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�is paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with
partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem.
Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque
controllers, are designed for solving the formation control problem. �irdly, the speci	ed reference trajectory for the geometric
centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the
followers. Finally, numerical results are provided to illustrate the e
ectiveness of the proposed control approaches.

1. Introduction

In the past decades, cooperative control of multiple mobile
robots has been receiving signi	cant attention owing to
many potential advantages of such systems over single robot.
In fact, multirobot cooperative control means a group of
mobile robots working cooperatively that can achieve great
bene	ts including low cost, greater �exibility, adaptability to
unknown environments, and robustness [1–4]. In the 	eld of
cooperative control, formation control has received a lot of
attention from the researchers for its potential applications
such as surveillance-and-security, object transportation,
object manipulation, search-and-rescue, intelligent trans-
portation systems, and exploration. �e formation control
means the problem of controlling the relative position and
orientation of mobile robots in a group according to some
desired pattern for executing a given task.

Various control approaches have been proposed in the
literature for mobile robot formations, including leader-
follower approach [5–10], behavior-based approach [11–
13], virtual-structure approach [14–18], arti	cial potential
approach [19–22], and graph theory [23, 24]. �e main idea

behind these approaches is to 	nd suitable velocity control
inputs to stabilize the closed-loop system. In the literature,
formation control for multiple nonholonomic mobile robots,
just simply consider the kinematic model by ignoring the
robot dynamics. To design the control inputs to guarantee the
stability of the closed-loop system, it is assumed that there is
“perfect velocity tracking.” Reference [25] proposed an error-
based tracking model and designed a stable kinematic track-
ing controller for the nonholonomic mobile robot. Reference
[26] presents a kinematic controller based on the receding-
horizon leader-follower (RH-LF) control framework to solve
the formation problem of multiple nonholonomic mobile
robots. Reference [27] studied the tracking control problem
for nonholonomic mobile robots with limited information of
a desired of trajectory. Reference [28] proposed a kinematic
controller for the distributed consensus-based formation
control. However, the perfect velocity tracking assumption
does not hold in practice, and the dynamics of robot should
not be ignored and practical control strategies account-
ing for both the kinematic and dynamic a
ect should be
implemented [29–31]. In [32], the decentralized cooperative
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robust controllers are proposed for the formation control
of a group of wheeled mobile robots with dynamics. In
[31], an adaptive tracking controller for the dynamic model
with unknown parameters was designed for a nonholonomic
mobile robot by using an adaptive backstepping approach.
�ough these works consider the dynamics of the mobile
robot, the dynamics of the mobile robot do not have the
friction and bounded disturbance. It is well known that
friction plays a central, controlling role in a rich variety of
physical systems. �erefore, the friction term and bounded
disturbance term should not be ignored and practical control
strategies accounting for the friction term and bounded
disturbance term should be implemented in practice.

Motivated by the above discussions, this paper investi-
gates the distributed consensus-based robust adaptive for-
mation control for nonholonomic mobile robots with partial
known dynamics. �e contribution of this paper is given
as follows. Firstly, a variable transformation is given to
convert the formation control problem into a state consensus
problem. �en, the distributed consensus-based kinematic
controllers are developed to make a group of robots asymp-
totically converge to a desired geometric pattern. In this
paper, the speci	ed reference trajectory for the geometric
centroid of the formation is assumed as the trajectory of
a virtual leader whose information is available to only a
subset of the followers. Also the followers are assumed to
have only local interaction with their neighbors. It is well
known in practice that the perfect knowledge of dynamic
model of the wheeled mobile robot is unattainable, and it is
almost impossible to obtain exact values of the parameters
of the mobile robot. �erefore, this paper considers that the
dynamics of themobile robot is partial known, in which there
exist some unknown factors that will a
ect the robust trajec-
tory tracking of the system. �en the corresponding robust
adaptive torque controllers for mobile robots are developed
for guaranteeing the robust velocity tracking, and the cor-
responding su�cient conditions are obtained for a group of
nonholonomic mobile robots asymptotically converge to a
desired geometric pattern with its centroid moving along the
speci	ed reference trajectory. �e rigorous proofs are given
by using graph theory, matrix theory, and Lyapunov theory.
Finally, simulation examples illustrate the e
ectiveness of the
proposed controllers. Compared with existing works in the
literature, the current paper has the following advantages.
Firstly, the relative distance and angular for each robotwith its
leader are not required to be known that is di
erent from the
traditional leader-follower approach [5, 6, 8, 9, 33]. Secondly,
in contrast to that only kinematic control models considered
in [26, 27, 34–36], the controllers designed in this paper are
based on both the kinematic and dynamic models of robots.
Moreover, the dynamics of wheeled mobile robots with
possible uncertainty are considered. �irdly, in contrast to
that complete knowledge of the dynamics needed in [32, 37],
only partial knowledge of the dynamics is needed. Fourthly,
the control laws proposed in this paper are distributed. It
is not necessary to know the global information for each
robot. In fact, each robot can obtain information only from
its neighbors.
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Figure 1: Model of a di
erential wheeled mobile robot.

