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Abstract. Recent work on continuous queries has focused on processing queries

in very large, mobile environments. In this paper, we propose a system to leverage

the computing capacities of mobile devices for continuous range query process-

ing. In our design, continuous range queries are mainly processed on the mobile

device side, which is able to achieve real-time updates with minimum server load.

Our work distinguish itself from previous work with several important contribu-

tions. First, we introduce a distributed server infrastructure to partition the entire

service region into a set of service zones and cooperatively handling requests of

continuous range queries. This feature improves the robustness and flexibility of

the system by adapting to a time-varying set of servers. Second, we propose a

novel query indexing structure, which records the difference of the query distrib-

ution on a grid model. This approach significantly reduce the size and complexity

of the index so that in-memory indexing can be achieved on mobile objects with

constrained memory size. We report on the rigorous evaluation of our design,

which shows substantial improvement in the efficiency of continuous range query

processing in mobile environments.

1 Introduction

With the growing popularity of GPS-enabled mobile devices and the advances in wire-

less technology, the efficient processing of continuous range queries, which is defined

as retrieving the information of moving objects inside a user-defined region and contin-

uously monitoring the change of query results in this region over a certain time period,

has been of increasing interest. Continuous range query processing is very important

due to its broad application base. For instance, the Department of Transportation may

want to monitor the traffic change on a freeway section to develop a traffic control plan.

In a natural disaster, it is highly desirable to locate all fire engines within a certain

area for emergency response. Continuous range queries pose new challenges to the re-

search community because the movement of objects causes the query results changed

correspondingly. Applying a central server processing solution with moving objects

periodically updating their locations is obviously not scalable. On the other hand, the

growth of the computing capabilities on mobile devices enabled approaches such as
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MobiEyes [2] and MQM [1] that use mobile devices to answer continuous range

queries, where a centralized server acts as a mediator. However, there are certain lim-

itation in these solutions. First, a centralized server is not robust enough under certain

situations. In the example of natural disasters as mentioned, some servers might be

down or only provides limited computational capacity. Therefore, it is highly desir-

able to have a scalable server infrastructure. Second, the communication between the

server and moving objects should be minimized in order to manage data in large mobile

environments. Finally, the memory and computing capabilities on mobile devices are

limited so that the implementation of in-memory processing on moving objects needs

to be carefully considered.

In this paper, we address the problem of processing real-time continuous range

queries by proposing a robust and scalable infrastructure. The goal is to build a system

that supports a large number of moving objects with limited server and communication

resources. In our design, continuous range queries are mainly processed by mobile de-

vices. Our work distinguishes itself from previous work with two contributions. First,

we propose a distributed server infrastructure. We introduce the feature of service zone.

A service zone is a subspace being recursively binary partitioned from the entire service

region. Each server controls a service zone. Our system is able to adaptively allocate

and merge service zones as servers join or leave. In addition, we propose a novel grid

index on continuous range queries that records the change of the query distribution. By

using the grid index, moving objects are able to forecast the location of queries so that

moving objects request the corresponding query as they move close to it. Our experi-

mental results show that our design is very efficient to support continuous range query

with a very large number of moving objects and queries under the mobile environments.

The rest of this paper is organized as follows. The related work is described in Sec-

tion 2. In Section 3 we introduce the design of service zones, grid index, and the support

of continuous range query processing. The experimental validation of our design is pre-

sented in Section 4. Finally, we discuss the conclusions and future work in Section 5.

2 Related Work

A number of studies have addressed continuous spatial queries. Related work, such as

presented in [9], [10], and [13], addressed the processing of continuous spatial queries

on the server. For the efficient processing of a large number of continuous queries at

the same time, Prabhakar et al. [6] addressed the issue of stationary continuous queries

in a centralized environment. In addition, Mokbel et al. [4] proposed SINA that sup-

ports moving queries over moving objects in server-based processing. By contrast,

MQM [1],and MobiEyes [2] assume a distributed environment, where the mobile hosts

have the computing capability to process continuous queries. A centralized server is in-

troduced by both approaches to work as a mediator coordinating the query processing.

