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Distributed Connectivity Control of Mobile Networks
Michael M. Zavlanos, Student Member, IEEE, and George J. Pappas, Senior Member, IEEE

Abstract—Control of mobile networks raises fundamental and
novel problems in controlling the structure of the resulting dy-
namic graphs. In particular, in applications involving mobile sen-
sor networks and multiagent systems, a great new challenge is
the development of distributed motion algorithms that guarantee
connectivity of the overall network. Motivated by the inherently
discrete nature of graphs as combinatorial objects, we address this
challenge using a key control decomposition. First, connectivity
control of the network structure is performed in the discrete space
of graphs and relies on local estimates of the network topology
used, along with algebraic graph theory, to verify link deletions
with respect to connectivity. Tie breaking, when multiple such link
deletions can violate connectivity, is achieved by means of gossip
algorithms and distributed market-based control. Second, motion
control is performed in the continuous configuration space, where
nearest-neighbor potential fields are used to maintain existing links
in the network. Integration of the earlier controllers results in a
distributed, multiagent, hybrid system, for which we show that the
resulting motion always ensures connectivity of the network, while
it reconfigures toward certain secondary objectives. Our approach
can also account for communication time delays as well as collision
avoidance and is illustrated in nontrivial computer simulations.

Index Terms—Distributed control, dynamic networks, graph
connectivity, hybrid systems.

I. INTRODUCTION

R ECENT advances in communication and computation
have given rise to distributed control of multiagent sys-

tems that, compared to classical control, provides increased ef-
ficiency, performance, scalability, and robustness. A great chal-
lenge in this new field is achieving a global coordinated objective
while using only local information [1]–[14]. The objective inves-
tigated in this paper is that of maintaining connectivity of a dy-
namic network consisting of multiple mobile agents [15]–[26].

Due to their frequent appearance in multiagent systems, dy-
namic networks have already received considerable attention. A
controllability framework for state-dependent dynamic graphs
is introduced in [15]. A measure of local connectedness of a net-
work that, under certain conditions, is sufficient for global con-
nectedness is proposed in [16], while distributed maintenance
of nearest neighbor links in formation stabilization is addressed
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in [17]. The problem of maximizing the second smallest eigen-
value of a graph Laplacian matrix is investigated in [18], while
a decentralized approach to this problem that makes use of a su-
pergradient algorithm and distributed eigenvector computation
is considered in [19]. Network connectivity for double integra-
tor agents is investigated in [20], where existential as well as
optimal controller design results are discussed. Closely related
to the topics discussed in this paper is also work in ad hoc sensor
networks, involving cone-based topology control [21], [22] and
distributed algorithms that do not assume exact knowledge of
agent positions [23], [24]. This study, however, focuses more on
the power consumption and routing problem than the actuation
and control.

Unlike centralized [18], [25], [26], distributed open loop [19],
[20] or approaches that essentially restrict connectivity control
to link additions [16]–[20], [25], we propose a distributed feed-
back and provably correct control framework that imposes no
restrictions on the network topology other than the desired con-
nectivity specification. To this end, connectivity control of the
network structure is performed in the discrete space of graphs
and relies on two key ideas. First, local estimates of the network
topology provide every agent with a rough picture of the network
structure used, along with notions from algebraic graph theory
to verify link deletions with respect to connectivity. Second,
gossip algorithms and distributed market-based control allow
tie breaking whenever multiple such link deletions can violate
connectivity. On the other hand, motion control of the agents
is performed in the continuous configuration space by means
of local potential fields used to maintain existing links in the
network. Integration of the earlier controllers is possible due
to a novel representation of the network topology by a class
of proximity graphs that impose a hysteresis in link additions,
and results in a hybrid model for every agent [27]. Under the
assumption that the initial network is connected, the overall hy-
brid system is shown to guarantee connectivity of the mobile
network for all time, while it reconfigures toward certain sec-
ondary objectives. Communication time delays in the network
as well as collision avoidance can also be handled efficiently,
while our approach is illustrated through a class of interesting
problems that can be achieved while preserving connectivity.

The rest of this paper is organized as follows. In Section II,
we define the problem of controlling connectivity of dynamic
networks and develop a necessary graph theoretic background.
In Section III, we discuss the control challenges associated with
a distributed solution to the problem, and propose market-based
control to address them efficiently. The resulting distributed
hybrid agent is defined in Section IV, while properties as well
as correctness of the overall system are discussed in Section V.
Integration with agent mobility is considered in Section VI, and
finally, in Section VII, nontrivial connectivity tasks are discussed
that best illustrate our approach.

1552-3098/$25.00 © 2008 IEEE
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II. PROBLEM FORMULATION

A. Dynamic Networks

Consider a network of n agents with integrated wireless
communication capabilities, and denote by (i, j) a communi-
cation link between agents i and j. We assume that commu-
nication links between the agents can be enabled and disabled
in time due to power constraints, agent mobility, or network-
ing specifications such as routing and throughput. This gives
rise to the notion of a dynamic graph G(t) = (V, E(t)), where
V = {1, . . . , n} denotes the set of vertices indexed by the set of
agents and E(t) = {(i, j) | i, j ∈ V} denotes a time varying set
of links. We assume bidirectional communication links, and so
(i, j) ∈ E(t) if and only if (j, i) ∈ E(t). Such graphs are called
undirected, and constitute the main focus of this paper. Any
vertices i and j of an undirected graph G(t) that are joined by
a link (i, j) ∈ E(t) are called adjacent or neighbors at time t.
Hence, we can define the set of neighbors of agent i at time
t by Ni(t) = {j ∈ V | (i, j) ∈ E(t)}. An important topological
invariant of graphs is graph connectivity.

Definition 2.1 (Graph connectivity): We say that a dynamic
graph G(t) is connected at time t if there exists a path, i.e., a
sequence of distinct vertices such that consecutive vertices are
adjacent, between any two vertices in G(t).

Although the agents’ primary task is detection of certain phys-
ical changes within their proximity, their communication capa-
bilities enable them to share the individually collected data with
their peers in order to achieve a global coordinated objective,
such as consensus on their local measurements [1]–[6]. Conse-
quently, network connectivity becomes a critical requirement.
Motivated by these observations, in this paper, we address the
following problem.

Problem 1 (Distributed connectivity control): Given an ini-
tially connected network G(t0) consisting of n agents, deter-
mine local control laws that regulate addition and deletion of
links between adjacent agents so that the dynamic network G(t)
is connected for all time.

Note that Problem 1 focuses on the safety specification as-
sociated with control of network connectivity, rather than sat-
isfaction of possible global coordinated objectives, which, for
the purposes of this study, are considered secondary. There-
fore, our goal is to ensure invariance of the network G(t) with
respect to connectivity. We achieve this goal by choosing an
equivalent formulation using the algebraic representation of a
dynamic graph. In particular, the structure of any dynamic graph
G(t) = (V, E(t)) can be equivalently represented by a dynamic
Laplacian matrix

L(t) = ∆(t) − A(t) (1)

where A(t) = (aij (t)) corresponds to the adjacency matrix of
the graph G(t), which is such that aij (t) = 1 if (i, j) ∈ E(t)
and aij (t) = 0 otherwise, and ∆(t) = diag(

∑n
j=1 aij (t)

)
de-

notes the valency matrix.1 Note that for undirected graphs, the
adjacency matrix is a symmetric matrix, and hence, so is the
Laplacian matrix. The spectral properties of the Laplacian ma-

1Since we do not allow self-loops, we define aii (t) = 0 for all i.