�e remainder of this paper is organized as follows.
Section 2 introduces some preliminaries and gives the prob-
lem formulation. Section 3 and Section 4 present some new
results on distributed formation control problem for multiple
nonholonomic mobile robots. Simulations results are pro-
vided to verify the theoretical analysis in Section 5. Section 6
concludes this article.

2. Background

In this section, the model of nonholonomic wheeled mobile
robot is 	rst brie�y presented.�en some notations for graph
theory and nonsmooth analysis are introduced. Finally, the
problem description is given.

2.1. Dynamics of Nonholonomic Wheeled Mobile Robot. Con-
sider a multirobot system consisting of � nonholonomic
wheeled mobile robots indexed by 1, 2, . . . , �. �e nonholo-
nomic mobile robot is shown in Figure 1. �e kinematic
model and dynamic model of the mobile robot � can be
described as follows [38]:

̇�� = � (��) V�, � = 1, . . . , �, (1)

	� (��) ̈�� + �� (��, ̇��) ̇�� + �� ( ̇��) + � (��) + ���
= �� (��) �� − ��� (��) ��, (2)

where �� = [��, ��, ��] is the coordinates of the mobile robot�, ��, ��, and �� are the position and orientation of the mobile
robot. V� and �� are the linear velocity and angular velocity,

respectively, and V� = [V�, ��]�. �(��) is the Jacobian matrix,

and �(��) = [ cos �� 0
sin �� 0
0 1

].	�(��) ∈ R
3×3 is a symmetric positive

de	nite inertia matrix, ��(��, ̇��) ∈ R
3×3 is the bounded

centripetal and coriolis matrix, ��( ̇��) ∈ R
3×1 denotes sur-

face friction,�(��) ∈ R
3×1 is the gravitational vector, and ���

denotes bounded unknown disturbances including unstruc-

tured unmodeled dynamics. ��(��) ∈ R
3×2 is the input

transformationmatrix, �� ∈ R
2×1 is the control torque vector,
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��(�) ∈ R
1×3 is the matrix associated with the constraints,

and �� ∈ R
1×1 is the vector of constraint forces.

�e dynamic model (2) has the following properties [38].

Property 1. �e inertia matrix 	�(��) is symmetric positive
de	nite and satis	es the following inequality:

�1������������2 ≤ ���	� (��) �� ≤ �2������������2, �� ∈ R
3, (3)

where�1, �2 are positive constants, and ‖ ⋅ ‖ is the standard
Euclidean norm.

Property 2. 	̇�(��) − 2��(��, ̇��) is skew symmetric; that is to
say,

�� [12	̇� (��) − �� (��, ̇��)] � = 0. ∀� ∈ R
3. (4)

2.2. Graph �eory. �e communication topology among
robots is presented by a weighted graph G = (V,E,A) with
a vertex set V = {]1, . . . , ]�}, an edges set E ⊆ V × V,
and a weighted adjacency matrix A = ("��)�×�. Here, each
node ]� inV represents a robot #, and each edge (]�, ]�) ∈ E

in a weighted undirected graph represents an information
link from robot � to robot #, which means that the robots #
and � can receive information from each other. �e weighted
adjacency matrix A of a digraph G is de	ned "�� = 0 for
any V� ∈ V; that is, self-edges are not allowed, "�� > 0 if(]�, ]�) ∈ E, "�� = 0 otherwise, where "�� is the weight of the
link (]�, ]�). Note that here "�� = "��, ∀� ̸= #, since (]�, ]�) ∈ E

implies (]�, ]�) ∈ E. We can say that ]� is a neighbor vertex of
]�, if (]�, ]�) ∈ E. �e neighbor set of node � is de	ned as

N� = {V� ∈ V : "�� ̸= 0} = {V� ∈ V : (�, #) ∈ E} . (5)

A path in the undirected graph G is a sequence of edges in
the form (V�1 , V�2), (V�2 , V�3), . . ., where V�� ∈ V. We call an

undirected graph G connected if for any di
erent nodes V�
and V� inV there exists an undirected path.

�e Laplacian matrix 3 = (4��)�×� associated with A

for graph G is de	ned as 4�� = −"�� for � ̸= #, and 4�� =∑��=1,� ̸= � "��, �, # ∈ {1, . . . , �}. For an undirected graph, 3 is

symmetric positive semide	nite.

Lemma 1 (Chung [39]). Assume that G is a weighted undi-
rected graph with Laplacian matrix 3; then G is connected if
and only if thematrix3 has an eigenvalue zerowithmultiplicity1 and corresponding eigenvector 1, and all other eigenvalues are
positive.

2.3. Nonsmooth Analysis. In what follows, some elements
fromnonsmooth analysis will be presented. Consider a vector
di
erential equation with a discontinuous right-hand side as

�̇ = 6 (7, �) , (6)

where 6(7, �) is measurable and essentially locally bounded.
�e vector function �(⋅) is called a Filippov solution [40] of
(6) if �(⋅) is absolutely continuous and satis	es

�̇ ∈ K [6] (7, �) (7)

almost everywhere where

K [6] (7, �) ≡ co { lim	�→	
6 (��) | �� ∉ ΩV

} , (8)

where Ω
V
denotes the set of measure zero that contains the

set of points where 6 is not di
erentiable and co denotes the
convex closure.

