G. One example
is (G X |Y , X). The graph entropy of (G, V ) is defined to be

H (G, V )
def= min

V∈U∈�(G)
I (V ;U). (1)

Namely, the minimum is taken over all conditional distribu-
tions pU |V such that U , a random maximal independent set
of G, contains V with probability one (recall the definition
of the relation V ∈ U ).4 The original definition of graph
entropy was in terms of the limiting behavior of the chromatic
number of a high probability subgraph of Gn [1], which was
then shown to reduce to (1). Here we mention an essentially
similar asymptotical characterization, following [7]. Define the
chromatic entropy of (G, V ) to be

Hχ(G, V )
def= min{H (c(V )) : c is a coloring of G}.

Lemma 3 (Chromatic entropy characterization [7]).

H (G, V ) = lim
n→∞

1

n
Hχ(G

n, V n)

where V n is pV -i.i.d.
Graph entropy admits an additional characterization via the

notion of vertex packing [21]. The characteristic vector of a set
of vertices A ⊆ V is a column vector a ∈ R|V | where ai = 1 if
the i th vertex is in A, and ai = 0 otherwise. The vertex packing
polytope VP(G) is the convex hull of the characteristic vectors
associated with �(G). Write pV ∈ R|V | for the probability
column vector associated with V .
Lemma 4 (Vertex packing characterization [21]).

H (G, V )
def= min

a∈VP(G),a>0
−pT

V · log (a).

In the next two Lemmas we mention some useful properties
of graph entropy.
Lemma 5.

(i) If G is empty, then H (G, V ) = 0.
(ii) If G is complete, then H (G, V ) = H (V ).

(iii) (Monotonicity) If G ⊆ F then H (G, V ) ≤ H (F, V ).
(iv) (Subadditivity) H (F ∪ G, V ) ≤ H (F, V )+ H (G, V ).

Two probabilistic graphs (G, V ) and (F, Q) are said to be
independent, if 1) their respective vertex sets are disjoint, and
2) V , Q are independent r.v.’s. Let v be some vertex in G.
Define a new probabilistic graph (Gv←F , Vv←Q) by deleting
v and connecting every vertex in F to those vertices in G that

4It is easily verified that minimizing over V ∈ U ∈ �(G), namely without
the maximality restriction, yields the same minimum.
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were adjacent to v, and letting Vv←Q
def= V1{V �=v}+Q1{V=v}.

This operation is known as substitution.
Lemma 6 (Substitution Lemma [6], [22]). Let (G, V ) and
(F, Q) be a pair of independent probabilistic graphs. Then

H (Gv←F, Vv←Q) = H (G, V )+ PV (v) · H (F, Q).

III. FORMULATION

The problem of distributed computing via a relay with
side information at the receiver is formally described in
Subsection A. In Subsection B, the graph entropy region for
a probabilistic graph w.r.t. a Cartesian representation of its
vertex set is defined. The relation between the two problems
is established in Subsection C. The remainder of the paper is
then dedicated to studying the properties of the graph entropy
region and their distributed computing implications.

A. The Distributed Computing Setup

Let (X,Y, Z) ∼ p(x, y, z) over a finite product alphabet
X × Y × Z . A sender that knows X and another sender that
knows Y communicate with a receiver that knows Z , via a
common relay node. The receiver would like to compute a
function f (X,Y, Z), without error. We are interested in the
asymptotical rates (i.e., the per-instance expected number of
bits in the limit of multiple i.i.d. instances) that each sender
must transmit to the relay, and the relay in turn to the receiver,
to that end. The setting is depicted in Fig. 1. We specifically
consider communication protocols for unrestricted inputs, in
a sense to be described shortly. We also assume that both the
relay and the receiver are able to tell when the message they
receive ends, although this is not essential to our discussion.

A (deterministic, zero-error) one-shot protocol for the com-
puting setup (X,Y, Z , f ) consists of two sender mappings
φ1 : X �→ {0, 1}∗ and φ2 : Y �→ {0, 1}∗, and a relay mapping
φ : φ1(X ) × φ2(Y) �→ {0, 1}∗. The mappings satisfy the
following properties:

(i) The ranges of φ1, φ2 and φ are prefix free sets.5

(ii) The pair (φ(φ1(x), φ2(y)), z) uniquely determines
f (x, y, z) over SXY Z .

A n-shot protocol for the computing setup (X,Y, Z , f ) is a
one-shot protocol for the setup (Xn,Y n, Zn, f n). An unre-
stricted inputs n-shot protocol is an n-shot protocol with the
following additional property:

(iii) The pair (φ(φ1(xn), φ2(yn)), zn) uniquely determines
f (xk, yk, zk) for all k for which (xk, yk, zk) ∈ SXY Z .6

Namely, unrestricted inputs protocols are robust in the sense
of providing a guarantee that arbitrary errors could affect the
computation result only at the instance where they appear.7

5Note that φ1, φ2 are generally not one-to-one mappings. The prefix
condition can be relaxed as discussed in [7], but this can save no more than
O(log n/n) in rates for a n-shot protocol (to be immediately defined), hence
does not affect our asymptotic discussion.

6Note that this additional property in fact implies property (ii) of an n-shot
protocol, but not vice-versa, since for a n-shot protocol the pair above uniquely
determines the entire vectorized function f n(xn , yn , zn) over Sn

XY Z .
7See also a discussion in Section I on the distinction between restricted and

unrestricted inputs settings.

The rate triplet (R1, R2, R) achieved by a n-shot protocol
(φ1, φ2, φ) is defined to be

R1
def= 1

n
E|φ1(X

n)|

R2
def= 1

n
E|φ2(Y

n)|

R
def= 1

n
E|φ(φ1(X

n), φ2(Y
n))|.

We define the rate-region R(X,Y, Z , f ) associated with
(X,Y, Z , f ) to be the closure of the set of all rate triplets
(R1, R2, R) achievable by some n-shot protocol. Similarly, we
define rate-region R(X,Y, Z , f ) to be the closure of the set
of all rate triplets (R1, R2, R) achievable by some unrestricted
inputs n-shot protocol. For the special case of distributed
source coding with side information, i.e., where f (x, y, z) =
(x, y), we omit the function f and write R(X,Y, Z) and
R(X,Y, Z) for the associated rate regions. In the sequel, we
limit our discussion to R(X,Y, Z , f ). Our inner bounds will
clearly also hold for R(X,Y, Z , f ), but may be arbitrarily
loose.

B. The Graph Entropy Region

A (two-dimensional) Cartesian representation of a finite set
V is a one-to-one (but not necessarily onto) mapping π : V �→
X ×Y , where X ,Y are finite sets. Without loss of generality,
we assume throughout that the associated coordinate mappings
(V �→ X and V �→ Y) are both onto. Let G ba a graph and let
π be a Cartesian representation of its vertex set V . A triplet
of functions (c1, c2, c) over (X ,Y,V) respectively is called a
color cover for (G, π) if

(i) both (c1 × c2) ◦ π and c are colorings of G.
(ii) (c1× c2) ◦π refines c, i.e., each color class of the latter

is a union of color classes of the former.
Let (G, V , π) be a probabilistic graph with an associated

Cartesian representation, and write (X,Y )
def= π(V ). These

conventions will be used throughout. We define the chromatic
entropy region of (G, V , π) to be

Hχ(G, V , π)
def=

�
(c1,c2,c)

{(b1, b2, b) : b1 ≥ H (c1(X)),

b2 ≥ H (c2(Y )),

b ≥ H (c(V ))}
where the union is taken over all color covers for (G, π). We
define the corresponding graph entropy region to be

H (G, V , π)
def=
�
n

1

n
Hχ(G

n, V n, πn).

The next lemma provides some basic properties of the graph
entropy region.
Lemma 7.

(i) If G is empty then H (G, V , π) = {all nonnegative
triplets}

(ii) If G is complete and π is onto, then8

H (G, V , π) = {(R1, R2, R) : R1 ≥ H (X), R2 ≥ H (Y ),

R ≥ H (V )}.
8The case where π is not onto will generally yield a larger region.
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(iii) (Invariance to row/column permutations) If π ′(v) =
(σ1 × σ2)(π(v)) where σ1 and σ2 are permutations of
X and Y respectively, then H (G, V , π) = H (G, V , π ′).

(iv) (Monotonicity) If G ⊆ F then H (G, V , π) ⊇
H (F, V , π).

(v) (Subadditivity) H (F ∪ G, V , π) ⊇ H (F, V , π) +
H (G, V , π).