Fig. 1. Drifts capturing convergence to (a) a point or to (b) a unit circle.
(a) f (x, y) = 1/2(x2 + y2 ). (b) f (x, y) = 1/4(1 − x2 − y2 )2 .

trix are closely related to graph connectivity. In particular, we
have the following lemma.

Lemma 2.2 [28]: Let λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤
λn (L(t)) be the ordered eigenvalues of the Laplacian matrix
L(t). Then, λ1(L(t)) = 0 for all t, with corresponding eigen-
vector 1, i.e., the vector of all entries equal to 1. Moreover,
λ2(L(t)) > 0 if and only if G(t) is connected.

Remark 2.3 (k-Connectivity): Given any graph G, the ver-
tex connectivity κ(G) of G is defined as the minimum num-
ber of vertices that, if deleted from G, increase the number of
connected components of the graph [28]. Similarly, the edge
connectivity η(G) of G can be defined as the minimum num-
ber of edges that, if deleted from G, increase its number of
connected components. For any graph G, its vertex connectiv-
ity, edge connectivity, and second smallest eigenvalue of its
Laplacian matrix satisfy λ2(L(G)) ≤ κ(G) ≤ η(G) [28]. Fur-
thermore, for any k ≤ κ(G), the graph G is called k-connected.
Clearly, if λ2(L(G)) > k − 1, then G is k-connected. Note that
for k = 1, we get λ2(L(G)) > 0, which corresponds to graph
connectivity as in Definition 2.1.

B. Dynamic Mobile Networks

As discussed in Section II-A, dynamic networks are due to
either power constraints, networking specifications, or agent
mobility. In this paper, we focus on the latter and attempt to
redefine the notion of a dynamic network G(t) so that it captures
this new specification. In particular, consider n mobile agents
in R

p and denote by xi(t) ∈ R
p the position of agent i at time

t. Assume, further, fully actuated agents i, such that

ẋi(t) = −∇xi
fi(t) + ui(t) (2)

where fi(t) ≥ 0 is a global secondary objective (drift) modeled
by a twice differentiable, radially unbounded potential (Fig. 1)
and ui(t) ∈ R

p is a control input associated with the connec-
tivity specification of the network (Problem 1). The system of
agents described in system (2) gives rise to the following defi-
nition of a dynamic graph.

Definition 2.4 (Dynamic graphs): We call G(t) = (V, E(t))
a dynamic graph consisting of a set of vertices V = {1, . . . , n}
and a time-varying set of links E(t) = {(i, j) | i, j ∈ V} such
that, for any 0 < r < R, the following hold.

1) If (i, j) /∈ E(t) and 0 < ‖xi(t) − xj (t)‖2 < r, then (i, j)
is a candidate link to be added to E(t).

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 26, 2009 at 16:22 from IEEE Xplore.  Restrictions apply.
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Fig. 2. Link (solid line) dynamics according to Definition 2.4. Note the hys-
teresis in addition of new links (i, j) due to the proposed partitioning of agent
i’s neighborhood. Also note the imposed proximity condition, which is neces-
sary for addition or deletion of links. However, the final decision is controller-
dependent, hence, the notion of a candidate link in Definition 2.4.

Fig. 3. Control challenges requiring knowledge of the network structure.
Without such knowledge, deletion of a link (i, j) can either (right) violate
connectivity or (left) not.

2) If (i, j) ∈ E(t) and r ≤ ‖xi(t) − xj (t)‖2 < R, then (i, j)
is a candidate link to be deleted from E(t).

3) If R ≤ ‖xi(t) − xj (t)‖2 , then (i, j) /∈ E(t).
Definition 2.4 implies that all links in G(t) are essentially

controllable. In particular, the neighborhood of every vertex in
G(t) is partitioned into two disjoint sets in R

p , i.e., an open
ball and an annulus, where addition and deletion of links takes
place, respectively (Fig. 2).2 Note that this partitioning of the
neighborhood of every vertex in G(t) introduces a hysteresis
in addition of new links in G(t), which is critical in integrat-
ing topology control of the network with motion control of the
agents (Section VI). Hence, Problem 1 can be restated as: de-
termine local motion controllers ui(t) ∈ R

p for all agents i so
that the underlying network G(t) is always connected.

III. DISTRIBUTED TOPOLOGY CONTROL:
CHALLENGES AND MACHINERY

Consider a dynamic graph G(t) = (V, E(t)) defined by the
time-varying set of edges E(t).3 The goal of this section is to
design local control laws that allow every agent to add or delete
nearest neighbor links without violating connectivity of G(t).
Although addition of links can only increase connectivity and
does not introduce any significant challenge in controlling the
topology of G(t), deletion of links is a nontrivial task. Since
connectivity is a global graph property, it is necessary that every
agent has sufficient knowledge of the network structure in order
to safely delete a link with a neighbor (Fig. 3). Such knowledge
can be obtained through local estimates of the network topology
(Section III-A), which, along with a tie-breaking mechanism

2Dynamic graphs G(t) as in Definition 2.4 are also called proximity graphs.
3In what follows, G(t) is treated as a generic combinatorial object as in

Section II-A. Integration with mobility and the underlying configuration space
will be discussed in Section VI.

Fig. 4. Control challenges due to multiple link deletions. In the absence of
an agreement protocol, simultaneous deletion of links (i, j) and (k, l) violates
connectivity.

TABLE I
ELEMENTWISE LINK DYNAMICS

obtained by means of gossip algorithms and distributed market-
based control (Section III-B), ensure connectivity even when
combinations of multiple deletion requests could possibly vio-
late it (Fig. 4).

A. Local Estimates of the Network Topology

As previously discussed, the goal of this section is to develop
a distributed control framework that allows every agent i to
obtain a local spanning subgraph4 estimate Gi(t) = (V, Ei(t))
of the global network G(t), using information from its nearest
neighbors Ni(t) = {j ∈ V | (i, j) ∈ E(t)} only.5 For this, let
Ai(t) = (a[i]

jk (t)) denote the adjacency matrix associated with
the graph Gi(t) at time t. Then, the dynamics of a link (j, k) can
be expressed as (Table I)6

a
[i]
jk (t + 1) = ¬(a[i]

jk (t) ↔ v
[i]
jk (t)) (3)

where v
[i]
jk (t) ∈ {0, 1} is such that v

[i]
jk (t) = 1 if a control action

is taken to add or delete link (j, k).7 In matrix form, the dynamics
in (3) become

Ai(t + 1) = ¬(Ai(t) ↔ Vi(t))) (4)

where the control input Vi(t) = (v[i]
jk (t)) is a symmetric ma-

trix ensuring that, if Ai(t0) is symmetric, then Ai(t) is also
symmetric for all time t ≥ t0 .