Lemma 2 (see [40]). �e Filippov set-value map has the
following useful properties.

(1) Consistency: if 6 : R� → R
� is continuous at � ∈ R

�,
then

K [6] (�) = {6 (�)} . (9)

(2) Sum Rule: if function 61, 62 : R� → R
� are locally

bounded at � ∈ R
�, then

K [61 + 62] (�) ⊆ K [61] (�) +K [62] (�) . (10)

Moreover, if either 61 or 62 is continuous at �, then equality
holds.

Lyapunov theorems have been extended to nonsmooth
systems in [41]. �e following chain rule provides a calculus
for the time derivative of the energy function in the nons-
mooth case.

De�nition 3 (see [42]). Let C(�) be a locally Lipschitz
continuous function. �e generalized gradient of C(�) is
given by

DC (�) ≜ co {lim∇C (�) | �� G→ �, �� ∈ ΩV
∩ I} , (11)

where co denotes the convex hull, Ω
V
is the set of Lebesgue

measure zero, where ∇C does not exist, andI is an arbitrary
set of zero measure.

In this paper, the candidate Lyapunov function C we use
is smooth and hence regular, while its generalized gradient is
a singleton which is equal to its usual gradient everywhere in
the state space: DC(�) = {∇C(�)}.
De�nition 4 (see [40]). Consider the vector di
erential equa-

tion (6), a set-valued mapK : R� → B(R), the set-valued
Lie derivative of C with respect to (6) is de	ned as

̇̃C ≜ ⋂
�∈�

��K [6] (7, �) . (12)

In what follows, we introduce a Lyapunov stability theo-

rem in terms of the set-valued map ̇̃C.
Lemma 5 (see [41]). For (6), let 6(7, �) be locally essentially
bounded and 0 ∈ K[6](7, 0) in a region L ⊃ {7 | 70 ≤ 7 ≤∞} × {� ∈ R

� | ‖�‖ < P}, where P > 0. Also, let C : R� → R

be a regular function satisfying

C (7, 0) = 0, 0 < C1 (‖�‖) ≤ C (7, �) ≤ C2 (‖�‖) ,
for � ̸= 0, (13)
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in L for some C1 and C2 belonging to class K. If there exists
a class K function �(⋅) in L such that the set-valued Lie
derivative of C(�) satis�es

max ̇̃C (7, �) ≤ −� (�) < 0, for� ̸= 0, (14)

then the solution � ≡ 0 is asymptotically stable.

2.4. Problem Formulation. In this paper, the desired geo-
metric pattern F of � mobile robots is described by the
orthogonal coordinates (Q�	, Q��) as follows:

�∑
�=1
Q�	 = Q0	, �∑

�=1
Q�� = Q0�, (15)

where (Q0	, Q0�) denotes the center of F. Without loss of
generality, assume that Q0	 = 0, Q0� = 0.

�e objective of this paper is to design the control inputs
V� and�� for thewheeled nonholonomicmobile robot �using
its states (��, ̇��) and (Q�	, Q��) as well as its neighbors’ states(��, ̇��) and (Q�	, Q��) for # ∈ N�, such that

(a) the group of mobile robots converges to the desired
formationF;

(b) each robot in group converges to the desired orienta-
tion �0;

(c) the geometric centroid of the formation converges to
the desired reference trajectory (�0, �0);

that is to say,

lim
�→∞

[�� − ���� − ��] = [Q�	 − Q�	Q�� − Q��] , (16)

lim
�→∞

(�� − �0) = 0, (17)

lim
�→∞

( �∑
�=1

��� − �0) = 0, lim
�→∞

( �∑
�=1

��� − �0) = 0,
(18)

where (�0, �0, �0) can be considered as the posture of a virtual
leader 0, which does not have to be an actual robot but is
speci	ed by

�̇0 = V0 cos �0, ̇�0 = V0 sin �0, ̇�0 = �0. (19)

Herea�er, the� robots in system (1) are called followers.
�e connection weight between robot � and the virtual

leader 0 is described by � = diag{U1, U2, . . . , U�}, in whichU� > 0 if robot � can obtain information from the virtual
leader 0, U� = 0 otherwise. Note that if the undirected graph
G is connected, it then follows that the matrix 3 + � = 3 +
diag{U1, . . . , U�} and the matrix M = diag{3 + �, 3 + �} are
symmetric positive de	nite.

In this paper, the following assumptions are needed for
achieving our control objective.

Assumption 6. �e �� for (0 ≤ � ≤ �) is bounded, �� for(0 ≤ � ≤ �) is persistently exciting, and |��| ≤ �max.

Remark 7. �� is persistently exciting, which means that ��
does not converge to 0. �e assumption is because of the fact
that the wheeled mobile robot system is nonholonomic.

Assumption 8. �ere exists at least one follower which can
obtain information from the virtual leader.

Remark 9. Note from Assumption 8 that all follower robots
do not need to obtain the information from the virtual leader;
that is to say, the desired reference trajectory is not required
to available for each robot, which is di
erent from the existing
works in [35, 43].