Proof. See the Appendix. �
A partial generalization of the substitution Lemma will be

presented in Subsection V-C.
Projections. In the next subsection, we give an operational

interpretation for the graph entropy region in the realm of
distributed computing, which provides impetus to study and
characterize this region. In particular, we discuss various
special cases of the distributed computing setup, which corre-
spond to the following projections of the graph entropy region
onto its coordinates:
H ( j )(G, V , π) ⊆ R: The projection onto the j th coordi-
nate, i.e., the set of all values this coordinate can attain in
H (G, V , π), where j ∈ {1, 2, 3}.
H (i, j )(G, V , π) ⊆ R2 for i �= j : The projection onto the (i, j)
coordinates, i.e., the set of all values this coordinate pair can
attain in H (G, V , π), where i, j ∈ {1, 2, 3} and i �= j .

Marginal Graphs. Let us define some natural marginal
graphs associated with (G, π), which will prove elemental
in the sequel for the purpose of bounding the graph entropy
region and its various projections.

(i) The row-union graph π(1)(G) has vertex set X , and x, x ′
are adjacent if and only if π−1(x, y) and π−1(x ′, y) are
adjacent in G for some y.

(ii) The row-projection graph π
(1)
⊥ (G) has vertex set X ,

and x, x ′ are adjacent if and only if π−1(x, y) and
π−1(x ′, y ′) are adjacent in G for some y, y ′.

(iii) The row-support graph π(1)(G) has vertex set X , and
x, x ′ are adjacent if and only if π(v) = (x, y) and
π(v ′) = (x ′, y) for some v, v ′ and y.

Note that the row-support graph depends only on π and
the vertex set. The column-union graph π(2)(G), column-
projection graph π(2)⊥ (G), and column-support graph π(2)(G)
are defined similarly. The next Lemma summarizes some basic
relations between the different marginal graphs.
Lemma 8. The following relations hold:9

(i) π(i)⊥ (G) ⊇ π(i)(G) ⊆ π(i)(G)
(ii)

�
π(i)(Gc)

�c ⊆ π(i)(G) and
�
π
(i)
⊥ (Gc)

�c ⊆ π(i)⊥ (G).
Proof. See the Appendix. �

C. Relations

In this subsection we show that the rate region for the
distributed computing setup with unrestricted inputs is given
by an associated graph entropy region, a generalization of the
scalar statement in [7].
Theorem 1. Let (G, V , π) be a probabilistic graph with a
Cartesian representation, and set (X,Y )

def= π(V ). Then for

9Note that there is generally no inclusion relation between π
(i)
⊥ (G) and

π(i) (G).

any r.v. Z and function f such that G = G f
V |Z ,

R(X,Y, Z , f ) = H (G, V , π).

Furthermore, the following relations hold:
(i) π(1)(G f

V |Z ) = G f
X |Y Z .

(ii) π(1)⊥ (G f
V |Z ) = G f ′

X |Z , where the function f ′ : X ×Z �→
X ∪ 2 f (X×Y×Z) is given by

f ′(x, z)
def=
� 	f (x, z) | 	f (x, z)| ≤ 1

x o.w.

and where 	f : X ×Z �→ 2 f (X×Y×Z) is given by

	f (x, z)
def= { f (x, y, z) : y ∈ Y, p(x, y, z) > 0}.

(iii) π(1)(G f
V |Z ) = G X |Y .

Proof. The idea here is very similar to [7] and
[12, Section III]; the equivalence between color covers
and protocols follows essentially from definition. Let
(φ1, φ2, φ) be a one-shot protocol. Clearly, φ(φ1(x), φ2(y))
is a coloring of G f

XY |Z , as otherwise there exist (x, y) and
(x ′, y ′) in SXY (z) for some z, such that f (x, y) �= f (x ′, y ′),
contradicting zero-error. Therefore, (φ1(x), φ2(y)) is also a
coloring of G f

XY |Z refining the former coloring. Conversely,
the every color cover (c1, c2, c) yields a one-shot protocol,
by mapping the ranges of the mappings be some prefix free
sets. c(c1(x), c2(y)) and z uniquely determine f (x, y, z)
over SXY Z as otherwise there must exist two feasible triplets
with the same color but a different value of the function,
contradicting the definition of G f

XY |Z . Since the ranges are
assumed prefix-free, a standard variable-length source coding
result [23] implies that the minimal rates achievable by any
one-shot protocol is precisely given by what we defined as
the associated chromatic entropy region, up to one bit per
coordinate.

For unrestricted inputs n-shot protocols, G f
XY |Z should be

replaced by its n-fold OR-product.10 This follows simply since
�(Gn) is exactly the n-fold set product of �(G). If the receiver
learns some independent set of (G f

XY |Z )n containing (xn, yn),
it also knows a maximal one containing this pair, which in turn
is a product of maximal independent sets of G XY |Z . Following
the one-shot discussion, the receiver can therefore compute
f (xk, yk, zk) whenever (xk, yk, zk) ∈ SXY Z . The converse
argument follows similarly. Therefore, the achievable rate
region for unrestricted inputs n-shot protocols is the chromatic
entropy of Gn

XY |Z , up to a factor of O( 1
n ) per coordinate.

Taking the limit as n → ∞, we obtain the graph entropy
region. The relations between the marginal graphs and the con-
fusability graphs are easy to verify. �
Lemma 9. Let (G, V ) be a probabilistic graph. Then there
exists a r.v. Z ′ such that GV |Z ′ = G.
Proof. The claim follows by letting Z ′ be a random edge in
G that is connected to V . �
Corollary 1. For any distributed computing setup (X,Y, Z , f )
there exists some distributed source coding setup (X,Y, Z ′)
such that R(X,Y, Z , f ) = R(X,Y, Z ′). This immediately
follows from Lemma 9 and Theorem 1.

10Note that for the restricted inputs setting, the OR-product needs to be
replaced by the AND-product, which is significantly more difficult to analyze.
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Fig. 2. Point-to-point computing with side information.

Fig. 3. Distributed computing with side information (no relay).

IV. H ( j )(G, V , π): THE POINT TO POINT CASE

The projection of the graph entropy region over each
coordinate yields the point-to-point setting with receiver side
information, similar to that of Fig. 2.
Theorem 2. The following hold:

(i) H (1)(G, V , π) = H (π(1)(G), X)
(ii) H (2)(G, V , π) = H (π(2)(G),Y )

(iii) H (3)(G, V , π) = H (G, V ).

Proof. Case (i) corresponds to a single sender that knows
X , and communicates directly with a receiver that knows
(Y, Z). This setting was studied in [7], who proved that
the optimal rate, for unrestricted inputs protocols, is given
by H (G X |Y Z , X). The claim now follows from Theorem 1,
property (i). The results for the other two cases follow
similarly. �

V. H (1,2)(G, V , π): DISTRIBUTED COMPUTING

OF DEPENDENT SOURCES

The projection of the graph entropy region over the first
two coordinates eliminates the relay and reduces the problem
to that of distributed computing with receiver side information,
as depicted in Fig. 3. This problem (sans the side information)
was studied in [12, Section III], using a different formulation.
In this section, we cast this result within the graph entropy
region framework, and then apply it to derive a vertex packing
characterization and a generalized version of the substitution
Lemma.

A. The Region

Theorem 3. Let 
H (1,2)(G, V , π) be the closed convex hull of
all pairs (R1, R2) satisfying

R1 ≥ I (X;U) , R2 ≥ I (Y ;W )

for some r.v’s (U,W ) satisfying

(i) X ∈ U ∈ �(π(1)(G)).
(ii) Y ∈ W ∈ �(π(2)(G)).

(iii) π−1(u × w) ∈ �(G) whenever pU (u)pW (w) > 0.
Then H (1,2)(G, V , π) = 
H (1,2)(G, V , π).

Proof of ⊇ Inclusion: We shall show the existence of a color
cover (c1, c2, c) for (Gn, πn) inducing an entropy region that
approaches 
H (1,2)(G, V , π) as n → ∞. Let {Un(m1)}2nR1

m1=1
be a set of independently drawn pU -i.i.d. random sequences.
Define:

c1(x
n) =

�
m1 (xn,Un(m1)) ∈ T n

ε (X,U)
xn o.w.

