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ABSTRACT This paper investigates distributed continuous-time fault estimation for multiple devices in

the Internet-of-Things (IoT) networks by using a hybrid between cooperative control and state prediction

techniques. First, a mode-dependent intermediate temperature matrix is designed, which constructs an

intermediate estimator to estimate faulty temperature values obtained by the IoT network. Second,

the continuous-time Markov chains transition matrix and output temperatures and the sufficient conditions

of stability for auto-correct error of the IoT network temperatures are considered. Moreover, faulty devices

are replaced by virtual devices to ensure continuous and robust monitoring of the IoT network, preventing

in this way false data collection. Finally, the efficiency of the presented approach is verified with the results

obtained in the conducted case study.

INDEX TERMS Linear feedback control systems, data handling, algorithm design and analysis, predictive

maintenance, nonlinear control systems, fault tolerant systems, IoT.

I. INTRODUCTION

Due to their wide-ranging application, Networked Control

Systems (NCSs) have received considerable attention form

the scientific community in the last decades [1]. The advances

in communications techniques, network topologies and con-

trol methods, have all greatly increased the possibilities of

NCS. Since multiple sensor, controller and actuator nodes

can be flexibly added to an Internet of Things (IoT) network,

it is possible for one network to collect data from a wide

variety of buildings. However, when the accuracy of sensors

decreases, the data they collect are faulty, this leads to inap-

propriate decisions. Therefore, it is important to improve the

IoT network’s ability to detect the sensors that do not function

correctly [2]. This paper presents a new predictive temper-

ature control algorithm for the predictive management of a

large amount of IoT nodes, achieving efficient temperature

control. By implementing a system that controls andmonitors

the accuracy states of the IoT nodes it will be possible to

ensure confidence in the data collected by the IoT network.

Discrete-time control studies the performance of the system

in a discrete-time interval rather than a continuous time

interval. Discrete-time control problems in linear systems

have been investigated [3]–[5]. Meanwhile, the studies on the

discrete-time control of a nonlinear system have also been

carried out for triangular systems [6], nonlinear dynamical

networks [7], etc. Discrete-time control techniques have been

applied for many practical applications, for instance, multi-

agent systems [8] and secure communications [5]. Feedback

nonlinear systems that represent a class of nonlinear control

systems have been widely considered [9], [10]. We address

the problem of predictive maintenance of IoT networks in

continuous-time, with the aim of increasing the monitor-

ing and control reliability of IoT networks [14]. By using

continuous-time Markov chains to predict the future accu-

racy states of sensors, IoT networks will ensure quality

data because their nodes will always work in an optimal

state [16], [22].

Motivated by the above observation, this paper proposes

a new feedback control algorithm for improved predictive

maintenance of the IoT networks. The algorithm finds the IoT
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nodes that do not function correctly and identifies false data.

To optimize the monitoring and control processes of the IoT

network, a novel application of the continuous-time Markov

chains is used. We predict the future accuracy states of the

IoT nodes and in case it is predicted that a sensor will become

faulty after the time control period has expired, the controller

sends a signal that this IoT node has to be replaced. Before

a new sensor is deployed in its place, the control algorithm

creates a virtual sensor in its position. This virtual sensor

estimates the temperature of the faulty sensor based on the

temperature of its neighboring nodes. In this way, the IoT

network collects data in continuous-time range without any

loss of reliability in the data due to malfunctions in the IoT

devices.

Although the problem of data quality and false data detec-

tion has been widely studied [11]–[13], the aforementioned

works on data quality and false data detection are concerned

with discrete-time systems, and the results that correspond

to continuous-time systems are relatively few. In fact, con-

tinuous time control systems have already been used in a

wide range of areas, such as feedback control of nonlinear

systems [15], [17], time-delay communications [18], control

of marine surfaces [19] or neural networks [20]. Control algo-

rithms face the following challenges in the field of tempera-

ture data quality and predictive maintenance of IoT networks:

1) For predictive maintenance in continuous time it is

necessary to solve complex differential equations with

initial conditions and boundaries that change at each

iteration.

2) Algorithms that increase data quality and detect false

data can produce false positives. It is important to

discriminate between a hot (cold) temperature spot and

a faulty sensor.