�e following notations will be used throughout this
paper. Let V� denote the� ×� identity matrix, 0�×� denote
the � × � zero matrix, and 1� = [1, 1, . . . , 1]� ∈ W� (1 for
short, when there is no confusion). �min(M) and �max(M)
are the smallest and the largest eigenvalues of the matrixM,
respectively.

3. Distributed Control Algorithm

To achieve the control objective (16)–(18), the following
transformation is de	ned to convert the formation control
problem for multiple nonholonomic mobile robots into a
state consensus problem:

X1� = ��,
X2� = (�� − Q�	) cos �� + (�� − Q��) sin ��

+ Y0 sign (Z1�) X3�,
X3� = (�� − Q�	) sin �� − (�� − Q��) cos ��,
Z1� = ��,
Z2� = V� − (1 + Y20) Z1�X3� + Y0 \\\\\Z1�\\\\\ X2�,

(20)

where Z1� and Z2� are control inputs, 0 ≤ � ≤ �, Y0 > 0, and
sign(⋅) is the signum function. �e de	nitions in (20) yield
the following dynamic system as

Ẋ1� = Z1�,
Ẋ2� = Z2�,
Ẋ3� = Z1�X2� − Y0 \\\\\Z1�\\\\\ X3�.

(21)

�en the control objective is changed to design Z1� and Z2�
such that the following equations are satis	ed:

lim
�→∞

(X1� − X10) = 0, (22)

lim
�→∞

(X2� − X20) = 0, (23)

lim
�→∞

(X3� − X30) = 0, (24)

lim
�→∞

(Z1� − Z10) = 0. (25)
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Lemma 10. If (22)–(25) hold for 0 ≤ � ≤ �, then the�mobile
robots can converge to the formation pattern F; that is, (16)–
(18) can be satis�ed.

Proof. Due to the fact that it is similar to the proof of Lemma
3.1 in [28], it is therefore omitted.

In practice, it is well known that the dynamics model
of the wheel mobile robot may have unknown dynamical
parameters and bounded unknown disturbances, which will
a
ect the robust trajectory tracking of the system; that is to
say, the “perfect velocity tracking” for robot may not hold.
Hence, the following desired control inputs for the mobile
robot � are proposed in this paper as

Z1�� = Z10 − ^ ∑
�∈N�

"�� (X1� − X1�) − ^U� (X1� − X10)

− _ sign(∑
�∈N�

"�� (X1� − X1�) + U� (X1� − X10)) ,
(26)

Z2�� = − ^ ∑
�∈N�

"�� (X2� − X2�) − ^U� (X2� − X20)

− _ sign(∑
�∈N�

"�� (X2� − X2�) + U� (X2� − X20)) ,
(27)

where � = 1, . . . , �, U� is a positive constant if the virtual
leader’s position is available to the follower �, and U� =0 otherwise, |Ẋ20| ≤ `, ` is a positive constant, ^ is
a nonnegative constant, and _ is a positive constant and
satis	es _ > `.

De	ne the auxiliary velocity tracking error as

Z̃� = [Z̃��Z̃
V�
] = Z�� − Z� = [Z1��Z2��] − [Z1�Z2�] , (28)

where Z�� = [Z1��, Z2��]� and Z� = [Z1�, Z2�]�. �en the
dynamic system (21) becomes in the following form:

Ẋ1� = Z1�� − Z̃��, (29)

Ẋ2� = Z2�� − Z̃V�, (30)

Ẋ3� = (Z1�� − Z̃��) X2� − Y0 \\\\\Z1�� − Z̃��\\\\\ X3�. (31)

Substitute (26) into the dynamic system (29) and (30).
�en the closed-loop system (29) and (30) can be written as

Ẋ1∗ = − ^ (3 + �) X1∗ + ^�1�X10
− _ sign ((3 + �) X1∗ − �1�X10) + 1�Z10 − Ẑ�,

Ẋ2∗ = − ^ (3 + �) X2∗ + ^�1�X20
− _ sign ((3 + �) X2∗ − �1�X20) − ẐV,

(32)

where X1∗ = [X11, . . . , X1�]� and X2∗ = [X21, . . . , X2�]�, Ẑ� =[Z̃�1, . . . , Z̃��]�, and ẐV = [Z̃
V1, . . . , Z̃V�]�. Let X̃1∗ = X1∗ −

1�X10 and X̃2∗ = X2∗ − 1�X20. �en

̇̃X1∗ = − ^ (3 + �) X̃1∗ − _ sign ((3 + �) X̃1∗) − Ẑ�,
̇̃X2∗ = − ^ (3 + �) X̃1∗ − _ sign ((3 + �) X̃2∗) − 1�Ẋ20 − ẐV,

(33)

where the fact that 31�X10 = 0 has been applied. Letc = [X1∗, X2∗]� = [c1, . . . , c2�]�, c̃ = [X̃1∗, X̃2∗]� =[c̃1, . . . , c̃2�]�, and f0 = [0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�

, X20, . . . , X20⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�

]�. Hence, the
error dynamic system (33) can be rewritten in a vector form
as ̇̃c = −^Mc̃ − _ sign (Mc̃) − ̇f0 − Ẑ, (34)

where Ẑ = [Ẑ�, ẐV]� = [Z̃�1, . . . , Z̃��, Z̃V1, . . . , Z̃V�]�.
4. Adaptive Dynamic Controller Design