(2)

where m1 is the smallest index (if any) such that the con-
dition above is satisfied. This in particular means that xk is
contained in the independent set Uk(m1) for all k. Similarly,
let {W n(m2)}2nR2

m2=1 be a set of independently drawn pW -i.i.d.
random sequences, and define c2(yn) accordingly. Since the
function c is irrelevant here, trivially set c = (c1× c2) ◦πn to
satisfy the refinement property. Now, we only need to show
that (c1 × c2) ◦ π is a coloring of Gn . To that end, we show
that each color class is an independent set. We have four cases,
depending on whether or not the condition in the definition (2)
of c1 and its counterpart for c2 hold. For the first case, we have

{vn ∈ Gn : (c1 × c2) ◦ πn(vn) = (m1,m2)}
= {vn ∈ Gn : ∀k, vk ∈ π−1(Uk(m1)×Wk(m2))} ∈ �(Gn)

where the equality follows from typicality and conditions (i)
and (ii), and the inclusion follows from condition (iii) and the
definition of the OR product. For the second case, we have

{vn ∈ Gn : (c1 × c2) ◦ πn(vn) = (xn,m2)}
= {vn ∈ Gn : ∀k, vk ∈ π−1({xn} × Wk(m2))} ∈ �(Gn)

where the equality follows from typicality and condition (ii),
and the inclusion holds by virtue of condition (ii) and the
definition of the OR product. The two other cases follow
similarly, thereby confirming that (c1, c2, c) is a color cover
for (Gn, πn).

We now turn to analyze the achieved region. By Lemma 2,
if R1 > I (X;U) + δ(ε) then

lim
n→∞ Pr

�∃m1 , (X
n ,Un(m1)) ∈ T n

ε (X,U)
� = 1.

Clearly then

H (c1(X
n)) ≤ n R1 + log |X | · o(n).

Similarly, if R2 > I (X;W ) + δ(ε) then

H (c2(Y
n)) ≤ n R2 + log |Y| · o(n).

The existence of a deterministic protocol achieving
the same region follows from a standard argument. �

Proof of ⊆ Inclusion in Theorem 3: Let us establish a simple
additivity Lemma, generalizing a similar result for the graph
entropy [7].
Lemma 10. 
H (1,2)(G, V , π) is additive under the OR-product.
Proof. See the Appendix. �

Applying the lemma, we have that

H (1,2)(G, V , π) =
�
n

n−1 H (1,2)
χ (Gn, V n, πn)

⊆
�
n

n−1
H (1,2)(Gn, V n, πn)

= 
H (1,2)(G, V , π). �
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Corollary 2. H (1,2)(G, V , π) is additive under the OR-
product.
Remark 1. Note that the rate region in Theorem 3 depends
only on the marginals pX , pY and the graph G. i.e., in the sim-
ple distributed computing setting we can assume without loss
of generality that pXY Z (x, y, z) = pX (x)pY (y)pZ |XY (z|x, y).
A variation of this argument (sans the receiver side informa-
tion Z) was used in [12, Section III]. It will cease to hold in
the sequel, when we allow for relay processing.

B. A Vertex Packing Characterization

In this subsection, we provide a vertex packing type charac-
terization for the region under discussion. Unfortunately, this
characterization is quite cumbersome and not as elegant as its
scalar counterpart of Lemma 4.

Define the vertex packing collection VPC(G) to be the set
of all polytopes generated by some sub-collection of �(G)
(i.e., as a convex hull of the associated characteristic vectors).
The characteristic matrix A of a set A ⊆ V w.r.t. π is the |X |×
|Y|-dimensional matrix generated by taking the characteristic
vector of A and naturally mapping it to a matrix as dictated
by π , where matrix elements not in the associated range are set
to one. The set A is said to be in product form w.r.t. π if A =
π−1(A1×A2) for some A1 ⊆ X and A2 ⊆ Y . Let �(G, π) be
the collection of all independent sets of G that are in product
form wr.t. π . We define VP(G, π), the vertex packing polytope
of G w.r.t. π , to be the convex hull of all characteristic matrices
pertaining to �(G, π). We write pX and pY for the probability
column vectors associated with X and Y respectively.

For two sets of column vectors P1 ⊆ Rm and P2 ⊆ Rn ,
define

P1 ∗ P2
def= {A ∈ Rm×n : A = abT , a ∈ P1,b ∈ P2}.

Using Theorem 3, we obtain the following result. The proof
is a rather simple extension of the scalar case (see [6]), and
is omitted.
Theorem 4. H (1,2)(G, V , π) is given by the set of all rate
pairs satisfying

R1 ≥ min
a∈P1,a>0

−pT
X · log a

R2 ≥ min
b∈P2,b>0

−pT
Y · log b

for some P1 ∈ VPC(π(1)(G)) and P2 ∈ VPC(π(2)(G)), such
that P1 ∗ P2 ⊆ VP(G, π).

C. Generalized Substitution Lemma

Let (G, V , π) and (F, Q, σ ) be a pair of independent
probabilistic graphs with associated Cartesian representations.
Consider the new triplet (Gv←F , Vv←Q, πv←σ ) obtained via
the substitution operation defined in Subsection II-C, where the
associated Cartesian representation is defined as πv←σ (u) =
π(u) for u ∈ V \ {v}, and πv←σ (u) = σ(u) otherwise. We
have the following generalization of the Substitution Lemma.
Lemma 11 (Generalized Substitution Lemma).

H (1,2)(Gv←F , Vv←Q , πv←σ )= H (1,2)(G, V , π) + PV (v) · H (1,2)(F, Q, σ ).

Proof. See the Appendix. �

VI. AN OUTER BOUND

Recall the definition of 
H (1,2)(G, V , π) in Theorem 3. The
following is an immediate consequence of Theorem 2 and
Theorem 3.
Theorem 5. The following inclusion holds:

H (G, V , π) ⊆ 
H (1,2)(G, V , π)× {R : R ≥ H (G, V )}. (3)

Specifically,

H (1,3)(G, V , π)

⊆ {(R1, R) : R1 ≥ H (π(1)(G), X), R ≥ H (G, V )}. (4)

The bound (3) is not tight in general. Let us derive a
condition for tightness. Recall that A ⊆ V is in product form
w.r.t. π if A = π−1(A1× A2) for some A1 ⊆ X and A2 ⊆ Y .
Theorem 6. Suppose that for any non-singleton A ∈ �(G)
that is in product form w.r.t. π , and for any a ∈ A, the set of
all vertices in G that are not adjacent to a is in �(G). Then
the outer bound of Theorem 5 is tight.
Proof. Loosely speaking, in this case product coloring does
not limit the way we can color the whole graph G via coars-
ening, regardless of the per-coordinate colorings. Precisely, let
(U1,W1) be some pair satisfying the constraints in Theorem 3,
and write K

def= π−1(U1 ×W1). Let U achieve the maximum
in (1), where without loss of generality we can assume that
U − V − K forms a Markov chain. The condition in the
Theorem implies that any non-singleton A ∈ �(G) of product
form w.r.t. π has the property that each a ∈ A has a unique
set in �(G) containing it. It is easy to check that this must
be the same set for all a ∈ A, hence we can denote it by
m(A). Clearly, K is in product form w.r.t. π . Therefore, if
|K | = 1 then K = V , and if |K | > 1 then m(K ) = U , and
hence U − K − V forms a Markov chain as well, implying
that I (K ;U) = I (V ;U) = H (G, V ). Since K ∈ U ∈ �(G),
once can clearly achieve R = H (G, V ) by random coloring
w.r.t. K . �
Example 1. The outer bound is tight for arbitrary π if
G is either empty, complete, or more generally, a complete
multipartite graph. The bound is also tight for (G, π) such that
G obtained from a complete graph by removing any number
of edges that are diagonal w.r.t. π , i.e., edges (v, v ′) where
both π(v) and π(v ′) differ in both coordinates.

VII. H (1,3)(G, V , π): CASCADE COMPUTING

The projection of the graph entropy region over the first
and third (or second and third) coordinates corresponds to the
assumption that Y (or X) is known at the relay. This results in
the cascade computing setting depicted in Fig. 4. We start by
discussing an inner bound based on point-to-point protocols,
and then proceed to consider more general protocols. We then
study a certain covering problem and utilize it to obtain a better
inner bound in a special case.

A. Point-to-Point Protocols

Theorem 7. The closed convex hull of the union of the
following three regions is contained in H (1,3)(G, V , π):
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Fig. 4. Cascade computing with side information.

(i) Decoding relay region:

{R1 ≥ H (π(1)(G), X), R ≥ H (G, V )}.
(ii) Forwarding relay region I:

{R1 ≥ H (π(1)⊥ (G), X),

R ≥ H (π(1)⊥ (G), X) + H (π(2)(G),Y )}.
(iii) Forwarding relay region II:

{R1 ≥ H (π(1)(G, V )),

R ≥ H (π(1)(G), X) + H (π(2)⊥ (G),Y )}.
Proof. For the purpose of the proof, and by virtue of
Corollary 1, we can adopt a distributed source coding with side
information setting, i.e., where f (x, y, z) = (x, y), without
any loss of generality. Theorem 1 then provides the relation
to the marginal graphs. Note that the unrestricted inputs
property of the protocol is guaranteed by the unrestricted
inputs property of the point-to-point protocols used.