Let Ei = ∨j �=i(eie
T
j ∨ ej e

T
i ), where ei is a column vector

of all entries equal to zero but the ith entry that is equal to
one. Then, the expression Ei ∧ (¬Ai(t)) captures new links
(i, j) that agent i can create with agents j /∈ Ni(t). Moreover,

let A
[i]
1 (t)



= ∨j∈Ni (t) Aj (t) indicate existing links in the net-

work, available by the 1-hop neighbors Ni(t) of agent i. Then,

4Given any dynamic graph G(t) = (V, E(t)), we say that a graph Gi (t) =
(Vi , Ei (t)) is a subgraph of G(t) if Vi ⊆ V and Ei (t) ⊆ E(t). If Vi = V , we
call Gi (t) a spanning subgraph of G(t).

5The requirement that Gi (t) is a spanning subgraph of G(t) is necessary to
guarantee connectivity of the graph G(t) for all t ≥ t0 (Section V).

6See Appendix I for an overview of Boolean operations.
7The discrete-time semantics in (3) are associated with transition resets in

a resulting hybrid automaton for agent i and will be discussed in detail in
Section IV.
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TABLE II
LINK DYNAMICS IN MATRIX FORM

the expression (¬Ai(t)) ∧ A
[i]
1 (t) captures existing links in the

network of which agent i is not aware and are available by its
neighbors. Hence, the expression (Table II)

Fi(t)


= ((¬Ai(t)) ∧ A

[i]
1 (t)) ∨ (Ei ∧ (¬Ai(t))) (5)

captures all new links that agent i can add to Ai(t), consisting of
either existing links that agent i is not aware of, or links that agent
i can create with agents j /∈ Ni(t). On the other hand, the adja-
cency matrix Ai(t) includes all links in Gi(t) that are candidates
to be deleted from the network. Since Fi(t) ∧ Ai(t) = 0, we can
decouple the control input Vi(t) into a component Fi(t) ∧ V a

i (t)
regulating link additions and a component Ai(t) ∧ V d

i (t) regu-
lating link deletions. Hence, the control input becomes

Vi(t)


= (Fi(t) ∧ V a

i (t)) ∨ (Ai(t) ∧ V d
i (t)). (6)

Note that the component Fi(t) ∧ V a
i (t) prevents Ai(t) from

being updated with new links (j, k), where j, k �= i, if these
are not provided by agent i’s neighbors. On the other hand,
if ((¬Ai(t)) ∧ A

[i]
1 (t)) → V a

i (t), then all neighboring informa-
tion is used to update Ai(t). The following proposition shows
that the local network dynamics (4)–(6) are essentially a con-
sensus (with inputs) on the adjacency matrix estimates Ai(t),
providing every agent with a rough picture of the overall net-
work, as desired.

Proposition 3.1 [33]: Assume a fixed network G with corre-
sponding adjacency matrix A and initialize all network estimates
Ai(t0) with nearest-neighbor links, i.e., Ai(t0) = Ei ∧ A. Fur-
ther, let V a

i (t) = ((¬Ai(t)) ∧ A
[i]
1 (t)) and V d

i (t) = 0 for all
time t ≥ t0 , so that no new links are added or deleted in G. Then

Ai(t + 1) = ∨j∈Ni
(Ai(t) ∨ Aj (t))

and Ai(t0 + n − 1) = A for all agents i.

B. Controlling Addition and Deletion of Links

Given the local network dynamics (4), the main challenge
now is to determine control inputs V a

i (t) and V d
i (t) that ensure

connectivity of each estimate Gi(t) for all time t. If the spanning
subgraph requirement Gi(t) ⊆ G(t) holds (Section V), connec-
tivity ofGi(t) for all i implies connectivity of the overall network
G(t).

Regarding links that agent i can add in Gi(t), we require that
the control V a

i (t) = (v[i]a
jk (t)) satisfies ((¬Ai(t)) ∧ A

[i]
1 (t)) →

V a
i (t) so that Ai(t) is updated with all existing links in the

network that agent i is not aware of. Furthermore, V a
i (t) should

also capture new links that agent i can create with agents j /∈ Ni .
These objectives can be achieved by letting

v
[i]a
jk (t)



=

(
(j �= i) ∧ (k �= i)

)
︸ ︷︷ ︸

add all existing links
provided by neighbors

∨
(
xk (t) ∈ Br (xj (t))

)
︸ ︷︷ ︸

maintain current neighbors and
add new neighbors

(7)

where Bρ(x) = { y ∈ R
p | ‖y − x‖2 < ρ } denotes an open

ball of radius ρ > 0 centered at x ∈ R
p , and r > 0 is as in Def-

inition 2.4.8 Note that ((¬Ai(t)) ∧ A
[i]
1 (t)

)
→ V a

i (t); hence,
Ai(t) is updated with all neighbor information.

Unlike link additions, deletion of nearest neighbor links is a
much more challenging task since, although knowledge of the
estimate Gi(t) allows every agent i to determine adjacent links
that if deleted individually, network connectivity is preserved
(Fig. 3), it is not sufficient for dealing with simultaneous link
deletions by multiple nonadjacent agents that may disconnect
G(t) (Fig. 4). For this, we require that at most one link can be
deleted from G(t) at a time9 and employ market-based control
to achieve agreement of all agents regarding the link that is to

be deleted. In particular, let N d
i (t)



= Ni(t)\{j ∈ V | xj (t) ∈

Br (xi(t))} denote a subset of neighbors with which agent i
desires to delete a link,10 and define the function g : 2R → R

with

g(X)


=

{
x ∈ X, if X �= ∅
0, otherwise

where x ∈ X ⊆ R can be chosen according to any policy, deter-
ministic or not. Then, the proposed auction algorithm for agent
i is described in Algorithm 1 and with every iteration, it out-
puts a winning link wi(t) corresponding to the highest bid sent

8Although it is not necessary to introduce Definition 2.4 of a proximity
dynamic graph yet, we do so to avoid complicating further notations, as well as
to achieve a smoother introduction to the case of mobile agents (Section VI).

9Extension to multiple link deletions is considered in [24].
10The set N d

i (t) typically consists of neighbors that due to their distance
from agent i require high communication power.
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in the network. The control input that regulates link deletions
V d

i (t) = (v[i]d
jk (t)) can then be defined as

v
[i]d
jk (t)



= (wi(t) = (j, k)) ∧ (|wi(t)| = 1). (8)

Note that if |wi(t)| > 1, then there is either a tie in the max-
imum bids or all bids sent in the network were zero. In every
case, (8) implies that V d

i (t) = 0 for all agents i, and no link
is deleted from any estimate edge set Ei(t), which ensures the
requirement of at most one link deletion with every auction.
Other deletion requests are considered in subsequent auctions,
and so the proposed market-based control framework consists
of a sequence of auctions, each one of which results in at most
one link deletion from the network. Clearly, the existence of
some notion of synchronization of all agents to the same auc-
tion is necessary for correctness of the proposed approach. This
requirement becomes even more important in the presence of
communication time delays (Section IV).

Remark 3.2 (Choosing the bids): Note that any positive real
numbers can serve as bids in Algorithm 1. However, letting
b ≥ 0 be a function of the distance ‖xi(t) − xg(Si )(t)‖2 or the
size of the neighbor set |Ni(t)| is a rather natural choice that
can also be associated with signal strength or power constraint
properties of the overall network.