4.1. RobotModel and Its Properties. According to (20) and the
de	nition of V� in Section 2.2, it is easy to obtain that

V� = [1 0� 1] Z�, (35)

where� = (1+ Y20) − Y0 sign(Z1�)X2�. �en, it follows from (1)
that we have

̇�� = h(�)�V� = � (��) [1 0� 1] Z� = �̂ (��) Z�, (36)

where

�̂ = [[[
[
(1 + Y20) X3� cos �� + Y0 sign (Z1�) X2� cos ��
(1 + Y20) X3� cos �� + Y0 sign (Z1�) X2� cos ��1 0

]]]
]
.
(37)

Hence, the dynamics (2) of the mobile robot can be rewritten
as follows:

�̂�	��̂Ż� + �̂� (	� ̇̂� + ���̂) Z� + �̂��� + �̂��
= �̂���� − �̂����, � = 1, . . . , �; (38)

that is,

	�Ż� + ��Z� + �� + � = �� − ���, � = 1, . . . , �, (39)

where 	� = �̂�	��̂ is a symmetric positive de	nite inertia

matrix. �� = �̂�(	� ̇̂� + ���̂) is the centripetal and coriolis

matrix,� = �̂�� is the gravitation vector,� = 0. �� = �̂���
is the surface friction, ��� = �̂���� denotes the bounded
unknown disturbances including unstructured unmodeled

dynamics, and �� = �̂���� is the input vector.
Similar to the Properties 1 and 2 in Section 2.2, (39) has

the following properties.
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Property 3. �e inertia matrix 	�(��) is symmetric positive
de	nite.

Proof. It is easy to verify the result, and it is therefore omitted
here.

Property 4. �ematrix 	̇� − 2�� is skew symmetric.

Proof. �e derivative of the inertia matrix and the centripetal
and coriolis matrix are given by

	̇� (��) = ̇̂��	� + �̂�	̇��̂ + �̂�	� ̇̂�,
2�� = 2�̂� (	� ̇̂� + ���̂) .

(40)

Since 	̇� − 2�� is skew symmetric and 	� is symmetric
positive de	nite, it follows that

	̇� − 2�� = ̇̂��	��̂ + �̂�	̇��̂ + �̂�	� ̇̂� − 2�̂� (	� ̇̂� + ���̂)
= ̇̂��	��̂ − �̂�	� ̇̂� + �̂� (	̇� − 2��) �̂
= �̂� (	̇� − 2��) �̂.

(41)

Hence, the matrix 	̇� − 2�� is skew symmetric.

4.2. Controller Design. Taking the derivative of (28) and

multiplying by the inertiamatrix	� to both sides of (28) give
	� ̇̃Z� = 	�Ż�� −	�Ż�

= −��Z̃� − �� + 6� (Z��, Ż��) + �� (7) , � = 1, . . . , �,
(42)

where 6�(Z��, Ż��) = 	�Ż�� + ��Z�� is composed of known
quantities and the disturbance term is

�� (7) = Δ � + ���, � = 1, . . . , �, (43)

with Δ � representing any model uncertainties and unmod-
eled dynamics and ��� being the unknown bounded dis-
turbance which could represent any inaccurately modeled
dynamics.

Lemma 11 (bounds on the disturbance term, [30]). �e
disturbance term ��(7) is bounded according to

������� (7)����� ≤ �0 + �1 �����Z̃������ + �2�����Z̃������2 = s�Θ�, (44)

with �0, �1, �2 depending on the terms like the disturbance
bound, the changes in the mass of the robot due to payload, and
friction coe�cients with s� being a known regression vector.

When the robot dynamics are partially known, the torque
control algorithm for the dynamics system (42) is designed to
be

�� = u�Z̃� + 6� (Z��, Ż��) + v��, (45)

where u� is a symmetric positive-de	nite matrix de	ned byu� = Y�V2 with Y� being a positive gain constant and V2 ∈
R
2×2 being the identity matrix. �e nonlinear term v�� is an

adaptive robustifying term and is de	ned as [44]

v�� = Z̃�(s�Θ̂�)2(s�Θ̂�) �����Z̃������ + x�̇x� = −y�x�, x� (0) = �� > 0,
(46)

where y� and �� are positive design constants, s�Θ̂� is the
adaptive estimate of the known function s�Θ�, Θ̂� is the
estimate ofΘ�, and the parameter turning law for the estimateΘ̂� is de	ned as

̇̂Θ� = Γ�s� �����Z̃������ , (47)

with Γ� being a symmetric and positive de	nite matrix. LetΘ̃� be the estimation error of the parameter turning law, and