In MQM, the concept of resident domain is introduced as a subspace surrounding the

moving object to process continuous queries. Continuous queries are partitioned into a

set of monitor regions, where only the monitor regions covered by the resident domain

will be sent to the moving object. However, partitioning continuous queries is inefficient

because it increases the number of queries in the system.



Fig. 1. The system infrastructure

On the issue of moving object indexing, the TPR-Tree [8] and its variants have been

proposed to index moving objects with trajectories. However, the support of continuous

queries by these methods is very inefficient. Kalashnikov et al. [3] evaluated the effi-

ciency of indexing moving objects and concluded that using a grid approach for query

indexing results in the best performance. Other methods to process continuous queries

without a specific index can be found such as the usage of validity regions [10], safe

regions [6], safe periods [4], and No-Action regions [12]. These approaches have in

common that they return a valid time or region of the answer. Once the result becomes

invalid, the client submits the query for reevaluation.

Our work distinguishes itself from the above approaches, by specifically addressing

the scalability and robustness of the system. We adaptively organize servers to cooper-

atively work in the entire service space. Furthermore, we propose a grid index that is

able to be implemented as an in-memory data structure on mobile devices. There is no

restriction on the movement of objects and the system is extremely efficient to support

continuous range queries with a very large number of moving objects.

3 System Design and Components

3.1 System Infrastructure and Assumptions

Figure 1 illustrates the system infrastructure of our design. We are considering mobile

hosts with abundant power capacity, such as vehicles, that are equipped with a Global

Positioning System (GPS) for obtaining continuous position information. We assume

that the mobile host has some memory and computing capacity to store the queries

and process range query operations. In our paper, we use the term moving objects to

refer to these mobile hosts participated in the query processing. On the base-station

side, our design has two assumptions. First, the servers and moving objects commu-

nicate via cellular-based wireless network. In practice, more efficient protocols such

as GeoCast [5] can be adopted for sending messages within a certain region. Second,

the servers with spatial databases are connected via the wired Internet infrastructure.

Each server is able to receive query requests from any user and forward them to the

appropriate servers.
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Fig. 2. An example of the system with 7 servers and their Virtual Identifier (VID) tree.

In our design, moving objects are represented as points and range queries are de-

noted as rectangular regions. Given a set of moving objects and continuous range

queries, the challenge is to calculate which objects lie within which query regions at

a certain time. In this paper, we focus on range queries, which are widely used in spa-

tial applications and can be used as preprocessing tools for other queries, such as nearest

neighbor queries. For simplicity, we use the term queries to refer to continuous range

queries in the following sections.

3.2 Server Design

In this section, we describe our design of the server infrastructure. First, we describe

how the system adaptively manages the service region by adapting to a time-varying set

of servers through the concept of the service zone. Next, we present another important

feature, the grid index. By using the grid index, our system avoids excessive query

retrieval from the server and significantly reduces the communication overhead.

Service Zones We leverages the design of Content Addressable Network (CAN) [7] to

dynamically partition the entire service region into a set of subspaces. Each subspace

is controlled by a server. We define the term service zone as the subspace controlled

by a server. Each service zone is addressed with a Virtual Identifier (VID), which is

calculated from the location of the service zone. Figure 2a shows an example of the

entire service region partitioned into 7 service zones. The service zone partitioning is

a binary partition approach that always equally divides a larger service zone into two

smaller child service zones. Hence the corresponding VID address for service zones

can be represented with a binary tree structure as shown in Figure 2b. Each server

maintains a routing table with tuples (V ID, address) storing the routing information

of its neighbor servers. By using the same routing mechanism as CAN, our system is

able to allocate any service zone with complexity of O(nlogn) in a system of n servers.

When a new query q is submitted, the system first forwards it to all servers covered

by its query region through the M-CAN multicast algorithm from the design of CAN.

When a server receives the query, it is inserted into the query repository. Consequently,

the grid index on the server is updated. We will describe the details of the grid index in

the next section. Finally, the server broadcasts a message GridIndexUpdate(GIndex)
to all moving objects associated with it, where GIndex is the updated grid index.