Remark 3.3 (Convergence of max-consensus): Note that the
condition (∧n

j=1Tij (t)) = 1 in Algorithm 1 clearly implies con-
vergence of the max-consensus on sets Mi(t) to the global
maximum over the network. Alternatively, convergence of the
max-consensus algorithm could be decided after n − 1 updates
of the sets Mi(t), where n − 1 corresponds to the worst-case
diameter of a network on n agents. The advantage of using
the first approach over the second one is twofold. First, using
tokens exploits the network structure and can result in more
efficient updating.11 Second, unlike the second approach which
is time-based, the first is event-based and can deal with com-
munication time delays, where the time required for n − 1 up-
dates of Algorithm 1 can be significantly different for different
agents, preventing convergence of all agents to a common out-
come (Section IV). It is also worth noting that the memory and
communication overhead for transmitting the binary tokens is
minimal (linear in the number of agents n).

Remark 3.4 (Computational complexity): Note that compu-
tation of the spectrum of a matrix has worst-case complexity
O(n3), where n is the size of the matrix [29]. This complexity
can, however, be reduced to O(n) for sparse symmetric matri-
ces [30], as is the Laplacian matrix L(t) in the case of large net-
works, commonly appearing in the proposed framework. Conse-
quently, dealing with eigenvalues does not introduce significant
computational overhead, which makes our approach scalable to
large-size networks.

IV. MODELING THE AGENTS IN THE PRESENCE

OF TIME DELAYS

The discrete topology control machinery introduced in
Section III gives rise to a hybrid model for every agent i (Fig. 5),

11For instance, in the case of a complete graph, one update is sufficient for
convergence of the max-consensus algorithm.

Fig. 5. Hybrid model Ti × Ai for agent i that consists of the composition
of a topology control and an auction automaton, resulting from the analysis in
Section III.

defined by the composition (or product) Ti × Ai of a topology
control Ti and an auction automaton Ai , respectively [27]. The
topology control automaton of agent i is responsible for updat-
ing its network estimate Ai with addition and deletion of links
(Section III-A). For this, it requires the control input V d

i that
regulates link deletions, as well as the network estimates Aj of
agent i’s neighbors in order to compute the control input V a

i that
regulates link additions (Section III-B). The control input V d

i is
provided by the auction automaton, and is computed using the
max-bid sets Mj and tokens Tj of agent i’s neighbors (Algo-
rithm 1). Note that in the proposed hybrid system, all variables
are considered shared [27]; however, the only variables that are
practically needed are the ones provided by every agent’s neigh-
bors, which guarantees the local nature of the proposed control
framework.

Implementation of the earlier hybrid system relies on infor-
mation exchange between neighboring agents in the form of
messages

Msg[i]


= {Ai,Mi , Ti}

containing their network estimates Ai , max-bid sets Mi , and
tokens Ti .12 Clearly, such messages are neither received simul-
taneously nor instantaneously. Instead, they are queued and are
received with a time delay τi > 0, and in an order that may
vary according to the frequency of transmission of each agent.13

To address these challenges, a notion of synchronization is re-
quired among the two individual automata consisting a single
hybrid agent, as well as among all hybrid agents constituting
the overall hybrid multiagent system. In the absence of a com-
mon global clock, the desired synchronization is ideally event
triggered, where by a triggering event, we understand the time
instant that a message Msg[j] is received by any of agent i’s
neighbors j ∈ Ni . The rest of this section is devoted to defining
formally the aforementioned automata and discussing how they
can be synchronized into a distributed multiagent system in the
presence of time delays.

A. Hybrid Agent

The following notion of a predicate enables us to formally
define the aforementioned automata.

Definition 4.1 (Predicate): Let X = {x1 , . . . , xn} be a finite
set of variables. We define a predicate ψ(X) over X to be a
finite conjunction of strict or nonstrict inequalities over X . We
denote the set of all predicates over X by Pred(X).

12The memory and communication cost associated with messages Msg[i] is
O(n2 ); hence, our approach is scalable to large networks.

13For instance, for a set of neighbors Ni = {1, 2, 3}, the order of
the messages received by agent i could be a sequence of the form
{1, 1, 2, 1, 3, 2, 2, 1, . . .}.
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Fig. 6. Topology control automaton Ti of agent i responsible for updating its
network estimate Ai .

In other words, a predicate is a logical formula. For example,
the predicate ψ(X) =

(
‖x − x0‖2 < r

)
over the set of variables

X ∈ R
p returns 1 if x belongs in the open ball ‖x − x0‖2 < r

and 0 otherwise. Hence, the topology control automaton, re-
sponsible for updating the network estimate Ai of agent i, can
be defined as follows [27] (Fig. 6).14

Definition 4.2 (Topology control automaton): We define
the topology control automaton of agent i by the tuple

Ti


= (XTi

, VTi
, ETi

, inv, init, guard, reset, flow), where the
variables are defined as follows.

1) XTi



= {t[i]1 , Ai} denotes the set of owned state variables

with t
[i]
1 ∈ R+ and Ai ∈ {0, 1}n×n .15

2) VTi



= {C,D} denotes the finite set of control modes.16

3) ETi



= {(C,C)} denotes the set of control switches.

4) inv: VTi
→ Pred

(
∪n

j=1 (XTj
∪ XAj

)
)

with inv(C)


=

{t[i]1 < τi} denotes the invariant conditions.

5) init: VTi
→ Pred(XTi

) with init(C)


= true denotes the

set of initial conditions.
6) guard: ETi

→ Pred
(
∪n

j=1 (XTj
∪ XAj

)
)

with guard

((C,C))


= {t[i]1 = τi} denotes the set of transition

guards.
7) reset: ETi

→ Pred
(
∪n

j=1 (XTj
∪ XAj

)
)

with reset

((C,C))


= {t[i]1 := 0, Ai := Eqn. 4} denotes the set of

transition resets.
8) flow: VTi

→ Pred
(
ẊTi

∪n
j=1 (XTj

∪ XAj
)
)

with flow

(C)


= {ṫ[i]1 = 1} denotes the flow conditions of the hy-

brid automaton that constrain the first time derivatives of
the system variables in mode v ∈ VTi

.
As discussed before, transitions in Ti are event triggered,

where the triggering event corresponds to the time instant when
agent i receives messages Msg[j] from its neighbors j ∈ Ni .
The elapsed time between any two such events is strictly positive
and is denoted by τi > 0, while the information contained in
these messages is used to compute the control input V a

i that
regulates link additions. The control input V d

i responsible for
link deletions is provided by the auction automaton defined as
follows (Fig. 7).

Definition 4.3 (Auction automaton): We define the auction
automaton of agent i by the tuple Ai



= (XAi

, VAi
, EAi

, inv, init,
guard, reset, flow), where the variables are defined as follows.

14To simplify notation, we hereafter drop the dependence of the state variables
on time t.

15We denote by R+ the set [0, ∞).
16The shorthand notation stands for C



= Collect Msg. and D



= Dummy.

Fig. 7. Auction automaton Ai of agent i responsible for providing the topology
control automaton with the control input V d

i that regulates link deletions.

1) XAi



= {t[i]2 , Ti ,Mi} denotes the set of owned state vari-

ables with t
[i]
2 ∈ R+ , Ti ∈ {0, 1}n and Mi ∈ 2R

3
.

2) VAi



= {S,B,U,D} denotes the finite set of control

modes.17

3) EAi



= {(S,B), (B,U), (U,U), (U,D), (D,S)} denotes

the set of control switches.
4) inv: VAi

→ Pred
(
∪n

j=1 (XTj
∪ XAj

)
)

with inv(U)


=

{t[i]2 < τi} and inv(e)


= true for all e ∈ VAi

\{U} de-
notes the invariant conditions.