Decoding relay: The sender describes Xn to the relay
using H (G X |Y , X) bits per instance. The relay then describes
(Xn,Y n) to the receiver using H (G XY |Z, (X,Y )) bits per
instance.

Forwarding Relay I : The sender describes Xn to the receiver
using H (G X |Z, X) bits per instance. The relay forwards this
description, and further describes Y n to the receiver (that now
knows Xn) using H (GY |X Z ,Y ) bits per instance. Note that

since f (x, y, z) = (x, y), then G f ′
X |Z = G X |Z .

Forwarding Relay II : The sender describes Xn to the
receiver using H (G X |Y Z, X) bits per instance, assuming the
receiver knows Y n . The relay forwards this description, and
further describes Y n to the receiver using H (GY |Z ,Y ) bits per
instance. �
Example 2. Consider the relay-assisted cascade source
coding problem, i.e., the cascade computing problem with
f (x, y, z) = x, and suppose X = g1(Y ) and Z = g2(Y ). Let
us compute the decoding relay region, which by Theorem 1
amounts to computing H (G X |Y , X) and (G f

XY |Z , (X,Y )).
Clearly G X |Y is empty, hence H (G X |Y , X) = 0. It is readily
verified that G f

XY |Z can be written as a disjoint union of
complete multipartite graphs {Mz}z∈Z , where the vertices
of Mz are essentially g−1

2 (z), and the partite sets in Mz

correspond to g1(g
−1
2 (z)). Let ψ map (x, y) to the partite

set it belongs to. Now let

U =
�

z �=Z

ψ(Xz ,Yz) ∪ ψ(X,Y )

where Yz ∼ pY |Z(·|z), Xz = g1(Yz) zi , and all the pairs are
independent. This yields (X,Y ) ∈ U ∈ �(G f

XY |Z ) and also

results in U, Z being independent. Therefore

H (G f
XY |Z , (X,Y )) ≤ I (X,Y ;U)

(a)= H (U |Z)− H (U |X,Y, Z)
(b)= H (U |Z)− H (U |X, Z)+ H (X |U, Z)+ H (Z)− H (Z)

= H (X,U, Z)− H (Z)− H (U |X, Z)

= H (X |Z).
In (a) we used the facts that U and Z are independent and that
Z = g2(Y ). In (b) we used the facts that U is a function of
X, Z and X is a function of U, Z. The decoding relay region
is therefore tight, yielding {R1 ≥ 0 , R ≥ H (X |Z)} which is
optimal also for general protocols (not only for unrestricted
inputs), and even when allowing a vanishing error probability.
Now, note that if G X |Z is a full graph, then communicating
X directly to the receiver requires a rate of H (X), while
when communicating X through the relay that knows Y a
possibly much lower sum-rate of H (X |Z) is sufficient. This
should be contrasted with the vanishing error probability case
where the so-called cutset bound holds, i.e., the relay-receiver
rate cannot be smaller than the optimal point-to-point sender-
receiver rate [24]. Note also that since the relay knows Z,
it seems that a simpler way for zero-error communication
would be for the relay to use a conditional codebook (over
blocks) which would yield R approaching H (X |Z) as well.
However, this latter protocol does not satisfy the unrestricted
inputs property.

In some special cases, one of the bounds in Theorem 7
coincides with the outer bound (4) and yields the exact
region.
Lemma 12. The inner bound in Theorem 7 is tight in each of
the following cases:

(i) π(1)(G) = π(1)(G).
(ii) π(1)(G) = π

(1)
⊥ (G) =

�
π
(1)
⊥ (Gc)

�c
and π(2)(G) is

empty.
(iii) π(1)⊥ (G) =

�
π
(1)
⊥ (Gc)

�c
, π(2)(G) is empty, and either

π
(1)
⊥ (G) ⊆ π(1)(G) or vice versa.

(iv) π(1)(G) =
�
π(1)(Gc)

�c
, π(2)⊥ (G) =

�
π
(2)
⊥ (Gc)

�c
, and

X,Y are independent.

Proof. See the Appendix. �
We now describe four cases of cascade computing where

the conditions in Lemma 12 are met. The first three are a
relay-assisted cascade source coding problems, i.e., cascade
computing problems for f (x, y, z) = x .
Example 3 (Degraded Receiver). Suppose X −Y − Z forms a
Markov chain. Then for relay-assisted cascade source coding,
the decoding relay region is tight. To see this, note that if x, x ′
are adjacent in G X |Y then {x, x ′} ⊆ SX |Y (y) for some y. Now,
p(x, y, z) = p(x)p(y|x)p(z|y) > 0 for any z ∈ SZ |Y (y) and
hence p(x ′, y, z) > 0 as well. Therefore, x, x ′ are adjacent in
G X |Y Z , and so G X |Y ⊆ G X |Y Z . The reverse inclusion always
holds, hence the two graphs coincide. Using the relations of
Theorem 1 we find that condition (i) in Lemma 12 is satisfied.
We note in passing that under the vanishing error criterion
the corresponding region is also known exactly [18]. The gap
between the regions can be arbitrarily large, e.g., consider
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p(x, y, z) with full support such that H (X |Y ) � H (X) and
H (X |Z)� H (X).
Example 4 (Degraded Relay). Suppose X − Z − Y forms
a Markov chain, and SY |Z (z) = SY for all z ∈ SZ .
Then for relay-assisted cascade source coding, the first for-
warding relay region is tight. To see this, let x, x ′ be
adjacent in G X |Z . i.e. {x, x ′} ∈ SX |Z (z) for some z.
Then for any y, y ′ ∈ SY |Z (z) = SY we have p(x, y, z) =
p(z)p(x |z)p(y|z) > 0, and similarly p(x ′, y ′, z) > 0.
Therefore, (x, y) and (x, y ′) are adjacent in G XY |Z for any
y, y ′ ∈ SY . This implies that x, x ′ are adjacent in the graph
F =

�
π
(1)
⊥ (Gc

XY |Z )
�c

, hence G X |Z ⊆ F. By Lemma 8 and
Theorem 1 we have F ⊆ G X |Z , hence F = G X |Z . Now,
note that our discussion above holds also for y = y ′, hence
also F = G X |Y Z . Finally, since f (x, y, z) = x we have
that G f

Y |X Z is the empty graph. Appealing to the relations
in Theorem 1, we find that condition (VII-A) in Lemma 12 is
satisfied.
Example 5. Suppose Y − X − Z forms a Markov chain, and
either G X |Y ⊆ G X |Z or vice versa. Then for relay-assisted
cascade source coding, the first forwarding relay region is
tight. To see this, let x, x ′ be adjacent in G X |Z , i.e. {x, x ′} ∈
SX |Z (z) for some z. Then p(x, y, z) = p(x)p(y|x)p(z|x) > 0
for all y ∈ SY |X (x) and similarly p(x ′, y ′, z) > 0 for all
y ′ ∈ SY |X (x ′). Therefore as in the previous example, we have
G X |Z = F. It is now immediate to verify that condition (VII-A)
in Lemma 12 is satisfied.
Example 6. Let Z = (Z1, Z2), and suppose (X, Z1) is
independent of (Y, Z2). Let f (x, y, z) = (g(x, z1), y). Then
the second forwarding relay region is tight. This easily follows
from condition (VII-A) in Lemma 12.

Finally, let us motivate further study with the following
example, adapted from [25].
Example 7. Let X1, X2 be a pair of independent r.v’s, each
uniformly distributed over {0, . . . , t − 1}. Set X = (X1, X2)
and let Y = X B where B ∼ Bernoulli( 1

2 ) is independent of X.
Let Z = X and f (x, y, z) = y. The graphs (GY |Z ,Y ) and
(GY |X ,Y ) are complete over t vertices, hence their entropy is

log t . The graphs (G f ′
X |Z , X) and (G X |Y Z , X) are empty, hence

have zero entropy. The graph (G f
XY |Z , (X,Y )) is a disjoint

union of size 2 cliques, hence its entropy is one bit. The graph
G X |Y has t2 vertices, and maximal degree 4t − 5, hence its
entropy lies between log (4t − 5) and 2 log t . The associated
point-to-point regions are given by (i) {R1 ≥ log t, R ≥ 1};
(ii) {R1 ≥ 0, R ≥ log t}; (iii) {R1 ≥ 0, R ≥ �(log t)}. The
outer bound is given by {R1 ≥ 0, R ≥ 1}. The gap can be
arbitrarily large.