(a) A 7 service zone example (b) A 64 grid cell example
(c) Service zones and grid

cells overlapping
Fig. 3. Service Zones and Grid Cells.

When a query q is about to be deleted, the server searches through its repository to

delete the corresponding entry. Consequently, the server updates the grid index.

When a new server joins the system, several steps must be taken to allocate a service

zone for it. First, the new server must find a bootstrap server, which is already a member

of the system. Second, the bootstrap server broadcasts a message that a new server is

about to join the system. Other servers in the system reply back with the information

of its current system load and service zone. The server with the highest system load

(for instance, used disk space, memory usage, or other user identified resources) will

be performed a partition to divide the corresponding service zone into halves. Next, the

bootstrap server sends a message to the partitioned server to forward queries overlap-

ping the new server’s service zone. The partitioned server also broadcasts the updated

service zone information to moving objects associated with it. Moving objects register

with the new server if their current locations are controlled by the new server. After the

new server receives queries forwarded from the partitioned server, it creates and main-

tains the grid index correspondingly. Finally, the neighbors of the partitioned server will

be notified to update their routing tables.

When a server leaves the system, we need to ensure that the corresponding service

zone is taken over by the remaining servers. The departing server explicitly hands over

its repository of moving objects and queries to one of its neighbors whose service zone

can be merged with the departing servers zone to produce a valid single service zone.

Grid Index The memory capacity on moving objects is limited. On the other hand, it is

highly desirable to have an index structure helping moving objects retrieve queries from

the server only when they are very close to the queries. Therefore, the index also need

to be compact in terms of the size for the usage on moving objects. Here we present a

grid index structure sufficing these requirements.

The basis of the grid index is a set of cells. Each cell is a region of space obtained

by partitioning the entire service region using a uniform order. Figure 3a demonstrates a

system with 7 servers. Figure 3b shows the entire service region is divided into 64 grid

cells. Figure 3c shows how these grid cells are distributed on the example servers.By

using a uniform grid order to partition the service region into grid cells, given the coor-

dinates of an object, it is easy to calculate which cell that the object resides in.

The server maintains the grid index in its service zone. For each cell, the grid index

structure consists of two lists identified as right, and lower that record the change of the

query distribution from the right and lower neighbor cells, respectively. In the example

shown in Figure 4a, a service zone is divided into 16 grid cells. Cell C1, C2, and C3



C1

Q1

Q2

Grid Index Examples:

C1: {{+Q2}, {-Q1}}

C2

C3

C2: { , }

C3: { , {-Q1}}
o

C1

{-Q1}

{+Q2}

(a) (b)

Fig. 4. The Grid Index.

are partially covered by a query Q1. There is a query Q2 covering the right neighbor

cell of C1. As shown in Figure 4a, the grid index for cell C1, C2, and C3 is {{+Q2},

{−Q1}}, { ∅, ∅ }, and {∅, {−Q1}}, respectively.

Once a moving object is associated with a server, the server will forward the grid

index of its service zone to the moving object. By using the grid index stored on its

local memory the moving object is able to forecast the query locations on a refined

granularity. As an example shown in Figure 4b, if there is a moving object o in the cell

C1 is about to move across the right edge of C1, the right list of C1 is {+Q2}. Hence

the object submits a request to retrieve the query Q2 from the server. If the object is

about to cross the lower edge of C1, since the lower list of C1 is {−Q1}. The object

could either to retain the information of query Q1 if there is enough memory or remove

Q1 if more memory is needed for query processing. If the object is about to go across

the upper edge of C1, the lower list of the upper neighbor cell will be retrieved and

the values in the list will be inversed. In this example, the object retrieves the lower list

of C2 and calculate the inverse value, which is ∅. This indicates that there is no query

needs to be retrieved from the server. When the object is about to go across the left edge

of C1. Similar process will be performed on the right list of the left neighbor cell (i.e.,

C3). In this example, the inverse value of the list is ∅. Therefore, the moving object

does not send any message to the server.