5) init: VAi
→ Pred(XAi

) with init(S)


= true denotes the

set of initial conditions.
6) guard : EAi

→ Pred
(
∪n

j=1 (XTj
∪ XAj

)
)

with

a) guard((U,U))


= {(∧n

j=1Tij ) = 0}
b) guard((U,D))



= {(∧n

j=1Tij ) = 1}
denotes the set of transition guards.

7) reset: EAi
→ Pred(∪n

j=1(XTj
∪ XAj

))with

a) reset((S,B))


= {Si := Alg. 1}

b) reset((B,U))


= {ri, Ti,Mi := Alg. 1}

c) reset((U,U))


= {t[i]2 := 0, Ti ,Mi := Alg. 1}

d) reset((U,D))


= {t[i]2 := 0, V d

i := Eqn. 8}
e) reset((D,S))



= {clear variables for new auction}

denotes the set of transition resets.
8) flow: VAi

→ Pred
(
ẊAi

∪n
j=1 (XTj

∪ XAj
)
)

with flow

(U)


= {ṫ[i]2 = 1} denotes the flow conditions of the hy-

brid automaton that constrain the first time derivatives of
the system variables in mode v ∈ VAi

.
Note that the auction automaton Ai of agent i constitutes an

implementation of Algorithm 1 that provides Ti with the con-
trol input V d

i that regulates link deletions. As with the topology
control automaton Ti , transitions in the auction automaton Ai

are triggered upon receipt of a message, and the elapsed time
between any two such events is τi > 0. This implies that transi-
tions (C,C)Ti

of the topology control automaton Ti are always
synchronized with either transitions (U,U)Ai

or (U,D)Ai
of

the auction automaton Ai , synchronizing the two automata, as

17The shorthand notation stands for S


= Start, B



= Bid, U



= Update, and

D


= Decide.
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Fig. 8. Creating three copies of the same auction guarantees synchronization
of all agents to the same auction and common auction outcomes for all agents.
Var(z) denotes the set of all variables associated with auction z = a, b, c.

desired. Composition of the automata Ai and Ti captures control
in the discrete space of graphs.

B. Synchronization of the Hybrid Agents

The presence of time delays in the network, as well as the
network topology that imposes multihop communication pat-
terns between nonneighboring agents, can result in the agents
reaching a decision on an auction asynchronously. This would
imply that initialization of all subsequent auctions would also be
asynchronous and could result in mixing of information between
consecutive auctions, preventing all agents from reaching a com-
mon outcome for the same auction. Hence, correctness of the
proposed distributed control framework relies on some notion of
synchronization of all agents to the same auction. In the absence
of a common global clock, this synchronization can be achieved
by creating three identical copies of the auction protocol de-
scribed in Algorithm 1 that only differ on their labels (Fig. 8).
In particular, we create three copies of all variables in Ai and Ti ,
label them in the set {a, b, c}, and require that a sequence of auc-
tions is always of the form {a, b, c, a, b, c, . . .} by imposing the
transitions (Da, Sb)Ai

, (Db, Sc)Ai
, and (Dc, Sa)Ai

, according
to Fig. 8.

To understand how this scheme ensures synchronization of
all agents on the same auction, consider any agent i and suppose
that it is in auction a. Clearly, for agent i to transition to auction
b, it is necessary that all other agents are also in auction a, since
otherwise agent i will be missing bids from the agents that are
not in auction a yet (currently in auction c), and Algorithm 1
will not be able to converge. Once agent i transitions to auction
b, it initializes all variables for that auction with the latest values
from auction a, while it maintains the variables of auction a for
agents that are still in auction a, and it clears all variables of
auction c since, no agent is in this auction any more. In other
words, faster agents are forced to wait for their slower peers

before transitioning to a subsequent auction, which guarantees
synchronization of all agents to the same auction.

V. CORRECTNESS OF THE OVERALL SYSTEM

Composition of all elementary agents Ti × Ai results in the
overall product system

S


= ×n

i=1 (Ti × Ai)

which captures properties of the whole dynamic network.18 In
particular, in Section V-A, we show that the proposed distributed
hybrid system S ensures synchronization of all agents to the
same auction and agreement on the link that is to be deleted,
while in Section V-B, we show that the overall system S guar-
antees connectivity of the mobile network.

A. Synchronization and Market-Based Control

Let {zk}∞k=1 = {a, b, c, a, b, c, . . .} denote the sequence of
auctions for any agent Ti × Ai (Fig. 8). Due to possible time
delays, the product system S is not necessarily synchronized in
the same auction for all agents and all time, which can cause
the overall market-based coordination framework to fail. This
section is devoted to studying the auction dynamics in system S

and showing that they guarantee synchronization of all agents to
the same auction for all time. We achieve this goal by studying
the associated token dynamics, which explicitly indicate the
beginning and termination of the corresponding auction from
the perspective of agent i. In particular, let

T zk
∨i



= ∨n

j=1 T zk
ij and T zk

∧i



= ∧n

j=1 T zk
ij

indicate the existence of at least one token in T zk
i or the existence

of exactly n tokens in T zk
i , respectively. Then, we have the

following results.
Proposition 5.1 [33]: For any time t, suppose there exists an

agent i such that T zk
∧i (t) = 1 for any auction zk . Then, T zk

∨j (t) =
1 for all agents j with j �= i.

Proposition 5.2 [33]: For any time t, suppose there exists an
agent i such that T zk

∨i (t) = 1 and T zk
∧i (t) = 0, while T

zk + 1
∨j (t) =

1 for all agents j with j �= i and any consecutive auctions zk

and zk+1 . Then, T
zk + 1
∧j (t) = 0 and T zk

∧j (t) = 1 for all j �= i.
Proposition 5.2 equivalently states that faster agents peri-

odically wait for their slower peers, which implies a form of
synchronization among all agents. Now, let

T zk
∨ (t)



= ∨n

i=1 T zk
ii (t) and T zk

∧ (t)


= ∧n

i=1 T zk
ii (t)

denote the existence of at least one token or exactly n tokens
in auction zk , respectively, from the perspective of a global ob-
server. Clearly, if T zk

∨ (t) = 1, there exists at least one agent
i with T zk

∨i (t) = 1, while if T zk
∨ (t) = 0, then T zk

∨i (t) = 0 for
all agents i. Further, denote by tIk

the time instant that the
first token for auction zk has just been sent and by tBk

the
time instant that the last token for auction zk has just been
sent. Similarly, let tFk

denote the time instant that the last to-
ken for auction zk has just been cleared (Fig. 8). In terms of

18For a formal definition of the overall system S, see [33].
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the global variables T zk
∨ (t) and T zk

∧ (t) for auction zk , these

time instants can be expressed as tIk



= min{t | T zk

∨ (t) = 1},

tBk



= min{t | T zk

∧ (t) = 1}, and tFk



= max{t | T zk

∨ (t) = 1},
respectively. Then, Proposition 5.3 results in the following.