Interestingly, it is the outer bound that gets it (almost) right.
Consider the following unrestricted inputs protocol, originally
described in [25] for the almost identical league problem in
the context of interactive communication. The sender binary
represents X1 and X2 using �log t� bits each, and finds the
location L of the first bit where they differ, where we set L =
�log t� + 1 if X1 = X2. Now, the sender describes L to the
relay, and the relay sends the Lth bit of Y (or an arbitrary bit if
L = �log t�+1) to the receiver, which can now reconstruct Y .
This requires the asymptotical rates R1 = H (L) ≤ 2 and

R2 = 1, independent of t. Hence, the savings over point-to-
point protocols can be arbitrarily large.

B. General Protocols

In this subsection we provide an inner bound for
H (1,3)(G, V , π), which contains, sometimes strictly, the point-
to-point bounds of Theorem 7.
Theorem 8. Let (X,Y )

def= π(V ). Then H (1,3)(G, V , π)
contains the closed convex hull of all rate pairs satisfying

R1 ≥ I (X;U)
R ≥ I (Y ;W |U)+min{I (U ;W ), I (X;U)} (5)

for some choice of (U,W ) such that

(i) X ∈ U ∈ �(π(1)(G))
(ii) π−1(U × Y ) ∈ W ∈ �(G)

(iii) U − X − Y and X − (U,Y )−W form Markov chains.

Proof. Set c2(yn) = yn throughout the proof. The inner bound
is obtained via two protocols:

Protocol 1: Randomly draw {Un(m1)}2nR1
m1=1 and

{W n(m)}2nR

m=1 as in Theorem 3, according to the marginals
pU and pW respectively. Let c1(xn) be defined as in (2).
As before, we have that if R1 > I (X;U) + δ(ε) then
H (c1(Xn)) ≤ n R1 + o(n).

Now, define c(vn) as follows. If c1(xn) = m1, then set
c(vn) = m where m is (say) the smallest index such that
(Un(m1), yn,W n(m)) ∈ T n

3ε(U,Y,W ), if such an index exists.
Otherwise, set c(vn) = vn . In the former case we have that
(xn,Un(m1)) ∈ T n

ε (X,U), and since Y n is generated pY |X -
i.i.d. given Xn , then by Lemma 1 we have that (Un(m1),Y n) ∈
T n

2ε(U,Y ) following the Markov chain U − X − Y , with
probability → 1 as n → ∞. Therefore, if also R >
I (Y,U ;W )+ δ(ε) then by Lemma 2 there exists a suitable m
with probability→ 1 as n→∞. We conclude that under the
above condition on R, this choice yields H (c(V n)) ≤ n R +
o(n). The Markov relation X − (U,Y )−W is not necessary,
but can clearly be assumed without loss of generality.

Protocol 2: For each Un(m1), independently draw a
set {W n(m1,m)}2nr

m=1 of independent sequences, where
W n(m1,m) is PW |U -independent given Un(m1). If c1(xn) =
m1, set c(vn) = (m1,m) where m is (say) the smallest index
such that (Un(m1), yn,W n(m1,m)) ∈ T n

3ε(U,Y,W ), if such
an index exists. Otherwise, set c(vn) = vn . The analysis
continues as in Protocol 1, only now Lemma 2 implies that
a suitable m exists with probability → 1 as n → ∞, if
r > I (Y ;W |U)+δ(ε). We conclude that under this condition,
our choice yields H (c(V n)) ≤ n(r + R1)+ o(n).

The existence of a deterministic protocol achieving the
same rate region follows from a standard argument. It is
easy to check that (c1 × c2) ◦ π indeed refines c for both
protocols. �
Remark 2. The region in Theorem 8 contains the point-
to-point region of Theorem 7. To obtain the decoding relay
region, set U to achieve H (π(1)(G), X). In this case X
is a function of (U,Y ), hence we can set W to achieve
H (G, V ) while satisfying the Markov chain W − (X,Y )−U,
yielding I (Y,U ;W ) = I (X,Y ;W ) = H (G, V ). To obtain



3444 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

(and possibly exceed) the first forwarding region, set U to
achieve H (π(1)⊥ (G), X), set W ′ to achieve H (π(2)(G),Y )
with (X,U) − Y − W ′ a Markov chain, and then set W =
π−1(U×W ′). To obtain (and possibly exceed) the second relay
forwarding region, set U to achieve H (π(1)(G), X) and W ′
to achieve H (π(1)⊥ (G), X) while satisfying the Markov chain
(X,U) − Y − W ′, and then set W = π−1(U × W ′). The
inclusion can generally be strict, as we now demonstrate.
Example 7 (continued): It is clear that the suggested protocol
falls under Theorem 8. Specifically, it corresponds to U being
a deterministic function of X, and W a deterministic function
of (U,Y ).

Let us now provide another example demonstrating that the
region in Theorem 8 can be strictly larger than the point-to-
point region of Theorem 7, but requiring stochastic mappings.
Example 8. Let G be the 5-cycle over V = {0, 1, 2, 3, 4}
in this order, V uniformly distributed over V . Let π(V) =
{(0, 0), (1, 1), (0, 1), (2, 0), (1, 2)} respectively. This results in
X having a distribution with values ( 2

5 ,
2
5 ,

1
5 ) over X =

{0, 1, 2} respectively, and the same for Y .
It can be shown that The entropy H (G, V ) is obtained

by drawing U uniformly at random over the two possi-
ble maximal independent sets containing V . This yields
H (G, V ) = log 5

2 ≈ 1.322. The graph π(1)(G) has a single
edge (0, 1), and the associated entropy is achieved by letting
U = (X, 2) if X ∈ {0, 1}, and choosing U uniformly over
{(0, 2), (1, 2)} if X = 2, which yields H (π(1)(G), X) =
1 − 1

5 H ( 1
2 ,

1
2 ) = 4

5 . The graph π(1)(G) has an edge set
{(0, 1), (0, 2)}, hence H (π(1)(G), X) = H ( 2

5 ,
3
5 ) ≈ 0.971.

Finally, π(1)⊥ (G) is a complete graph, hence H (π(1)⊥ (G), X) =
H (X) = H ( 2

5 ,
2
5 ,

1
5 ) ≈ 1.522. The graph π(2)(G) is empty,

hence H (π(2)(G),Y ) = 0. The graph π(2)⊥ (G) has an edge
set {(0, 1), (0, 2)}, hence H (π(2)⊥ (G), X) = H ( 2

5 ,
3
5 ) ≈ 0.971.

Appealing to Theorem 7, we see that the decoding relay
region contains the first forwarding relay region. Taking the
convex hull of the decoding relay region and the second
forwarding relay region, we obtain the inner bound

R1 ≥ 0.8

R ≥ 1.322

R1 + 0.652 · R ≥ 1.955. (6)

Consider the bound in Theorem 8. Set U to
achieve H (π(1)(G), X) as above, and restrict SW =
{{0, 3}, {1, 3}, {2, 4}}. It is easy to check that W is
deterministically determined from π−1(U × Y ), except
when both U = (1, 2) and Y = 0. In this latter case, choose
W uniformly at random over {{0, 3}, {1, 3}}. This results in
W having a distribution with values { 7

20 ,
1
4 ,

2
5 } over SW ,

respectively. Hence H (W ) ≈ 1.559, and H (W |U,Y ) = 0.1.
Thus, we obtain the following inner bound:

R1 ≥ 0.8

R ≥ 1.459

which contains points strictly outside the region (6).

C. Digression: A Covering Problem

In this subsection we discuss a generic covering problem,
which leads to an improved inner bound for a special case
presented in the subsequent subsection. Let X,U,W be a
triplet of r.v’s. over a product alphabet X × U ×W . A set
of distinct pairs S = {(un(t),wn(t)) ∈ Un ×Wn}Tt=1 is called
an (n, ε)-cover of X by (U,W ) if

P
�∃t, (Xn, un(t),wn(t)) ∈ T n

ε (X,U,W )
� ≥ 1− ε.

A cover S is associated with a rate pair11

r1(S)
def= n−1 log

���{un(t)}Tt=1

���
r2(S)

def= n−1 log
���{wn(t)}Tt=1

���.
A rate pair is called covering if for any ε > 0 there exists a
(n, ε)-cover of X by (U,W ) associated with it, for some large
enough n. The covering rate region C (X |U,W ) is defined to
be the closure of the set of all covering rate pairs.
Problem 1. Determine C (X |U,W ).