In this paper, we intend to cover the research gaps in the

field of monitoring and control of continuous-time networked

systems with multiple IoT devices. Our aim is to present an

improved control algorithm which will achieve the maximum

allowable efficiency in predictive maintenance. A unified

continuous-time hybrid control system model is presented

together with a data quality and false data detection algorithm

and a feedback control algorithm for predicting the accuracy

state of the IoT sensor. The output of the data quality algo-

rithm is the input of the predictive feedback control algorithm.

The main contribution of this paper can be summarized as

follows:

1) To the best of our knowledge, the proposed approach

allows to obtain efficient feedback control for the

continuous-time system model with respect to the false

data detection or malfunction of IoT devices.

2) A novel way of estimating the accuracy states of

IoT nodes from the error in the measurements and

through the continuous-time Markov chains the algo-

rithm predicts the future accuracy states of IoT nodes

in continuous-time.

3) A new predictive maintenance model based on the

prediction of precision states that is updated in

FIGURE 1. Illustrative example of how to create the matrix of IoT nodes
from the ordered mesh placed on the map.

continuous time. If the algorithm finds malfunctioning

sensors, the control algorithm creates a virtual IoT

node to keep measuring the area and requests their

replacement.

4) A novel control algorithm capable of integrating the

above contributions to provide an innovative IoT net-

work temperature control mechanism.

The efficiency of the presented approach is illustrated by a

numerical case study. Preliminary results on the improvement

of data quality and detection of false date in WSNs have been

presented in the work of Casado-Vara et al. [11].

The rest of the paper is organized as follows. Section II

shows the procedure of the control algorithm design in

this paper. Case study and simulation results are performed

in Section III. Section IV concludes this paper.

II. SYSTEM MODEL

This section presents the control algorithm that we have

developed, Fig. 2 shows the model described in this paper.

The control algorithm is a hybrid of 2 other algorithms:

Cooperative control algorithm and Accuracy state prediction

algorithm. The algorithm is hybrid as it combines 2 algo-

rithms designed to solve the same problem; together they

work better than individually. But, in this case, we are not

simply referring to combining several algorithms to solve the

problem; each of the presented algorithms has its own char-

acteristics that significantly improve the functioning of the

hybrid algorithm. The cooperative control algorithm detects

and auto-corrects erroneous data collected by IoT nodes.

So, the control algorithm for predictive system maintenance,

which is composed by the following 2 algorithms: 1) Coop-

erative control algorithm. This algorithm receives the data

collected by the IoT network and increases the quality of

the data by searching and auto-correcting false data. The

output variables of this algorithm are the input variables of the

following algorithm 2) Accuracy state prediction algorithm.

The predictive algorithm receives data from the cooperative

control algorithm and the estimate of the accuracy state of the

IoT nodes at time (t + k). Then, the output of this algorithm

are the estimated accuracy states. This algorithm implements

a predictive maintenance system to make the IoT network

more robust. A flowchart of the cooperative control algorithm

is shown in Fig. 3 and a flowchart of the accuracy state

prediction algorithm is illustrated in Fig. 4.

The algorithm proposed in this paper controls the temper-

ature of a smart supermarket. For this purpose, data collected

in time t from the IoT network is the input of the algorithm
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FIGURE 2. This algorithm predicts the accuracy state of the sensors via the feedback control algorithm in the time interval (t, t + k) where k is the
control time interval. The input of the algorithm are data from the IoT nodes and the output of the algorithm are controlled parameters of the IoT
network. This algorithm can improve the control of the IoT network monitoring and control by its accuracy state prediction step.

FIGURE 3. Cooperative control algorithm flowchart.

(i.e., T
(t)
i in blue block). The cooperative control algorithm

forms coalitions of neighboring IoT nodes, these coalitions

will detect incorrect temperature values and correct them.

This first part of the proposed algorithm calculates the dif-

ference between the temperature collected by the IoT network

and the optimal output temperature of the cooperative control

algorithm. Then, the calculated error (i.e., T
(t)
e ) in time t is

sent to the controller as input of the prediction step. The

prediction step resolves the Markov strings in continuous-

time resulting in the probability that the IoT nodes have the

same error that in time t or this error will change. Forecasts

of the accuracy state of the IoT nodes are sent to the actuator

(i.e., thermostats) to set the process (i.e., smart building) tem-

perature. Two signals are sent from the controller: 1) Since t is

the current time in the current loop, k is the time interval that

must be determined; z(t+k) predicts the accuracy of the IoT

nodes at the end of the time interval t+k . 2) The second signal
that comes out of the controller u(t+k), determines which

IoT nodes need to be repaired and which operate correctly.