Proposition 5.3 [33]: Let zk−2 , zk−1 , zk , and zk+1 be any
sequence of auctions. Then, tFk −2 < tBk

< tIk + 1 < tFk −1 .
Hence, the sequence of auctions {zk}∞k=1 is according to

tIk
≤ tFk −2 ≤ tBk

≤ tIk + 1 ≤ tFk −1 ≤ tBk + 1 ≤ tIk + 2 ≤ tFk

which, since tFk −2 < tIk + 1 , implies that no contributions from
past auctions can be made in updating the variables of current
auctions, despite recycling of the auction labels according to
zk−2 = zk+1 (mod3). This observation can be used to show
correctness of the proposed market-based coordination frame-
work. In particular, we have the following result.

Proposition 5.4 [33]: For any agent i and any auction zk ,
eventually T zk

∧i (t) = 1. Moreover, all agents i with T zk
∧i (t) = 1

share identical max-bid sets Mzk
i (t).

Proposition 5.4 equivalently implies that the max-consensus
algorithm (Algorithm 1) on the max-bid sets Mzk

i (t) converges
to a common link for all agents i and every auction zk (8).
Hence, synchronization guarantees correctness of market-based
control, even in the presence of time delays.

B. Correctness of Connectivity Control

As in Section V-A, observe that the transition resets
reset((Dzk

, Szk + 1 )Ai
) that clear all variables of auction zk−1

(Fig. 8), combined with synchronization of the transitions
(Czk

, Czk
)Ti

and (Uzk
,Dzk

)Ai
in agent i, result in Azk

i (t) = 0
for all agents i and all time t > tFk

. Hence, although zk−3 =
zk (mod3), the network estimates Azk

i (t) are updated exclu-
sively from auction zk , as desired. The following result shows
that the outcome of every auction zk is at most one link w

[i]
zk (ts)

in Ezz
i (ts) that is deleted from the network estimate Ezk + 1

i (ts+1)
of the subsequent auction, i.e., w

[i]
zk (ts) /∈ Ezk + 1

i (ts+1).
Proposition 5.5 [33]: For any time ts and any agent i, consider

the transition (vs
S
, vs+1

S
) that is due to (Dzk

, Szk + 1 )Ai
. Then,

V
[i]d
zk (ts) → (¬A

zk + 1
i (ts+1)).

We next provide a relation between the edge sets Ezk
i (ts)

and Ezk
i (ts+1) after any transition (vs

S
, vs+1

S
) that is due to a

self-transition (Czk
, Czk

)Ti
.

Proposition 5.6 [33]: For any time ts and any agent i, con-
sider the transition (vs

S
, vs+1

S
) that is due to (Czk

, Czk
)Ti

. Then,

Azk
i (ts) →

(
Azk

i (ts+1) ∨ V
[i]d
zk (ts)

)
.

Proposition 5.6 equivalently implies that with every transition
(vs

S
, vs+1

S
) of the product system S that is due to a transition

(Czk
, Czk

)Ti
, we have Ezk

i (ts) ⊆ Ezk
i (ts+1) ∪ {w[i]

zk (ts)}. This
result can be used to derive similar results for the global edge
set E(t). For this, we need to introduce some further notation. In
particular, for all time t ∈ [tBk

, tBk + 1 ), we can define the global
winning link of auction zk by

wzk
(t)



=

{
(ri1 , ri2) |i = argmax

1≤j≤n
{rj3 | rj ∈ ∪n

l=1Mzk

l (t)}
}

and, as in (8), denote by Qzk
(t) = (qzk

jk (t)), where

qzk

jk (t)


= (wzk

(t) = (j, k)) ∧ (|wzk
(t)| = 1), the Boolean ma-

trix indicating the existence of a winning link for auction zk .
By Propositions 5.3 and 5.4, the set ∪n

l=1M
zk

l (t) is fixed for
all time t ∈ [tBk

, tFk
], and hence, for all time t ∈ [tBk

, tBk + 1 ),
since [tBk

, tBk + 1 ) ⊆ [tBk
, tFk

]. Thus, the winning link wzk
(t)

and matrix Qzk
(t) are also fixed for all time t ∈ [tBk

, tBk + 1 ) and
exclusively associated with the outcome of auction zk . Further-
more, V

[i]d
zk (t) → Qzk

(t) for all time t ∈ [tBk
, tBk + 1 ) and any

agent i. Finally, let A(t)


= ∨n

i=1 (Ei ∧ Azk
i (t)) denote the ad-

jacency matrix of the global graph. Then, we have the following
result.

Proposition 5.7 [33]: For any ts ∈ [tBk
, tBk + 1 ) and any agent

i, consider the transition (vs
S
, vs+1

S
) that is due to (Czk

, Czk
)Ti

.
Then, A(ts) →

(
A(ts+1) ∨ Qzk

(ts)
)
.

Proposition 5.7 implies that any transition (vs
S
, vs+1

S
) of the

product system S that is due to a transition (Czk
, Czk

)Ti
at time

ts ∈ [tBk
, tBk + 1 ) results in E(ts) ⊆ E(ts+1) ∪ {wzk

(ts)}. This
leads to the following result.

Proposition 5.8 [33]: For any ts ∈ [tBk
, tBk + 1 ) and any agent

i, consider the transition (vs
S
, vs+1

S
) that is due to (Czk

, Czk
)Ti

.
Then, Azk

i (ts+1) →
(
A(ts+1) ∨ Qzk

(ts)
)
. Moreover, if t =

ts+1 is such that vs+1
Ai

= Szk
, then Azk

i (ts+1) → A(ts+1).
Proposition 5.8 equivalently implies that Ezk

i (ts) ⊆ E(ts) for
any time instant ts ∈ [tBk

, tBk + 1 ) such that vs
Ai

= Szk
. In other

words, when agent i selects a link (i, j) to delete from Ei(ts),
the estimate Gi(ts) is a spanning subgraph of G(ts). This leads
to our main result.

Theorem 5.9: Assuming that all changes in the network topol-
ogy G(t) are controllable (due to S) as well as that G(t0) is ini-
tially connected, the product system S guarantees connectivity
of the dynamic network G(t) for all time t ≥ t0 .

Proof: See Appendix II. �

VI. INTEGRATION WITH AGENT MOBILITY

A critical requirement for correctness of the discrete topol-
ogy controller S (Section V) is that the network structure does
not change between consecutive updates in the network topol-
ogy. In the case of stationary agents, this assumption trans-
lates to the absence of random link additions or failures, while
in the presence of agent mobility and proximity networks as
in Definition 2.4, supplementary motion constraints should be
introduced that constrain the pairwise distances between the
agents and maintain all links created by the discrete topology
controller S. In particular, in the presence of communication
time delays τi > 0, a positive dwell time is introduced between
consecutive updates in the network topology that allows us to
define continuous agent motion during these intervals that main-
tains the underlying network structure. We achieve this goal, as
well as the dual interagent collision avoidance objective, using
potential fields that blow up whenever the state of the system
tends to violate any of these specifications.

As before, let G = (V, E) indicate a fixed topology of the
network between any two consecutive switches and denote
by Ni = {j ∈ V | (i, j) ∈ E} the set of neighbors of agent i.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 26, 2009 at 16:22 from IEEE Xplore.  Restrictions apply.



1424 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 6, DECEMBER 2008

Fig. 9. Plot of the potential ϕij (xij ) for R = 1.