While we do not know the solution to the problem above,
we can derive bounds.
Theorem 9. C (X |U,W ) contains the closed convex hull of
the union of the following regions:

{(r1, r2) : min(r1, r2) ≥ I (X;U,W )}
and

{(r1, r2) : r1 ≥ I (X;U), r2 ≥ I (X;W ),

r1 + r2 ≥ I (X;U)+ I (X,U ;W )}.
Proof. We pick a random cover in two different ways:
1) Jointly with r1 = r2 according to pU W , and 2) indepen-
dently for U and W according to pU and pW respectively.
By Lemma 2 it is easy to verify that for any ε > 0 these
random covers are (n, ε)-covers with probability → 1 as
n→∞ under each of the constraints above. The convex hull
is obtained by time-sharing the two strategies. The existence of
a deterministic cover achieving the same covering rate region
follows from a standard argument. �

The two regions of Theorem 9 do not contain one another
in general, as we now exemplify.
Example 9. Suppose that X − U − W is a Markov chain,
I (X;U |W ) > 0, and I (X;U) < I (U ;W ). It is easy to show
this implies on the one hand that I (X;W ) < I (X;U,W ) and
hence the first region does not include the second, and on the
other hand 2I (X;U,W ) < I (X;U)+ I (X,U ;W ) hence the
the second does not include the first. A simple example where
these conditions hold is X ∼ Bernoulli( 1

2 ) and U = X +
Z1,W = U+ Z2 (mod-2 addition), where Zi ∼ Bernoulli(pi),
p2 < p1 <

1
2 , and X, Z1, Z2 are independent.

Remark 3 (Multiple Descriptions Variant). As we shall see in
the following section, the covering region C (X |U,W ) yields
H (1,3)(G, V , π) for (G, π) of a special structure. It is interest-
ing to note however that the covering region is also related to
a variant of the Multiple Descriptions problem [26], described

11Note that we only count the number of distinct elements, hence
ri (S) < n−1 log T is possible.
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as follows. A source sequence Xn is to be encoded into two
separate descriptions of cardinality 2nr1 and 2nr2 respectively.
A receiver observing description i ∈ {0, 1} reconstructs a
sequence Xn

(i) with per symbol mean distortion Di w.r.t. some
distortion function di . A receiver observing both descriptions
computes both side descriptions Xn

(i), and then generates a
possibly improved reconstruction by evaluating a per symbol
function X̂k

def= f (Xk,(2),Xk,(2)), which yields a per symbol
mean distortion D w.r.t. some distortion function d. We are
interested in the set of all quintuples (r1, r2, D1, D2, D) that
are achievable for some n.

Fixing (D1, D2, D), it can be shown that the associated
set of achievable pairs is given by the union of all cov-
ering regions C (X |U,W ) over the choice of U,W such
that Ed1(X, g1(U)) ≤ D1, Ed2(X, g2(V )) ≤ D2, and
Ed(X, g(U,W )) ≤ D for some functions g1, g2, g. In par-
ticular, Theorem 9 provides an inner bound for that region.
Note that the second region in the theorem is very similar to
El Gamal - Cover inner bound [26] for the standard Multiple
Description problem.

D. Graphs With Singleton Columns

In this subsection, we derive an inner bound for
H (1,3)(G, V , π) in the case where the Cartesian representation
π has singleton columns, by which we mean that π(v) =
(x, g(x)) for some function g. This inner bound is then
shown to contain rate pairs outside the general inner bound
of Theorem 8.
Theorem 10. Suppose π has singleton columns. Then
H (1,3)(G, V , π) is the closed convex hull of the union of all
covering rate regions of the form C (X |U,W ) where X ∈ U ∈
�(π(1)(G)) and π−1{U × Y } ∈ W ∈ �(G).

Proof. Proof of ⊇ Inclusion: The protocol is similar to the
first protocol in Theorem 8, with the distinction that here the
sender can then simulate the relay hence can find both Un(m1)
and W n(m) in advance. Precisely, set c2(yn) = yn and let S be
an (ε, n) cover for X by U,W satisfying the conditions in the
Theorem. For any t ∈ {1, . . . , T }, let m1(t) ∈ {1, . . . , 2r1(S)}
and m(t) ∈ {1, . . . , 2r2(S)} be the side indices for un(t) and
wn(t), respectively. Define

c1(x
n) =

�
m1(t) (xn, un(t),wn(t))∈T n

ε (X,U,W )
xn o.w.

where t be the smallest such index, if any. Such a t exists for
Xn with probability at least 1− ε. Define further

c(vn) =
�

m(t ′) (un(t), yn, wn(m(t ′)))∈T n
ε (Y,U,W )

vn o.w.

where yn pertains to the second coordinates of π(vn) and
m(t ′) is the smallest such index, if any. Note that t and t ′ are
not necessarily equal. However, given that t exists, t ′ = t is
an eligible choice since yn is a function of xn . Thus, with
probability at least 1 − ε, c1(Xn) and c(V n) take values in
alphabets of size 2r1(S) and 2r2(S), respectively. Therefore, the
rate pair achievable by this protocol is R1 ≤ r1 + ε log |X |
and R ≤ r2 + ε log |V|. It is easy to check that (c1 × c2) ◦ π
indeed refines c.

Proof of ⊆ Inclusion: Let (R1, R) be some rate pair in the
interior of H (1,3)(G, V , π). Let (c1, c2, c) be a color cover for
(Gn, πn) such that H (c1(Xn)) ≥ n R1 and H (c(V n)) ≥ n R.
Since π has singleton columns, we can assume without loss
of generality that V = X . For any xn , the set c−1

1 (c1(xn))
(resp. c−1(c(xn))) is contained in some product of n sets
in �(π(1)(G)) (resp. �(G)). The intersection of all such
(respective) product sets is also a product set, which we denote
by ψn(xn) (resp. λn(xn)) i.e., where ψk(xn) ∈ �(π(1)(G))
(resp. λk(xn) ∈ �(G)). Write xn � x if x j = x for some j .
Let νx (ψ

n(xn), λn(xn)) be the empirical distribution of the
multiset {(ψk(xn), λk(xn))}k:xk=x , which remains undefined
when xn �� x . Define the r.v. pair (U,W ) such that

pU W |X (·, ·|x) def= E
�
νx ((ψ

n(Xn), λn(Xn)) | Xn � x
�

where (X, Xn) is an i.i.d. sequence. By construction, X ∈
Un ∈ �(π(1)(G)) and π−1(Un × Y ) ∈ �(G).

To conclude the proof, we construct a cover that
corresponds to (X,U,W ), with the appropriate rates. To that
end, consider the k-fold product (ck

1, ck
2, ck) operating on

nk-sequences. Trivially, this is a color cover for (Gnk, πnk)
with H (ck(Xnk)) ≥ nk R and H (ck

1(X
nk)) ≥ nk R1. By the

asymptotic equipartition property and the above definitions,
for any ε > 0 and large enough k (with n fixed), there
exists a set A ⊆ X nk with PXnk (A) ≥ 1 − ε, such that
|ψnk(A)| ≤ 2nk(R+ε) and |λnk(A)| ≤ 2nk(R1+ε), and where�

xnk, ψnk (xnk), λnk(xnk)
�
∈ T nk

ε (X,U,W ) for all xnk ∈ A.

Therefore, S
def= ψnk (A) × λnk(A) is a (nk, ε)-cover with

r1(S) ≤ R + ε and r2(S) ≤ R1 + ε.
The next corollary follows from Theorems 9 and 10.

Corollary 3. Suppose π has singleton columns. Then
H (1,3)(G, V , π) contains the closed convex hull of all rate
pairs satisfying

R1 ≥ I (X;U)
R ≥ I (X;W )

R1 + R ≥ I (X;U,W ) + I (U ;W ) (7)

for some choice of (U,W ) such that X ∈ U ∈ �(π(1)(G))
and π−1{U × Y } ∈ W ∈ �(G).
Remark 4. The first rate region in Theorem 9 was not used in
Corollary 3 since in this specific case it is already contained
in the region of Theorem 8. To see this, let U,W be some pair
satisfying the conditions in Theorem 10. For this pair the first
region in Theorem 9 is given by

min(R1, R) ≥ I (X;U,W ). (8)

Now, let U ′ be the set of first coordinates of π(W ). It is readily
verified that since π has singleton columns, (U ′,W ) also
satisfy the conditions in Theorem 10. Furthermore, U ′ and W
are one-to-one, hence the first region in Theorem 9 for (U ′,W )
yields

min(R1, R) ≥ I (X;W ) = I (X;U ′) (9)

which is at least as large as (8). Now note that the pair
(U ′,W ) also satisfies the conditions of Theorem 8; plugging
it into (5) and using the fact that I (U ′;W ) = H (U ′) ≥
I (X;U ′) and I (Y ;W |U) = 0, reproduces the region (9).
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Fig. 5. (G, π) for Example 10.