The process sends the final temperature coming out of the

FIGURE 4. Accuracy state control algorithm flowchart.

algorithm to the feedback function that compares the predic-

tion of the accuracy states with the new temperature inputs of

the algorithm and corrects the errors in the predictions for the

next step of the algorithm.

A. COOPERATIVE CONTROL ALGORITHM

The cooperative control algorithm is located in the reference

input. The input of the cooperative control algorithm must be

data in a matrix. The IoT nodes placed in Fig. 5 collect data

from their environment. Then, we place an ordered mesh in
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FIGURE 5. Graphical representation of the Markov chain of the solution
of the Kolmogorov differential equations of the proposed simulation.

this IoT network in such a way that the IoT nodes match the

vertices of the mesh. The mesh is ordered from (1, 1) to (n, n)

considering the distance between them (rows and columns).

It is easy to create a matrix from the mesh and apply the

cooperative control algorithm to it (see Fig. 1). If we have a

mesh with n sensors ordered from (1,1) to (n,n), the matrix

shown in (1), is created without loss of generality, so the

temperature matrix at time t is as follows:

Tn,n =







ts1,1 . . . ts1,n
...

. . .
...

tsn,1 . . . tsn,n






(1)

1) MATHEMATICAL DESCRIPTION OF THE ALGORITHM

Let n ≥ 2 be the number of players in the game, numbered

from 1 to n, and let N = {1, 2, . . . , n} be the set of players.
A coalition, S, is defined to be a subset of N, S ⊆ N ,

and the set of all coalitions is denoted by S. A cooperative

game in N is a function u (characteristic feature of the game)

that assigns to each coalition Si ⊆ S a real number u(Si).

In addition, one of the conditions is that u(∅) = 0. In our

case, the characteristic function is non-negative (the values of

the characteristic function are always positive), monotonous

(if more players are added to the coalition the value of the

expected characteristic function does not change), simple and

0-normalized (players are obliged to cooperate with each

other since individually they will obtain zero benefit).

In our case, the set of players is the set of ordered sensors S

and the characteristic function u is defined as:

u : 2n −→ {0, 1} (2)

such that, for each coalition of sensors, u = 1 or 0 depending

on whether a particular coalition can vote or not, respectively

(see (2, 3)).

S ∋ Si −→ u(Si) = {0, 1} ∈ N (3)

where N are the Natural numbers.

2) COOPERATIVE SENSOR COALITIONS

The sensors will be limited to form coalition only with the

sensors in their surrounding environment; that is with neigh-

boring sensors. Let’s consider the matrix of the sensors and a

pair of sensors si,j and sk,m will be in the same neighborhood,

if and only if:

‖ (i− k)2 − (j− m)2 ‖≤ 1 (4)

that is, if each sensor to which the game is applied, is the cen-

ter of a Von Neumann neighborhood, its neighbors are those

lyingwithin aManhattan distance (in thematrix) equal to one.

In addition, the following conditions have to be fulfilled by

the allowed coalitions:

1) Coalition sensors have to be in the same neighborhood

as defined in eq. (4).

2) Coalitions cannot be formed by a single sensor.

3) A CHARACTERISTIC FUNCTION TO FIND COOPERATIVE

TEMPERATURES

In the proposed game, we want to democratically decide

on the temperature of the main sensor (i.e., the sensor cur-

rently selected by the algorithm). To do this, the sensors will

form coalitions that will decide on the final temperature of

the sensor, which will be determined by whether they can

vote or not in the process. From the characteristic function

defined in eq.(2), if the value is 1(0), the coalition can vote

(not vote) respectively. Assume that si is the main sensor with

its associated temperature tsi , the characteristic function is

built in the following way:

1) First, the average temperature of all the sensors is

calculated:

T ksi =
1

V

V
∑

i

tsi (5)

here T 1
si
represents the average temperature of the IoT

nodes’ neighborhood si (including it) in the first itera-

tion of the game and V is the number of neighbors in

the coalition.