Θ̃� = Θ� − Θ̂�. It then follows that ̇̂Θ� = − ̇̃Θ�.
Substituting (45) into (42) and writing it in a vector form

give

	(�) ̇̃Z + � (�, ̇�) Z̃ = −uZ̃ − v� + � (7) , (48)

where	(�),�(�, ̇�), andu are the block diagonalmatrices of	�(��),��(��, ̇��), and u�, respectively, v� = [v1�, . . . , v��]�,�(7) = [�1, . . . , ��]� with �� = [��1, . . . , ���]� and Δ =[Δ 1, . . . , Δ�]� under (43).
�eorem 12. Suppose that the communication graph G is
connected, Assumption 8 is satis�ed, the velocity controllers
for (29) and (30) are, respectively, designed by (26) and (27),
and the torque control input for the dynamics system (42)
is designed by (45), if the control gains are chosen as ^ >1/2�max(M), _ > `, and Ymax > �max(M)/2, where Ymax =
max{Y1, Y2, . . . , Y�}; then, for 1 ≤ � ≤ �, the errors X̃1� = 0,X̃2� = 0, Z̃�� = 0, and Z̃

V� = 0 are globally asymptotically stable.

Proof. Choose the Lyapunov candidate as

C = C1 + C2, (49)

where C1 and C2 are chosen as

C1 = 12c̃�Mc̃,
C2 = 12 Z̃�	Z̃ + 12Θ̃�Γ−1Θ̃ + x1y1 ,

(50)

with Θ̃ = [Θ̃1, . . . , Θ̃�]� and Γ being the block diagonal
matrices of Γ�. Using the properties of K[⋅], the set-valued
Lie derivative of C can be obtained as follows:

̇̃C = K [C1 + C2] ⊆ K [C1] +K [C2]
= ̇̃C1 + ̇̃C2.

(51)
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Since C2 is continuous, it follows from Lemma 2 that the
equality (51) holds.

According toDe	nition 4, the set-valued Lie derivative ofC1 is given as

̇̃C ≜ ⋂
�∈�(�̃)�

�
K [−^Mc̃ − _ sign (Mc̃) − ̇f0 − Ẑ] , (52)

where DC(c̃) is the generalized gradient of C at c̃. BecauseC is continuously di
erentiable with respect to c̃, DC(c̃) ={	c̃}, which is a singleton. �erefore, it follows that

̇̃C (c̃) = K [−^c̃�M2c̃ − _c̃�M sgn (Mc̃)
− c̃�M ̇f0 − c̃�MẐ]

= {−^c̃�M2c̃ − _c̃�M sgn (Mc̃)
−c̃�M ̇f0 − c̃�MẐ} ,

(53)

where the fact that �� sign(�) = ‖�‖1 has been used. By
Lemma 2 and [42], if6 is continuous, thenK[6] = {6}. Note
that the set-valued Lie derivative ̇̃C is a singleton, whose only
element is actually Ċ. �erefore, it follows that

max ̇̃C = Ċ ≤ −^c̃�M2c̃ − (_ − `) �����c̃�M�����1 − c̃�MẐ
≤ −^c̃�M2c̃ − (_ − `) �����c̃�M�����1
+ �max (M)2 (�����c̃�����22 + ‖Ẑ‖22) ,

(54)

where _ ≥ ` and ^ is positive. It is easy to verify that M2 is
symmetric positive de	nite.

Since C2 is continuous, it follows that the set-valued Lie

derivative of C2 satis	es max ̇̃C2 = Ċ2. Hence, we have
Ċ2 = Z̃�	 ̇̃Z + 12 Z̃�	̇Z̃ + Θ̃�Γ−1 ̇̃Θ + ̇x1y1

= Z̃� {−�Z̃ − uZ̃ − v� + � (7)}
+ 12 Z̃�	̇Z̃ + Θ̃�Γ−1 ̇̃Θ − x1

= −Z̃�uZ̃ + Z̃� (12	̇ − �) Z̃ − Z̃�v�
+ Z̃�� (7) + ̇̃Θ�Γ−1Θ̃ − x1.

(55)

Since the matrix (	̇� − 2��) is skew symmetric, we have

Z̃�� [12	̇� (�) − �� (�, ̇�)] Z̃� = 0. (56)

Let �� = −x� − Z̃�� v�� + ̇̃Θ�Γ−1Θ̃ + Z̃����(7), (1 ≤ � ≤ �).
Substituting the robustifying term (46) and the disturbance
(43) into �� gives

�� ≤ −x� −
�����Z̃������2(s�Θ̂�)2(s�Θ̂�) �����Z̃������ + x� +

�����Z̃������ s�Θ̂�
≤ −x� + x� �����Z̃������ (s�Θ̂�)(s�Θ̂�) �����Z̃������ + x�
≤ −x�(1 −

�����Z̃������ (s�Θ̂�)(s�Θ̂�) �����Z̃������ + x�)
≤ 0.