Previous work of grid-based indexing on continuous
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Fig. 5. Number of Grid In-

dex Entries Analysis

queries, such as [3] and [2], records the distribution of

queries. Our grid index records the change of the query

distribution so that the size of index entries can be further

reduced. To study the impact of our design on the index

size, let us assume the shape of queries and grid cells are

square and the length of each side of a query Q is q. Let

c denote the side of each grid cell where q > c. Then q
can be represented as i × c + x, where x ⊂ [0, c) and

i is an integer. Without loss of generality let us consider

the case where the top-left corner of query q is located

somewhere within the top-left grid cell of the system as

shown in Fig 5. It can be verified that if the top-left corner of Q is inside Set0 results

in 4(i + 1) index entries, for Set1 the number of index entries is 2(i + 1) + 2(i + 2)
, and for Set2 it is 4(i + 2). Assuming uniform distribution of queries, on the average



Q results in 4(q + c)/c index entries. On the other hand, recording the distribution of

queries requires (q + c)2/c2 index entries on each Q [11]. With q/c ≥ 3, our approach

requires less index entries than recording the distribution of queries on the grid.

3.3 Query Processing on Moving Objects

In this section, we describe the functionality of the moving objects. In our design, the

following information is stored in the memory of moving objects for query processing:

– OID: the unique identifier of the moving object.

– currentPos: the current location of the moving object.

– GIndex: the grid index of current service zone covering the moving object.

– Queries: the list of queries received from the server.

Notation Definition

RegisterObject(OID) The message to register a moving object on a server.

UnregisterObject(OID) The message to delete a moving object on a server.

UpdateResult(OID,QID, F lag) The message to update a query result.

RequestQueries(OID,QList) The message to retrieve a set of queries.

GridIndexUpdate(GIndex) Updating the grid index broadcasted by the server.

Table 1. Messages in Query Processing.

The queries are processed on the mobile object side. In order to implement such a

mechanism, a set of messages is defined as shown in Table 1.

A moving object is associated with a server at all times. When a moving object

turns its power on, it broadcasts a message RegisterObject(OID). The server moni-

toring the location of the object inserts it into the object repository and replies back a

GridIndexUpdate(GIndex) message to the moving object. The server also sends the

set of queries covering the current grid cell of the moving object.

When a moving object is about to leave its current service zone, it sends a message

UnregisterObject(OID) to the server. The server deletes the moving object from its

repository and sends back tuples(V ID, address) from its routing table. The moving

object sends a RegisterObject(OID) message to the server controlling the new loca-

tion.

When a moving object is about to move into a new grid cell, it checks with the grid

index as described in the previous section. If there are queries in the grid index needed

to be retrieved, the moving object sends a message RequestQueries(OID, QList) to

the server, where QList is a list queries with query identifier QID. Once the server

receives the message, it will send corresponding queries to the moving object.

At any time, the moving object checks its current location currentPos with queries

in the list Queries. If the object moves into or moves out of a query, it sends a message

UpdateResult(OID, QID, F lag) to the server, where QID is the query identifier and

Flag is to indicate whether the object resides in the query region.

Query processing on the moving object side enables real time update on the query

result meanwhile the cost of server processing is substantially reduced. We study the

impact of our techniques in the experimental section and show that the results match

our design expectation.



4 Experimental Evaluation

In this section we describe the experimental verification of our design. There are three

metrics of interest extensively studied in our simulations. First, the number of grid in-

dex entries is measured as the average number of index entries generated on a server

and forwarded to moving objects associated with it. This is a good measure that indi-

cates the efficiency of our grid index design and whether the grid index can be used

for in-memory processing on moving objects. Second, the server communication cost

is measured as the average number of messages transmitted from servers to the mov-

ing objects. More specifically, the server communication cost consists of the registra-

tion messages, which are generated when a moving object enters or leaves a service

zone, and the query retrieval messages, which are generated when a server receives a

RequestQueries message from a moving object. This implies whether the server can

be a bottleneck in the system. Finally, the mobile communication cost is measured as the

total number of messages transmitted from moving objects to servers. The mobile com-

munication cost also consists of registration messages and query retrieval messages.