2) The next step is to compute an absolute value for the

temperature difference between the temperatures of

each sensor and the average temperature:

T
k

si
=
(

1

V

V
∑

i

| tsi − T ksi |2
)

1
2

(6)

3) Using the differences in temperature values with

regards to the average temperature T
k

si
(see eq.(6)) a

confidence interval is created and defined as follows:

I ksi =
(

T ksi ± t(V−1, α
2 )

T
k

si√
V

)

(7)

in eq. (7) we use the Student’s-t distribution with an

error of 1%.

4) In this step, we use a hypothesis test. If the tempera-

ture of the sensor lies in the interval I ksi , it belongs to
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the voting coalition, otherwise, it is not in the voting

coalition:

uk (s1, . . . , sn) =
{

1 if tsi ∈ I ksi
0 if tsi 6∈ I ksi

(8)

5) The characteristic function will repeat this process iter-

atively (k is the number of the iteration) until all the

sensors in that iteration belong to the voting coalition.

At each iteration k, the following payoff vector of the

coalition is available Sj (with 1 ≤ j ≤ n where n is the

number of sensors in the coalition) in step k (PV (Skj )):

PV (Skj ) = (uk (s1), . . . , u
k (sn)) where

n
∑

i

uk (si) ≤ n

(9)

The stop condition of the game iterations is PV (Skj ) =
PV (Sk+1

j ). That is, let PV (Skj ) = (uk (s1), . . . , u
k (sn))

and let PV (Sk+1
j ) = (uk+1(s1), . . . , u

k+1(sn)) the itera-

tion process ends when both payoff vectors contain the

same elements. This process is shown in the following

equation:











uk (s1) = uk+1(s1)
...

uk (sn) = uk+1(sn)

(10)

Then, the game finds the solution that is defined in the

following subsection.

4) SOLUTION OF THE COOPERATIVE GAME

Once the characteristic function has been applied to all sen-

sors involved in this step of the game, a payoff vector is

available in step k (see eq.(9)). Since the proposed game is

cooperative, the solution concept is a coalition of players

that we have called game equilibrium (GE). The GE of the

proposed game is defined as the minimal coalition with more

than half of the votes cast, so this voting coalition becomes

the winning coalition. Let n be the number of players involved

in this step of the game. The winning coalition must satisfy

the following conditions:

1) The sum of the elements of the coalition PV must be

higher than half plus 1 of the votes cast:

n
∑

i

uk (si) ≥
n

2
+ 1 (11)

2) The coalition is maximal (i.e., coalition with the great-

est number of elements, different from 0, in its payoff

vector PV (Skj )).

Therefore, the solution to the proposed game is the coalition,

from among all possible coalitions that are formed at each

step k of the game, that satisfies both conditions.

5) TEMPERATURES OF THE WINNING COALITION

Once the characteristic function decides which is the win-

ning coalition, it is possible to calculate the temperature of

the main sensor. Let {s1, . . . , sj} be the winning coalition’s

sensors and {ts1 , . . . , tsj} be their associated temperature.

The temperature that the game has voted to be the main

sensor’s temperature (MST) is calculated as follows:

MST = max
j∈|Swinner |

{j · tsi}si∈Swinner (12)

where |Swinner | is the number of elements in the winning

coalition. Therefore, the MST will be the maximum temper-

ature that has the highest relative frequency. In the case of a

draw, it is resolved by the Lagrange criterion.

6) DIFFUSE CONVERGENCE

There is a temperaturematrix at each game iteration, (see (1)).

Hence, we define a sequence of arrays {Mn}n∈N where theMi

element corresponds to the temperature matrix in step i of the

game. Therefore, it can be said that the sequence of matrices

is convergent if:

∀ǫ > 0, there is N ∈ N such that |Mi−1 −Mi| ≤ ǫ ∀i ∈ N.

(13)

That is, if the element mi−1
n,m ∈ Mi−1 and the element

min,m ∈ Mi are set and the convergence criterion is applied,

we have:

∀ǫn,m > 0 there is N ∈ N such that |mi−1
n,m − min,m| ≤ ǫn,m

∀i ∈ N, ∀i ≥ N and mi−1
n,m ∈ Mi−1,m

i
n,m ∈ Mi (14)

Therefore, by applying the criterion of convergence in (14)

for each of the elements, a new matrix is obtained; by cal-

culating the difference in the temperatures obtained in the

game’s previous step and those obtained in the current step.






|mi−1
1,1 − mi1,1| . . . |mi−1

1,m − mi1,m|
...