For π with singleton columns, the bound in Corollary 3 can
sometimes improve upon the general bound of Theorem 8.
To show this, we need the following Lemma.
Lemma 13. Suppose π has singleton columns, and let (R1, R)
be contained in the inner bound of Theorem 8. Then R ≥
H (G, V ). Furthermore, suppose that for any V ∈ W ∈
�(G) that achieves H (G, V ), the mapping x �→ pW |X(·|x)
is one-to-one. Then R = H (G, V ) implies that R1 ≥
min(H (G, V ), H (π(1)(G), X)).
Proof. See the Appendix. �

Let us use the above Lemma to demonstrate that the
region in Corollary 3 can indeed contain pairs outside that
of Theorem 8.
Example 10. Let (G, V , π) be described in Fig. 5, where
V is uniformly distributed over the vertex set. As a source
coding problem this setting corresponds to the case where
The first sender is in possession of X ∼ Uniform{0, 1, 2, 3},
the second sender knows Y = min(X, 1), the receiver knows
Z = max(X, 2), and would like to learn X.

It is easy to verify that H (G, V ) is achieved by setting U =
{0, V } if V �= 0, and choosing U uniformly at random over
�(G) = {{0, 1}, {0, 2}, {0, 3}} otherwise. This yields

H (G, V ) = H (U)− H (U |V ) = log 3− log 3

4
= 3 log 3

4
.

π(1)(G) is the union of cliques {0} ∪ {1, 2, 3}, hence
is isomorphic to G. Since X is uniformly distributed,
H (π(1)(G), X) = H (G, V ). Using that in Lemma 13, we
have that for any point (R1, H (G, V )) within the region of
Theorem 8 it must be that R1 ≥ H (G, V ). We now proceed
to show that the bound in Corollary 3 contains rate pairs
(R1, H (G, V )) with R1 < H (G, V ).

Set U = {0, X, 3} for X ∈ {1, 2}, then distributed
over {{0, 1, 3}, {0, 2, 3}, {0, 3}} with probabilities { 49 , 4

9 ,
1
9 }

respectively for X = 0, and chosen uniformly at random over
that set for X = 3. This choice of parameters nicely yields
U that is distributed with probabilities { 49 , 4

9 ,
1
9 } respectively

over that same set. Thus:

I (X;U) = H
�

4

9
,

4

9
,

1

9

�
− 1

4
H
�

4

9
,

4

9
,

1

9

�
− 1

4
log 3

= 5 log 3

4
− 4

3
.

Furthermore, π−1(U × Y ) takes values in the set
{{0}, {3}, {1, 3}, {2, 3}} with probabilities { 14 , 1

12 ,
1
3 ,

1
3 }. Set

W = π−1(U × Y ) if π−1(U × Y ) ∈ {{1, 3}, {2, 3}}, and W =
{0, 3} otherwise. This yields W = {0, X} if X �= 3, and W
uniformly distributed over {{0, 1}, {0, 2}, {0, 3}} if X = 3.

This choice achieves H (G, V ), i.e.,

I (X;W ) = H (G, V ) = 3 log 3

4
.

Furthermore,

I (X;U,W ) + I (U ;W ) = I (X;U) + I (X;W ) + I (U ;W |X)
= I (X;U) + I (X;W ) + H (W |X)
= 9 log 3

4
− 4

3
.

Therefore the bound of Corollary 3 contains all rate pairs
satisfying

R1 ≥ 5 log 3

4
− 4

3

R2 ≥ 3 log 3

4

R1 + R2 ≥ 9 log 3

4
− 4

3
.

Specifically, this contains the rate pair (R1, H (G, V )) for

R1 = 6 log 3
4 − 4

3 < H (G, V ). which by the previous discussion
lies outside the region of Theorem 8.

VIII. H (G, V , π): DISTRIBUTED COMPUTING

WITH RELAY PROCESSING

As already discussed, the entire graph entropy region cor-
responds to the problem of distributed computing with relay
processing and side information at the receiver. This setting is
depicted in Fig. 1. An outer bound for the region was discussed
in Section VI. In this section, we provide two inner bounds
in the spirit of Section VII. The derivation is very similar; the
main difference is that in order to prove that the sequences
Un

1 (m1) and Un
2 (m2) that color Xn and Y n respectively are

jointly typical with probability→ 1 as n→∞, we need to use
the Markov Lemma [20] in lieu of the conditional typicality
Lemma, as in the derivation of the Berger-Tung inner bound
in distributed lossy source coding [20], [27], [28]. The details
are omitted.
Theorem 11. H (G, V , π) contains the closed convex hull of
all rate pairs satisfying

R1 ≥ I (X;U1)

R2 ≥ I (Y ;U2)

R ≥ min{I (U1,U2;W ), I (U2;W |U1)+ I (X;U1)

I (U1;W |U2)+ I (Y ;U2)}
for some choice of (U1,U2,W ) such that

(i) X ∈ U1 ∈ �(π(i)(G)).
(ii) Y ∈ U2 ∈ �(π(2)(G)).

(iii) π−1(u1 × u2) ∈ �(G) whenever pU1(u1)pU2(u2) > 0.
(iv) π−1(U1 ×U2) ∈ W ∈ �(G).
(v) U1−X−Y , U2−Y−(X,U1) and W−(U1,U2)−(X,Y )

form Markov chains.

Theorem 12. Suppose π has singleton columns. Then
H (G, V , π) contains the closed convex hull of all rate pairs
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satisfying

R1 ≥ I (X;U1)

R2 ≥ I (X;U2)

R1 + R2 ≥ I (X;U1,U2)+ I (U1;U2)

R1 + R ≥ I (X;U1,W )+ I (U1;W )

R2 + R ≥ I (X;U2,W ) + I (U2;W )

R1 + R2 + R ≥ I (X;U1,U2,W )+ I (W ;U1,U2)+ I (U1;U2)

for some choice of (U1,U2,W ) satisfying conditions (i)–(iv)
of Theorem 11.

IX. FURTHER RESEARCH

A general characterization of the graph entropy region, and
hence the optimal rate region for the associated distributed
computing problem, remains an open problem. Furthermore,
the various expressions and bounds obtained in this paper are
at times cumbersome and not as intuitively appealing as in the
one-dimensional case. It remains to be seen if there is a simpler
more natural way of approaching these type of problems, or
whether the increased complexity is somehow endemic to the
setup, as is sometimes the case in other multi-user settings.

The concept of a graph entropy region in itself raises
some questions of separate (thought related) interest. For
instance, is the entire region additive w.r.t. the OR-product?
Does the generalized substitution Lemma apply? We have
only established these properties for the projection H (1,2).
And, what are the conditions for additivity w.r.t. graph union?
This latter question has been well studied in the scalar case,
and has revealed fascinating relations to the perfect graph
property. Furthermore, it may be interesting to study how the
region behaves for a fixed (G, V ) as a function of π , and to
characterize the induced partial order on the set of Cartesian
representations.

The subadditivity of graph entropy w.r.t. to unions has
been used as a bounding technique in various problems
outside information theory and graph theory, such as counting
problems and complexity of algorithms. The underlying idea
is to represent the problem in graph covering terms, where
the task is to find the minimum number of graphs from a
certain class whose union yields a some target graph. The
entropy of the target graph and the maximum entropy over
the class of graphs then translate into a lower bound on the
sought number. It would be interesting to examine whether
subadditivity of the graph entropy region w.r.t. unions can
be used similarly, possibly in problems where operations are
inherently distributed.

APPENDIX

Proof of Lemma 7: (i) follows since a constant color cover
applies. (ii) follows easily since Gn is complete and πn

is onto, hence only one-to-one color covers are possible.
(iii) follows since there is a trivial one-to-one mapping
between color covers for (G, V , π) and (G, V , π ′) (via the
permutations/ their inverses) preserving the chromatic entropy
region. (iv) follows since any color cover for (F, V , π) is also
a color cover for (G, V , π). (v) follows by noting that the
Cartesian product of color covers for (F, V , π) and (G, V , π)

yields a color cover for (F ∪ G, V , π), and then using the
subadditivity of entropy. �

Proof of Lemma 8.
(i) Trivial.