(57)

Hence, it can be obtained that

Z̃�v� + Z̃� (� + ��) + ̇̃Θ�ΓΘ̃ + ̇x1y1 ≤ 0. (58)

Substituting (58) into (55) gives the following inequality:

Ċ2 ≤ −Z̃�uZ̃ + Z̃�� (7) − Z̃�v� − ‖Z̃‖ sΘ̃ − x1
≤ −Z̃�uZ̃. (59)

Now, substituting (54) and (59) into the set-valued Lie

derivative ̇̃C reveals

max ̇̃C = Ċ ≤ − ^c̃�M2c̃ − (_ − `) �����c̃�M�����1
+ �max (M)2 (�����c̃�����22 + ‖Ẑ‖22) − Z̃�uZ̃

= − ^c̃�M2c̃ − (_ − `) �����c̃�M�����1
+ �max (M)2 (�����c̃�����22 + ‖Z̃‖22) − Z̃�uZ̃

≤ − ^�2
max

(M) �����c̃�����22 − (_ − `) �����c̃�M�����1
+ �max (M)2 (�����c̃�����22 + ‖Z̃‖22) − Ymax‖Z̃‖22

≤ − (^�2
max

(M) − �max (M)2 ) �����c̃�����22 − (_ − `)
× �����c̃�M�����1 − (Ymax − �max (M)2 ) ‖Z̃‖22.

(60)

�erefore, max ̇̃C ≤ 0 as Ẋ20 ≤ `, ^ > 1/2�max(M), _ > ` andYmax > �max(M)/2. It then follows from Lemma 5 that Z̃ →0 and c̃ → 0 as 7 → ∞; that is, X̃1� → 0, X̃2� → 0, Z̃�� →0, and Z̃
V� → 0 as 7 → ∞. �erefore, the errors X̃1� = 0,X̃2� = 0, Z̃�� = 0, and Z̃

V� = 0 are globally asymptotically
stable. �is proof is completed.
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Remark 13. From �eorem 12, we have proved that the
variables X1� (1 ≤ � ≤ �) and X2� (1 ≤ � ≤ �), respectively,
converge to X10 and X20 globally asymptotically under the
proposed control laws (26), (27), and (45). In�eorem 14, we
will prove that X3� asymptotically converges to X30 under the
control laws (26), (27), and (45).

�eorem 14. Suppose that the communication graph G is
connected, Assumption 8 is satis�ed, the velocity controllers
for (29) and (30) are, respectively, designed by (26) and (27),
and the torque control input for the dynamics system (42) is
designed by (45). If X1� and X2� asymptotically converge to X10
and X20, then X3� also asymptotically converges to X30.
Proof. Let X̃3� = X3� − X30. Take the derivative of X̃3� as

̇̃X3� = Ẋ3� − Ẋ30
= −Y0 \\\\\Z1�\\\\\ X̃3� + Z1�X̃2� + (Z1� − Z10) X20
− Y0 (\\\\\Z1�\\\\\ − \\\\Z10\\\\) X30

= −Y0 \\\\\Z1�\\\\\ X̃3� + �2 (7) ,
(61)

where �2(7) = Z1�X̃2�+(Z1�−Z10)X20−Y0(|Z1�|− |Z10|)X30.�e
solution of the di
erential equation (61) is given as follows:

X̃3� (7) = �∫�0 −�0|�1�|��X̃3� (0) + ∫�
0
�∫�� −�0|�1�|�]�2 (�) ��. (62)

According to �eorem 12, X̃2� asymptotically converges
to zero, and Z1� asymptotically converges to Z10. It then
follows from the de	nition of �2(7) that �2(7) also asymptoti-
cally converges to zero. Hence, according to the de	nition of
asymptotic stable, for an arbitrary positive value � > 0, � > 0
exists; when the |�2(0)| < �, it has |�2(7)| < �.

From Assumption 6, the Z1� is bounded, and Z1� = ��,
Hence, |Z1�| ≤ �max.

�e solution of the di
erential equation (62) satis	es the
inequality

X̃3� (7) = �∫�0 −�0|�1�|��X̃3� (0) + ∫�
0
�∫�� −�0|�1�|�]�2 (�) ��

≤ �−�0�max�X̃3� (0) + ∫�
0
�−�0�max(�−�)�2 (�) ��

≤ �−�0�max�X̃3� (0) + �−�0�max� ∫�
0
��0�max��2 (�) ��

≤ �−�0�max�X̃3� (0) + �Y0�max − �Y0�max�−�0�max�

Y��max

= � + �−�0�max� (X̃3� (0) − �) .
(63)

Hence, when 7 → +∞, |X̃3�(7)| ≤ �. Since � is an arbitrary
positive value, from the de	nition of asymptotic stable, theX̃3�(7) is asymptotic stable at the neighborhood of origin.�is
proof is completed.
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Figure 2: Communication graph among mobile robots.
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Figure 3: Path of the six robots’ centroid (blue line), the desired
trajectory of the centroid of the robots (black line), and the
formation of the six robots at several moments under the distributed
kinematic controller (26), (27), and the torque controller (45).

Remark 15. From �eorems 12 and 14, our control objec-
tives (22)–(25) hold under the distributed kinematic con-
troller (26) and the torque controller (45). �erefore, from
Lemma 10, the � mobile robots converge to the formation
patternF; that is, (16)–(18) are satis	ed.

5. Simulation

In this section, some simulations results will be provided
to demonstrate the e
ectiveness of some theoretical results
of the previous sections. Consider a multiple mobile robot
system with six followers denoted by �1–�6 and one virtual
leader denoted by 3, respectively. �e communication graph
of the multiple mobile robot system is shown in Figure 2.