. . .
...

|mi−1
n,1 − min,1| . . . |mi−1

n,m − min,m|






(15)

For the succession of matrices to be convergent, each of the

sequences of elements that are formed with the |mi−1
n,m−min,m|

must be less than the fixed ǫ > 0. In this work, it is established

that ǫ = 0.01. The game reaches the equilibrium if at least 80

% of the elements of the matrix are convergent

B. CONTINUOUS-TIME MARKOV CHAINS

MATHEMATICAL BACKGROUND

In this subsection we present a practical mathematical back-

ground of continuous-time Markov chains and demonstrate

how to find the solution of continuous-time Markov chains.

1) CONTINUOUS-TIME MARKOV CHAINS

Let {Xt }t≥0 be a stochastic process defined over a probabilis-

tic space (�,A,P), and let {Ft }t≥0 be a family of growing

subσ -something of A such that ∀t ≥ 0

Xt : (�,Ft ) → (R,B) (16)

where B is the Borel algebra, is measurable [24].
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Definition 1: It is said that {XT }t≥0 is a Markov process

regarding

{Ft }t≥0 if ∀B ∈ B and ∀s < t

P{Xt ∈ B|Fs} = P{Xt ∈ B|Xs} (17)

Actually, it is most common to take Ft = σ (Xs, s ≤ t), that

is, the minimum σ -algebra in � that makes all applications

measurable Xs for all s ≤ t .

If all random variables Xt take values within a measurable

space (E, E), this space is called the process status space,

where E ⊂ R and E = BE .

Definition 2: Given a Markov process of {Xt }t≥0 (for any

family of σ -algebras) it is called a transition function to the

P(s, x, t,B) function defined for

s ≤ t ∈ [0, ∞), x ∈ and B ∈ E (18)

in order to

P(s, x, t,B) = P{Xt ∈ B|Xs = x}. (19)

The transition function has to fulfill the following

properties [24]:

1) ∀s ≤ t ∈ [0, ∞), ∀B ∈ E P(s, ·, t,B) is a measurable

function of (E, E) in (R,B).

2) ∀s ≤ t ∈ [0, ∞), ∀x ∈ E P(s, x, t, ·) is a measure of

probability of E .

3) Chapman-Kolmogorov equation: ∀s ≤ u ≤ t ∈
[0, ∞), ∀x ∈ E, ∀B ∈ E ,

P(s, x, t,B) =
∫

E

P(s, x, u, dy)P(u, y, t,B) (20)

4) ∀s ∈ [0, ∞), ∀x ∈ E , P(s, x, s,E − {x}) = 0

2) TRANSITION FUNCTION AND PROCESS DISTRIBUTION

Since the status space E is discreet, the probability of tran-

sition P{Xs+1 ∈ B/Xs = x}, can be expressed by the

probability function P{Xs+1 = j/Xs = i}, which is called the

probability of transition from state i to j between s and s+ t .

Let’s assume that the transition probabilities are stationary

(i.e., P{Xs+1 = j/Xs = i} is not dependent on s but is only

a function of t). In this case, the transition probability from

i to j in any length of t time can be represented by pij(t) [24].

General properties of the transition functions are:

1)

pij(t) ≥ 0 ∀i, j ∈ E ∀t ≥ 0 and
∑

j∈E
pij(t) = 1 ∀i ∈ E ∀t ≥ 0. (21)

2)

pij(s+ 1) =
∑

k∈E
pik (s)pkj(t) ∀i, j ∈ E ∀s, t ≥ 0.

(22)

which is the discreet version of the Chapman-

Kolmogorov equation.

3)

pij(0) = δij =







1 if i = j

0 if i 6= j

(23)

The transition probabilities that correspond to the same time

span t , are usually ordered in the form of a matrix

P(t) = (pij(t))i,j∈E (24)

in which the row sub-index represents the primary state and

the column sub-index represents the final state.

Distribution of a Markov process in continuous time, with

discrete state space and stationary transition probabilities,

is determined by:

• The space of states E (finite or numberable).