Define further the stack vectors x


= [· · ·xT

i · · ·]T ∈ R
pn and

x̂


= [· · ·xT

ij · · ·]T ∈ R
pn(n−1) , where xij



= xi − xj , and for

every agent i, let ϕi


=

∑
j∈Ni

ϕij , where (Fig. 9)

ϕij (xij )


=

1
‖xij‖2

2
+

1
R2 − ‖xij‖2

2
.

Then, we have the following result.
Theorem 6.1: For all agents i, assume secondary ob-

jectives described by C2 potentials fi : R
p → R+ such

that lim‖xi ‖2 →∞ fi(xi) = ∞ (radially unbounded). Then, the
closed-loop system defined by (2) and the control

ui(t)


= − K∇xi

ϕi(t) (9)

guarantees that all links in G are maintained, collisions are
avoided, and all agent velocities are bounded.

Proof: See Appendix II. �
Introducing mobile agents gives rise to the notion of a navi-

gation automaton Ni for every agent i, which coordinates with
the associated topology control and auction automaton to obtain
the agent’s set of neighbors Ni , which it uses, along with their
positions xj for j ∈ Ni , to update its own position xi [(2) and
(9)]. The updated agent positions are then provided to the topol-
ogy control automaton that further updates agent i’s network
estimate Ai and the resulting set of neighbors Ni . Composition
of all three automata Ti , Ai , and Ni results in the hybrid model
Ti × Ai × Ni for a mobile agent i, as shown in Fig. 10. For-
mally, the navigation automaton of agent i can be defined as
follows (Fig. 11).

Definition 6.2 (Navigation automaton): We define the nav-

igation automaton of agent i by the tuple Ni


= (XNi

, VNi
,

ENi
, inv, init, guard, reset, flow), where we have the following.

1) XNi



= {xi, t

[i]
3 } denotes the set of owned state variables

with xi ∈ R
p and t

[i]
3 ∈ R+ .

2) VNi



= {N} denotes the finite set of control modes.19

19The shorthand notation stands for N := Navigate.

Fig. 10. Hybrid automaton Ti × Ai × Ni of a mobile agent i that consists
of the composition of a topology control Ti , an auction Ai and a navigation
automaton Ni .

Fig. 11. Navigation automaton for agent i responsible for agent motion with-
out violating the network structure.

3) ENi



= {(N,N)} denotes the set of control switches.

4) inv: VNi
→ Pred

(
∪n

j=1 (XTj
∪ XAj

∪ XNj
)
)

with

inv(N)


= {t[i]3 < τi} denotes the invariant conditions of

the hybrid automaton.

5) init: VNi
→ Pred(XNi

) with init(N)


= true denotes the

set of initial conditions.
6) guard: ENi

→ Pred
(
∪n

j=1 (XTj
∪ XAj

∪ XNj
)
)

with

guard((N,N))


= {t[i]3 = τi} denotes the set of transition

guards.
7) reset: ENi

→ Pred
(
∪n

j=1 (XTj
∪ XAj

∪ XNj
)
)

with

reset((N,N))


= {t[i]3 := 0} denotes the set of transition

resets.
8) flow: VNi

→Pred(ẊNi
∪n

j=1 (XTj
∪ XAj

∪ XNj
)) with

flow(N)


= {ẋi = −∇xi

fi(xi) − K∇xi
ϕi(x), ṫ[i]3 = 1}

denotes the flow conditions of the hybrid automaton that
constrain the first time derivatives of the system variables
in mode v ∈ VNi

.
Observe that the navigation automaton Ni consists of a single

mode including agent i’s dynamics as in Theorem 6.1, while
self-transitions in Ni are associated with updates in the agent’s
set of neighbors Ni and are message triggered and synchronized
with transitions of Ti and Ai , as before.20 Correctness of the
resulting mobile multiagent system S



= ×n

i=1 (Ti × Ai × Ni)
follows directly from Theorems 5.9 and 6.1. In particular, we
have the following result.

20To define the continuous motion dynamics, we make the simplifying as-
sumption that the neighbor positions xj for j ∈ Ni are transmitted in much
higher frequencies than the messages Msg[j] so that they can be approximated
by a continuous signal. In practice, this assumption can be relaxed by discretiz-
ing the motion dynamics. Details can be found in [31], where the proposed
algorithm is implemented on a real robotic platform.
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Fig. 12. Dynamic network consisting of 50 stationary agents. Distributed
topology control guarantees link deletions while maintaining connectivity. The
final network topology corresponds to a minimally connected tree structure.
(a) Initial network topology. (b) Final network topology. (c) Total number of
links. (d) Algebraic connectivity λ2 .

Theorem 6.3: Assuming that G(t0) is initially connected, the
product system S guarantees connectivity of the mobile network
G(t) for all time t ≥ t0 .

VII. CONNECTIVITY TASKS

In this section, we illustrate the proposed distributed topology
control algorithm in nontrivial connectivity tasks involving both
stationary and mobile agents, and show that it has the desired
connectivity maintenance, collision avoidance, and scalability
properties. In particular, we first consider n = 50 stationary
agents (dots), randomly distributed in a square of unit area,
such that the distance between any two of them is greater than
r = 0.05, and define a link (line) between any two such agents
if their pairwise distance is less than R = 0.2 [Fig. 12(a)]. Ac-
cording to Definition 2.4, this implies that no new links can
be added in the network, while all existing links are candi-
dates for deletion, i.e., N d

i (t) = Ni(t) for all agents i, as in
Section III-B. Observe that the distributed topology control al-
gorithm succeeds in deleting links while maintaining connec-
tivity of the network, captured by a positive second smallest
eigenvalue of the graph Laplacian matrix λ2 > 0 [Fig. 12(d)].
The algorithm terminates when the final network corresponds
to a minimally connected tree structure [Fig. 12(b)], while the
number of links in the network as a function of time is illustrated
in Fig. 12(c).

In our next connectivity scenario, we consider n = 12 mobile
agents in R

3 and compare k-connectivity control for k = 1, 2
and for the same initial configuration of the agents. We classify
the agents into a set of so-called leaders L = {1, 2} labeled by
the letter “L” and having a nontrivial secondary objective and a

Fig. 13. k-Connectivity control for n = 12 agents with two leaders. Compare
figures (a), (b); (c), (d); (e), (f); and (g), (h). (a) t = 20, k = 1. (b) t = 20,
k = 2. (c) t = 50, k = 1. (d) t = 50, k = 2. (e) t = 300, k = 1. (f) t = 300,
k = 2. (g) t = 500, k = 1. (h) t = 500, k = 2.
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TABLE III
BOOLEAN OPERATIONS

set of followers{1, . . . , n}\L having no secondary objective. In
particular, for all leaders i ∈ L, we assume secondary objectives
as in Fig. 1(b), with an additional unit angular velocity term
[slightly abusing the secondary objective specifications in (2)]
that is designed to stretch the network and observe whether it can
reconfigure while maintaining connectivity. Interagent links that
are within r = 0.25 are denoted by solid lines, while candidate
links for deletion, i.e., links that are within R = 0.4, are denoted
by dotted lines (Definition 2.4). Solid curves attached to every
agent indicate the recently traveled paths and give an idea of the
agents’ motion. Fig. 13 compares the evolution of the system at
four consecutive time instants for k = 1, 2. Note that under the
proposed connectivity control laws, the overall network remains
k-connected, while the leaders do their best to achieve their
secondary objectives.