For simplicity, in this simulation we suppose that "�� = 1
if robot # can receive information from robot �, "�� =0 otherwise; U� = 1 if the virtual leader’s information
is available to the follower �, and U� = 0 otherwise, where# ∈ {1, . . . , �} and � ∈ {1, . . . , �}.



Mathematical Problems in Engineering 9

0 5 10 15 20 25 30 35 40

0

5

10

15

Time (s)

−15

−10

−5

(a)

Time (s)

0 5 10 15 20 25 30 35 40

0

5

10

−15

−10

−5

(b)

Figure 4: (a)�e trajectories of �0 (blue line) and the centroid of �� (1 ≤ # ≤ 6) (red line); (b) the position error between �0 and the centroid
of ��.
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Figure 5: (a) �e trajectories of �0 (blue line) and the centroid of �� (1 ≤ # ≤ 6) (red line); (b) the position error between �0 and the centroid
of ��.

�e desired formation geometric patternF is de	ned by
orthogonal coordinates as (Q1	, Q1�) = (2, 0), (Q2	, Q2�) =(1, √3), (Q3	, Q3�) = (−1,√3), (Q4	, Q4�) = (−2, 0), (Q5	,Q5�) = (−1, −√3), and (Q6	, Q6�) = (1, −√3). �e reference
trajectory of the virtual leader is chosen as

�0 = 10 sin( 72) ,
�0 = −10 cos( 72) .

(64)

�e control gain parameters are chosen as ^ = 10, _ =0.99, Y0 = 2. For 1 ≤ � ≤ 6, x�(0) = 30, y� = 0.5, Γ� =[ 0.001 00 0.001 ], u� = [ 1 00 1 ]. �e parameters for each robot are

considered as the mass �̂ = 5 kg and the moment of inertiaV = 3 kg⋅m2. �e unmodeled dynamics are introduced in the
form of friction as

�� = ["�1 sign (Z2�) + "�2Z2�"�3 sign (Z1�) + "�4Z1�] . (65)

�e disturbance is introduced as ��� = 2 sin(27) cos(57).
5.1. Veri�cation of Formation Control Based on Robust Adap-
tive Techniques. In this simulation, Figure 3 shows the tra-
jectory of virtual leader (black line), the trajectory of the six
followers’ centroid (blue line), and the formation positions
and pattern of the six followers at several moments.We could
see from Figure 3 that the six robots converge to the desired
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Figure 6: (a) �e tracking error Z̃�� for (1 ≤ # ≤ 6) using the torque controller (45); (b) the tracking error Z̃
V� for (1 ≤ # ≤ 6) using the torque

controller (45).
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Figure 7: (a) Response of the centroid of �� − �0 for 1 ≤ # ≤ 6; (b) response of the centroid of �� − �0 for 1 ≤ # ≤ 6.

geometry pattern under the proposed controllers (27), (26),
and (45); that is to say, (16) has been veri	ed.

Figure 4(a) shows the trajectories of �0 (blue line) and
the centroid of �� (1 ≤ # ≤ 6) (red line), and Figure 4(b)
shows the position error between �0 and the centroid of��. Figure 5(a) shows the trajectories of �0 (blue line) and
the centroid of �� (1 ≤ # ≤ 6) (red line), and Figure 5(b)
shows the position error between �0 and the centroid of ��.
We could see, from Figures 4 and 5, the trajectory of the

formation geometric centroid converges to the trajectory of
virtual leader; that is to say, (18) has been veri	ed. Figure 6
shows the tracking error Z̃�� for (1 ≤ # ≤ 6) and Z̃

V� for (1 ≤ # ≤6) under the torque controller (45). From Figure 6, Z̃�� andZ̃
V�, respectively, converge to zeros. �e perfect tracking of

velocity and angular velocity has been guaranteed. Figure 7,
respectively, shows the angular velocity tracking errors��−�0
and the orientation tracking errors �� − �0 between follower�� (1 ≤ # ≤ 6) and virtual leader. It can be seen from Figure 7
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that �� − �0 and �� − �0 converge to zero over time; that is,
(17) and (25) have been veri	ed.

6. Conclusion

In this paper, the distributed consensus-based robust adaptive
formation control problem for nonholonomic mobile robots
with partial known dynamics has been investigated, in which
the dynamics model of the wheeled mobile robot has the
friction term and bounded disturbance term in the dynamic
model. �e partial knowledge of the mobile robot dynamics
has been assumed to be available. �en an asymptotically
stable torque controller has been proposed by using robust
adaptive control techniques to account for unmolded dynam-
ics and bounded disturbances.

As further extensions of this study, there still exist a
number of topics for future works. In practice, formations
have to avoid obstacles and need to admit changes in the
formation speed and strong deformations in formation shape.
�e obstacles avoidance problem for formation control of
nonholonomic mobile robots will be considered. In addition,
the formation control is assumed to be noiseless in this paper.
However, it is inevitable in reality. Hence, in the future it
is necessary to investigate the formation control problem
with measurement noise. Finally, it is well known that most
operations in mobile robots systems are naturally delayed.
Moreover, it has been observed from numerical experiments
that formation control algorithms without considering time
delaysmay lead to unexpected instability.Hence, in future, we
may consider the formation control with time-varying delays.
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