• The family of transition matrices {P(t)}t≥0 that obey

Chapman-Kolmogorov’s equation.

P(s+ t) = P(s)P(t) (25)

• The initial distribution

P{X0 = i} = pi(0) ∀i ∈ E . (26)

which is usually expressed as a row vector p(0).

We now find the explicit formulas that allow us to express

the distribution of the process. First of all the marginal distri-

butions of the process variables are:

P{Xt = i} = pj(t) =
∑

k∈E
pk (0)pki(t) ∀i ∈ E, (27)

thus, expressed in the form of a vector

p(t) = p(0)P(t) (28)

Since time is continuous, there is no unit of time that rep-

resents the minimum time lapse between two consecutive

instants, and according to which the probabilities of transition

can be expressed in more than one stage. For this reason,

it doesn’t come with a single matrix transaction, but you need

one for every t ≥ 0. However, since the transition matrices

must fulfill the equation P(s + t) = P(s)P(t), which stresses

that it is not necessary to know all these matrices a priori,

but that they can be calculated from each other. In particular,

since we know the value of P(t) for t ∈ [0, ε) any P(t) can be

calculated t > 0, ∀ε > 0.

It is necessary to introduce a restriction to the model we

propose in this paper, it is a quite natural restriction that is

verified in most practical situations, it consists in supposing

that:

∀i, j ∈ E, pij(t) converges on δij when t ↓ 0; (29)

or in matrix form:

P(t) −−→
t↓0

I (30)

when I is the identity matrix.

A continuous time Markov process, with discrete state

space and stationary transition probabilities, is said to be
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TABLE 1. Accuracy state of sensors.

stochastically continuous or standard when it fulfills the

above condition of continuity in the source of transition

probabilities. In this manuscript, we will assume that this

condition is always fulfilled [24].

C. ACCURACY STATE PREDICTION ALGORITHM

In this subsection, we propose a new feedback control algo-

rithm for predictive maintenance and improve the monitor-

ing and control of the IoT networks. By using the above

mathematical background, we can build a continuous-time

Markov chain model called Kolmogorov’s differential equa-

tion which is a particular case of a Markov chain. We outline

the states and the allowed actions in the accuracy states

changes, in Table. 1. The basic parameters of the contin-

uous time markov chains remain stable throughout the pro-

cess, however, the probabilities change according to Eq. (39)

(i.e., in continuous time Markov processes the probabilities

of state change at each time t).

1) INITIAL ACCURACY STATE

Initially, it is necessary to define a scale of accuracy degra-

dation expressed in percentages. This is done according to

the data obtained by the algorithm that we had developed in

a previous research [11]. This scale will be the discussion

universe of the random variable Xn that defines the current

state of precision of the system related to the error of the

sensors. Therefore, the sensors’ possible states areXn = {A =
high accuracy, B = accurate, C = low accuracy, F =
failure}. Below, table 1 contains the selection made for each

variable.

Let T
(t)
i be the matrix of initial temperatures at time t

collected by the WSN, and let T
(t)
f be the final temperatures,

obtained after applying the data quality algorithm. Then,

the accuracy error matrix of the sensors, according to the data

quality algorithm, is given by the following equation:

T (t)
e = |T (t)

f − T
(t)
i | (31)

where the coefficients eij of the matrix T
(t)
e are the differences

between the initial and final temperature in absolute value for

each sensor.

Given the T
(t)
e matrix, we now apply the error correction

given by the allowed error margin ǫ, and adjust the error

matrix:

T (t)
ǫ = |T (t)

e − Id · ǫ| (32)

Now, let’s centralize these measures to calculate the states

of the sensors. For this purpose, we calculate the average of

the elements in the array mǫ and the maximum of the array

T
(t)
ǫ that we call maxǫ . Therefore, the centralizing measure is

defined as:

δ = mǫ + maxǫ (33)

this measure is applied to the matrix T
(t)
ǫ to calculate the

percentages associatedwith each error and therefore calculate

the states of each sensor:

T
(t)
δ =













tδ1,1 =
(t1,1x100)

δ
. . . tδ1,n =

(t1,nx100)

δ
...