VIII. CONCLUSION

In this paper, we considered the problem of controlling a
group of agents so that the resulting motion always preserves
the connectivity property of the underlying network. For this,
we proposed a distributed feedback and provably correct control
framework that, unlike most prior work, imposed no restrictions
on the network topology other than the desired connectivity
specification. Our approach was based on a key control decom-
position, where connectivity control of the network structure
was performed in the discrete space of graphs and relied on local
estimates of the network topology, algebraic graph theory, and
market-based control, while motion control of the agents was
performed in the continuous configuration space by means of
local potential fields used to maintain nearest neighbor links. In-
tegration of the earlier controllers resulted in a hybrid model for
every agent, which was shown to always guarantee connectivity
of the network, while it reconfigures toward certain secondary
objectives. Communication time delays in the network as well
as collision avoidance among adjacent agents were also handled
efficiently, while our approach was illustrated through a class
of interesting problems that could be achieved while preserving
connectivity.

APPENDIX I

A. Boolean Operations

Definition 1.1 (Boolean operations on scalars): Given
Boolean variables x, y ∈ {0, 1}, we define the operations ¬x,
x ∧ y, x ∨ y, x → y, and x ↔ y as in Table III, where the sym-
bols ¬, ∧, ∨, →, and ↔ stand for NOT, AND, OR, IF, THEN, and
IF AND ONLY IF, respectively.

Similarly, we can define Boolean operations on Boolean ma-
trices X,Y ∈ {0, 1}n×n .

Definition 1.2 (Boolean operations on matrices): Let X =
(xij ) and Y = (yij ) be n × n Boolean matrices. Then, the
Boolean operations ¬, ∧, ∨, →, and ↔ on the matrices X
and Y are defined elementwise on their entries.

Hence, the Boolean matrix X ∧ Y is defined as X ∧
Y



= (xij ∧ yij ), and in a similar way, we can define any other

Boolean operation on matrices.

APPENDIX II

A. Proof of Theorem 5.9

Since all changes in the topology of G(t) are due to S (no
random link additions or failures), we only need to show that
connectivity is maintained at the transition time instants of S,
when the network structure is updated. However, since addition
of links does not endanger network connectivity, we only need
to show that connectivity is not violated when a link is deleted
from G(t).

First note that Propositions 5.4 and 5.5 imply that the outcome
of every auction is common for all agents i and is at most one
link that is eventually deleted from all edge sets Ei(t). Hence, we
need to show that the selection of this link is safe with respect to
connectivity. For this, consider any agent i such that vs

Ai
= Szk

for t = ts . Then, at t = ts+1 , the transition (vs
Ai

, vs+1
Ai

) results in
vs+1

Ai
= Bzk

, and the corresponding reset initializes a set of can-
didate neighbors Si(ts+1) with which agent i can safely delete
a link. Since the network estimates Gi(t) are updated with infor-
mation from the same auction and Gi(ts) is a spanning subgraph
of G(ts), i.e., Ei(ts) ⊆ E(ts) by Proposition 5.8, any deletion of
a link (i, j) with j ∈ Si(ts+1) �= ∅ does not violate connectiv-
ity of the local network estimate Gi(ts+1) = (V, Ei(ts+1)), and
hence, neither does it violate connectivity of the overall network
G(ts+1) = (V, E(ts+1)).

B. Proof of Theorem 6.3

Consider the potential function ϕG : DG × R
pn → R+ such

that

ϕG


=

n∑
i=1

fi +
K

2

n∑
i=1

ϕi (10)

where DG


= {x̂ ∈ R

pn(n−1) | ‖xij‖2 ∈ (0, R) ∀ (i, j) ∈ E},
and for any c > 0, define the set ΩG



= {(x̂,x) ∈ DG ×

R
pn | ϕG ≤ c}. Further, observe that

ΩG ⊆
(
∩n

i=1 f−1
i ([0, c])

)
∩

(
∩(i,j )∈E ϕ−1

ij ([0, c])
) 


= Ω.

The sets f−1
i ([0, c]) are closed by continuity of the potentials

fi in R
p . They are also bounded; to see this, suppose there exists

an i for which f−1
i ([0, c]) is unbounded. Then, for any choice of

N > 0, there exists an xi ∈ f−1
i ([0, c]) such that ‖xi‖2 > N .

Allowing N → ∞ and given that lim‖xi ‖2 →∞ fi(xi) = ∞, it
follows that for any M > 0, there is an N > 0 such that
fi(xi) > M . If we pick M > c, we reach a contradiction,
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since by definition, xi ∈ f−1
i ([0, c]) = {xi | fi(xi) ≤ c}. Thus,

all sets f−1
i ([0, c]) are bounded, and hence, compact. Simi-

larly, for all (i, j) ∈ E , the sets ϕ−1
ij ([0, c]) are closed by con-

tinuity of ϕij in the interval (0, R). They are also bounded;
to see this, suppose there exist indices i and j for which
ϕ−1

ij ([0, c]) is unbounded. Then, for any choice of N ∈ (0, R),
there exists an xij ∈ ϕ−1

ij ([0, c]) such that ‖xij‖2 > N . Allow-
ing N → R, and given that lim‖xi j ‖2 →R ϕij = ∞, it follows
that for any M > 0, there is an N > 0 such that ϕij > M .
If we pick M > c, we reach a contradiction, since by defi-
nition, xij ∈ ϕ−1

ij ([0, c]) = {xij | ϕij (xij ) ≤ c}. Thus, all sets
ϕ−1

ij ([0, c]) are bounded and compact. Therefore, the set Ω is
compact as a finite intersection of compact sets. It follows that
ΩG is also compact, as a closed subset of a compact set.

The time derivative of ϕG in the set ΩG becomes ϕ̇G =∑n
i=1 ḟi + K/2

∑n
i=1 ϕ̇i , where

n∑
i=1

ϕ̇i =
n∑

i=1

∑
j∈Ni

ẋT
ij∇xi j

ϕij

=
n∑

i=1

∑
j∈Ni

(
ẋT

i ∇xi
ϕij + ẋT

j ∇xj
ϕij

)

= 2
n∑

i=1

∑
j∈Ni

ẋT
i ∇xi

ϕij = 2
n∑

i=1

ẋT
i ∇xi

ϕi

by symmetry of the functions ϕij . Thus

ϕ̇G =
n∑

i=1

ẋT
i ∇xi

fi + K

n∑
i=1

ẋT
i ∇xi

ϕi

= −
n∑

i=1

∥∥∇xi
fi + K∇xi

ϕi

∥∥2
2 ≤ 0

which implies that the level sets ΩG of ϕG are also positively
invariant. The invariance of ΩG implies that all links in the
network are maintained and that no collisions between agents
occur. On the other hand, compactness and positive invariance
of ΩG also implies that (x̂,x) ∈ DG × R

pn remains bounded for
all time t between any two consecutive switches in G. Moreover,
since ϕG ∈ C2 inside DG × R

pn , the right-hand side of the
closed-loop system defined in (2) and (9) is locally Lipschitz,
which implies that ẋ is bounded. Hence, all agent velocities are
bounded. Note, that the hysteresis in Definition 2.4 ensures that
if a link (i, j) /∈ E is added to E , then the associated potential
ϕij is bounded, and so is the new potential ϕG . This observation
allows us to define level sets of the potentials ϕG .
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