Additionally, the query update messages are generated by moving objects when they

enter or leave a query region. This measure reflects the prime query processing cost

hence is important to demonstrate the scalability of our system.

4.1 Simulator Implementation

We implemented a prototype simulator that is structured into three main components:

the service zone generator, the object and query loader, and the performance monitor.

The service zone generator creates a virtual square space with 100km × 100km

dimension. In the experiments, we setup 64 virtual servers that partitions the space into

service zones. Each service zone is identified by a VID representing a virtual server.

After that, the object and query loader generates moving objects and imports con-

tinuous range queries into the system. We use the random walk model to simulate the

movement of objects. Initially 10,000 objects are uniformly distributed in the space.

Each of them walks with a constant velocity, which is randomly selected in the range

from 10m to 20m per second, for a duration that exponentially distributed with mean

equal to 100 seconds. We also generated two sets of rectangular regions as continuous

range queries that are uniformly distributed in the space with an average area size of

1% and 10% of the plane size, respectively.

After the objects and queries are loaded into the system. The performance monitor

generates the grid index for each server with 256 grid cells in the entire service space.

Each simulation runs 5,000 seconds and the performance monitor reports the number of

grid index entries, the server communication cost, and the mobile communication cost,

respectively. At current stage, our simulation is focused on the system performance on

the long run, i.e., we do not add any more queries when the objects start to move. We

plan to implement a dynamic simulation environment in the future.

4.2 Simulation Results

We were first interested in the efficiency of our grid index in terms of the size. Figure 6a

plots the total number of grid index entries in the system on the impact of the number
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of queries. The results clearly show that the total number of grid index entries is a linear

function of the number of queries. Additionally, our grid index structure performs more

efficiently with a larger average query size. With the average query size equals to 10%

of the entire space, our grid index only doubles the number of entries comparing with

the case of the average query size equals to 1% of the space. This behavior corroborates

our analytical results as described in Section 3. Furthurmore, the size of the grid index

is very small. If we use 16 bytes to identify a query, it only takes 3.35 MB to represent

10,000 queries with an average size of 10% of the space using our grid index. Figure 6b

shows the benefit of using a distributed infrastructure on the server side that further

reduces the size of grid index on each server. In the case of 10,000 queries with an

average size of 10% of the space, on average the size of index entries is 54 KB on each

server, which substantially reduces the requirement of memory on moving objects.

Figures 7a illustrates the average communication cost on each server with the set of

queries with an average area size of 10% of the plane. As a general trend, the number

of query retrieval messages increases in correspondence with the increase of the num-

ber of queries. Intuitively with a larger number of queries, the possibility for objects

to retrieve query information from the server is larger. More importantly, the server

communication cost is small in our simulation results. With 10,000 queries and 10,000

objects in the system, the server communication cost is about 1 message per second,

which demonstrates that our server infrastructure is very scalable in the mobile envi-

ronments. Figure 7b demonstrates the mobile communication cost on the impact of the

number of queries. It shows that the query update messages are the prime of mobile

communication cost. However, with 10,000 queries, the object query update message



count on each object per second is about 0.7. Let us assume the size of query update

message is 32 byte, consequently the average message size transmitted from each ob-

ject is about 22 byte/second. Therefore, our design on the mobile object side is able to

support a very large scale mobile environment.

5 Conclusions and Future Directions

Continuous range queries have generated intense interest in the research community

because the advances in GPS devices enables new application environments. We have

presented a novel system that utilizing the computing capability of moving objects for

continuous range query processing. With the design of service zone and grid index, our

system is able to provide accurate real time query results with a very large number of

moving objects and queries.

We plan to extend our work in several directions. First, we intend to study the com-

munication cost model so that the size of the grid can be optimized with regard to the

query distribution. Second, a dynamic grid index retrieval from the server with regard

to the memory capacity on moving objects is worth exploring.
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