. . .
...

tδn,1 =
(tn,1x100)

δ
. . . tδn,n =

(tn,nx100)

δ













(34)

Then, one can define the following function in order to esti-

mate the accuracy state of the IoT nodes in time t . For this

purpose we use the Solution of Kolmogorov’s differential

equations to design this function:

g(t) : Mn,n(R) −→ Mn,n({Xn}) = T g(t) (35)

defined as follows:

g(t)(tδi,j) =



















A if tδi,j ≤ 10%

B if 10% < tδi,j ≤ 20%

C if 20% < tδi,j ≤ 35%

F if tδi,j ≥ 35%

(36)

where ti,j ∈ T
(t)
δ , and let T g(t) be the matrix with the accuracy

states of the sensors at time t.

2) TRANSITION MATRIX

Let λA be the time the IoT node remains in state A (exponen-

tial distribution). λB and λC are defined in a similar way. And

let ξA be the time the IoT node remains in state A. Let µA

(µB, µC ) be the probability that an IoT node in state A (B,C)

at time t shift to state F in the time interval (t, 1t + t). Thus,

if the IoT node was in state A at time t , the probability that

the IoT node remain in state A at time t + 1t knowing it was

previously in state A (conditional probability), is given by the

following equation:

pAA = P(ξA > t + 1t|ξA > t) =
e−λA(t+1t)

e−λAt

= e−λA1t = 1 − λA1t + o(1t) (37)

the second equality follows from the simple fact that P(A ∩
B | A) = P(B|A) where we let A = {X (u) = i for 0 ≤ u ≤ s}
and B = {X (u) = i for s < u ≤ s+ t}.

Similarly, the probability that a sensor in state A at the

beginning, will shift to state B, is given by the following

equation

pAB = P(ξB > t + 1t|ξA > t)

= 1 − ((1 − λA1t + o(1t)) − (µA1t + o(1t)))

= (λA − µA)1t + o(1t) (38)
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In this way, we can build the transition matrix between t and

t + 1t , where the coefficients of the transition matrix are

the probabilities of the sensors’ switching states (e.g., pAF is

the probability that a sensor in state A at the beginning, will

eventually shift to state F in the interval (t, 1t + t)).

In this way, the transition matrix P(t) is:

P(t) =







P(ξA> t+1t|ξA> t) = pAA . . . pAF
...

. . .
...

P(ξA> t+1t|ξF > t) = pFA . . . pFF






(39)

3) PREDICTIVE CONTROL ALGORITHM

Here we describe how the control algorithm works. This

algorithm is used by the sensor control system to monitor and

control the accuracy of the sensors. In Fig. 2, the set point

(green arrow) with the reference inputs contain the following

variables: 1) The accuracy errormatrix, Te (see Eq. (31)). This

matrix has the precision errors of the mesh of sensors. Each

step of the algorithm at every time t, this matrix is introduced

to update the data of the algorithm. 2) The allowed error ǫ.

This parameter enters the flow in each of the steps of the

algorithm.

a: CONTROLLER

The first action performed by the controller is the prediction

step. In this stage of the algorithm, the transition matrix of the

developed model is used (see (Eq. 39)). Let z(t) : T g(t) −→
z(t)(T g(t)) = T z(t+k) be the prediction function of accuracy

states (i.e., Prediction step) for each time t and let t+k where

k ∈ {1, 2, · · · } be the predicted time. Given that tδi,j ∈ T δ ,

the controller function u is defined as follows:

z
(t+k)
ij (t

g
i,j) = max{P

t
g(t+k)
i,j A

,P
t
g(t+k)
i,j B

,P
t
g(t+k)
i,j C

,P
t
g(t+k)
i,j F

}

(40)

Let z(t)(T g) = T z(t+k) be the matrix of the states of accuracy

given by the prediction function. The output of this function

is the accuracy state of the sensors at time t.

The next step of the algorithm is to compare the mea-

surements of the IoT nodes with those of the feedback func-

tion in order to update them. Let x(t) : T z(t)xT f (t−k) −→
x(t)(T z(t)) = T x(t) be the comparison function defined by the

following numerical values {A = 1,B = 2,C = 3,F = 4}
as follows:

x(t)(t
z(t)
i,j , t

f (t−k)
i,j ) = wx1(t)t

z(t)
i,j + wx2(t)t

f (t−k)
i,j (41)

where wxn(t) with n ∈ {1, 2} are the weights given for each of
the coordinates of the function x.