(ii) Suppose x, x ′ are not connected in π(i)(Gc). Then for
all y ∈ Y we have that π−1(x, y) and π−1(x ′, y)
are not adjacent in Gc, or equivalently, π−1(x, y) and
π−1(x ′, y) are adjacent in G for all y ∈ Y . Hence
by definition, x and x ′ are adjacent in π(i)(G) and the
first relation is established. The second relation follows
similarly. �

Proof of Lemma 10. We clearly have the inclusion
H (1,2)(G, V , π) ⊆ n−1
H (1,2)(Gn, V n, πn). To establish the
converse inclusion, let (Un,W n) be some pair of r.v.’s taking
values in 2X n

and 2Yn
respectively (not necessarily i.i.d.

component-wise). Then

I (Xn;Un) =
n�

k=1

H (Xk)− H (Xk|Un, Xk−1)

≥
n�

k=1

H (Xk)− H (Xk|Uk) =
n�

k=1

I (Xk;Uk).

Where we have used the fact that Xn is i.i.d. Similarly,
I (Y n;W n) ≥ � I (Yk ;Wk). Therefore the rate pair achieved
by Un,W n , when normalized by n, is greater (simultane-
ously on both coordinates) than a convex combination of
rate pairs achieved by (Uk,Wk). To conclude we need to
show that these rate pairs are all in 
H (1,2)(G, V , π), i.e.,
that (Uk,Wk) satisfies the conditions of Theorem 3. The first
two conditions are clearly satisfied, since Xn ∈ Un and
Y n ∈ W n . Now, assume that pUk (u)pWk (w) > 0 for some
u, w. Then there exists un, wn with uk = u, wk = w, such
that pU n(un)pW n(wn) > 0, and hence (πn)−1(un, wn) ∈
�(Gn). By the definition of the OR-product, this means that
π−1(uk × wk) ∈ �(G). Hence, (Uk,Wk) satisfies the third
condition as well. �

Lemma 11, Proof of ⊆ Inclusion. Let (X ,Y )
def=

πv←σ (Vv←Q) and E = 1{V=v}. Furthermore, let (X,Y ) =
(X ,Y ) if E = 0, and (X,Y ) = π(v) otherwise. Denote
(x, y)

def= π(v). Define (X ′,Y ′) = σ(Q) if E = 1, and
(X ′,Y ′) = (e, e) otherwise, for some unique auxiliary symbol
e. Clearly, X and Y are one-to-one with (X, X ′, E) and
(Y,Y ′, E) respectively.

Let (U ,W ) be a pair satisfying the conditions in Theorem 3
for (Gv←F , Vv←Q, πv←σ ). Denote the alphabets for the first
coordinate pertaning to π and σ by Xπ and Xσ respectively.
Let U = U if U∩Xσ = ∅, and U = (U∩Xπ)∪{x} otherwise.
Let U ′ = U ∩ Xσ . Define W,W ′ similarly. Clearly then, U
and W are one-to-one with (U,U ′) and (W,W ′) respectively.
It is readily verified that (U,W ) satisfies the conditions in
Theorem 3 for (G, V , π), and that given V = v, (U ′,W ′)
satisfies these conditions for (F, Q, σ ). Thus:

I (X ;U)
= H (X, X ′, E)− H (X, X ′, E |U,U ′)
= H (X)+ H (E |X)+ H (X ′|E, X)

−H (X |U,U ′)−H (E |X,U,U ′)−H (X ′|E, X,U,U ′)
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= H (X)+ H (E |X)+ H (X ′|E)
− H (X |U)− H (E |X,U,U ′)− H (X ′|E,U ′)
= I (X;U) + I (X ′;U ′|E)+ I (E;U,U ′|X)
= I (X;U) + PV (v)I (X

′;U ′|V = v)+ I (E;U,U ′|X)
(10)

where we have used the facts that X − E − X ′, X − U − U ′
and X ′ − (E,U ′)− (X,U) are Markov chains. Similarly, we
obtain

I (Y ;W ) = I (Y ;W )+ PV (v)I (Y
′;W ′|V = v)

+I (E;W,W ′|Y ) (11)

Noting that (X ′,Y ′) = σ(Q) given V = v, the
inclusion follows by taking the union over all feasi-
ble (U ,W ), and by the nonnegativity of the mutual
information. �

Lemma 11, Proof of of ⊇ Inclusion: Let (U1,W1) and
(U2,W2) be two pairs satisfying the conditions in Theo-
rem 3 for the (G, V , π) and (F, Q, σ ) respectively. Without
loss of generality, assume that the triplets (U1,W1, V ) and
(U2,W2, Q) are independent, U1 is independent of W1, and
U2 is independent of W2. We now show that we can generate a
corresponding (U ,W ) for which the extra mutual information
term vanishes. Let U = U1 ∪ U2 \ {x} if x ∈ U1, and
U = U1 if x �∈ U1. Define W similarly. It is easily verified
that the pair (U ,W ) satisfies the conditions in Theorem 3
for the (Gv←F , Vv←Q , πv←σ ). Now note that the former
derivation of (U,W ) and (U ′,W ′) yields (U,W ) = (U1,W1)
and Pr((U ′, V ′) = (U2, V2)|V = v) = 1. Furthermore, it
is easily verified that in this case E − X − (U,U ′) forms
a Markov chain, hence the term I (E;U,U ′|X) vanishes
in (10). Similarly, the term I (E;W,W ′|Y ) vanishes in (11).
The inclusion follows by taking the union over all feasible
(U1,W1) and (U2,W2). �

Proof of Lemma 12.

(i) Trivial, via the decoding relay region.
(ii) The first equality guarantees the optimality of R1 in

the first forwarding relay region. The second equality
implies that (x, y) is adjacent to (x ′, y ′) in G for x �= x ′,
if and only if the two associated columns are fully
interconnected. i.e., for all feasible y, y ′. Since π(2)(G)
is empty there are no intra-column edges. Therefore, G
can be obtained by starting with π

(1)
⊥ (G), and substi-

tuting each vertex x with an empty graph over SY |X (x)
with a probability distribution pY |X (·|x). By the Sub-
stitution Lemma (Lemma 6) we have that H (G, V ) =
H (π(1)⊥ (G), X). This guarantees the optimality of R in
the first forwarding relay region.

(iii) Following the discussion in item (ii) above, we have
that different columns are either disconnected or fully
interconnected, and that there are no intra-column edges.
Therefore, if π

(1)
⊥ (G) ⊆ π(1)(G) then π

(1)
⊥ (G) =

π(1)(G), and if π(1)(G) ⊆ π
(1)
⊥ (G) then π(1)(G) =

π(1)(G). The first case implies the tightness of the first
forwarding relay region as in (ii), while the second
implies the tightness of the decoding relay region.

(iv) The first equality implies that all the rows are identical in
terms of intra-row edges (independence is needed here
to guarantee that there are no missing vertices). The
second equality implies that different rows are either
disconnected or fully interconnected. Therefore, using
the independence again, (G, V ) can be constructed by
starting with (π

(2)
⊥ (G),Y ) and substituting each ver-

tex y with the probabilistic graph (π(1)(G), X). This
yields H (G, V ) = H (π(1)(G), X)) + H (π(2)⊥ (G).Y ),
implying tightness of the second forwarding relay
region. �

Proof of Lemma 13. Since π has singleton columns, we can
assume without loss of generality that X = V . Let (U,W ) be
some pair satisfying the conditions in Theorem 8. Assume first
that I (U ;W ) ≤ I (X;U). The lower bound on R reads

I (Y ;W |U)+ I (U ;W ) = I (Y,U ;W ) ≥ I (X;W )

= I (V ;W ) ≥ H (G, V )

where we have used the Markov chain X − (U,Y ) − W for
the inequality transition. This inequality is tight if and only if
X −W − (U,Y ) forms a Markov chain and W is an optimal
choice achieving H (G, V ). Since X− (U,Y )−W as well, we
have that pW |X(·|x) = pW |UY (·|u, y) for all (x, y, u) ∈ SXY U .
Since by our assumption x �→ pW |X (·|x) is one-to-one, we
conclude that X is a function of (U,Y ). Therefore, by virtue
of Theorem 1 it must be that X ∈ U ∈ �(π(1)(G)). Thus the
lower bound on R1 yields

I (X;U) ≥ H (π(1)(G), X).

Now assume that I (U ;W ) ≥ I (X;U). The lower bound
on R reads:

I (Y ;W |U)+ I (X;U)
(a)= I (Y ;W |U)+ I (X;U) + I (X;W |U,Y )

= I (X;U) + I (XY ;W |U)
(b)= I (X;U,W ) = I (X;W ) + I (X;U |W )

= I (V ;W )+ I (X;U |W )

≥ H (G, V )

where in (a) we have used the Markov chain X− (U,Y )−W ,
and in (b) the fact that Y is a function of X . The inequality
above is tight if and only if W is the optimal choice and
X −W −U forms a Markov chain. In this case the bound of
R1 yields

R1 ≥ I (X;U) ≥ I (X;W ) = H (G, V ). �
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