Let y(t) : T x(t) −→ y(t)(T x(t)) = T y(t) be the update

function defined as follows:

y(t)(T z(t),T f (t)) =























1 if 0 ≤ t
h(t)
i,j ≤ 1.5

2 if 1.5 < t
h(t)
i,j ≤ 2.5

3 if 2.5 < t
h(t)
i,j ≤ 3.5

4 if t
h(t)
i,j ≥ 3.5

(42)

The update function refreshes the accuracy states of the

prediction function with the results obtained from the

comparison function.

Let u : T y(t) −→ u(t)(T y(t)) = T u(t) be the controller

function (i.e., output estimate step) and let T u(t) be the system

controller matrix at time t. Then, this function finds sensors

that are in a state of failure (F). In this way, the system creates

a virtual sensor to maintain system monitoring. In addition,

it will identify the faulty sensors, optimize the positioning of

the sensors or it will send a request to the service staff to

replace the malfunctioning sensor. Given that t
y(t)
i,j ∈ T y(t),

u is defined as follows:

u(t
y(t)
i,j ) =

{

1 if t
y(t)
i,j = F

−1 if t
y(t)
i,j 6= F

(43)

thus, if u(y(t)) = 1, the system creates a virtual sensor in the

position (i, j) and requests maintenance.

b: FEEDBACK

Let h(t) : T g(t)xT g(t+k)xT z(t+k) −→ h(t)(T z(t+k)) = T h(t)

be the auxiliary feedback function. Since k ∈ {1, 2, · · · } and
the accuracy states in numerical values are {A = 1,B = 2,

C = 3,F = 4}, h is defined as follows:

h(t)(t
g(t)
i,j , t

g(t+k)
i,j , t

z(t+k)
i,j )

= wh1(t)t
g(t)
i,j + wh2(t)t

g(t+k)
i,j

+wh3(t)t
z(t+k)
i,j (44)

where whn(t) with n ∈ {1, 2, 3} are the weights given for each
of the coordinates of the function h.

Let f (t) : T h(t) −→ f (t)(T h(t)) = T f (t) be the feedback

function defined as follows:

f (t)(T h(t)) =



























A if 0 ≤ t
h(t)
i,j ≤ 1.5

B if 1.5 < t
h(t)
i,j ≤ 2.5

C if 2.5 < t
h(t)
i,j ≤ 3.5

F if t
h(t)
i,j ≥ 3.5

(45)

The feedback function returns the accuracy state of the sensor

(i, j) back to the flow. In this way, it is verified that the

controller is working correctly and that virtual sensors are not

created for the repair of sensors that are working properly.

c: PROCESS

The process matrix T p(t) shows when sensors need mainte-

nance. The process matrix is defined as follows:

T p(t) = T u(t−1) + T u(t) (46)

Thus, when the coefficient of the matrix corresponds to a

particular sensor, it means that it has to be replaced t
p(t)
(i,j) ≥

0.5%tmax time periods with t
p(t)
(i,j) ∈ T p(t) (i.e., assuming that

tmax = 5 years, then a sensor has to be replaced if t
p(t)
(i,j) ≥ 9

days ).
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TABLE 2. Symbol and name of all variables used in the control algorithm.

Then, the controller function sends a signal to the process

which sends back the matrix of final virtual temperatures

at time t (i.e., T
(t)
vf ). When the controller sends the signal

that a sensor is in the state of failure, the process creates a

virtual sensor in that position and simulates the temperature

so that the monitoring and control of the building does not

lose efficiency. Let {T (t)
f }t≥0 be thematrix successionwith the

final temperatures at time t given by the algorithm described

in [11] (see appendix A). Moreover, let VS
(t)
i,j be the virtual

sensor in the position (i, j) at time t. Then, the temperature of

the tvi,j is provided by the temperature ti,j ∈ T
(t)
f . to increase

the understanding of the proposed model, all the variables

used in the algorithm can be seen in Table 2.

III. RESULTS

In this section, we present the case study and the results

obtained during the experiment. The control algorithm gets

data collected by the IoT nodes and auto-corrects the faulty

data. Furthermore, in case the controller predicts that an IoT

node will be in a state of malfunction, it will create a virtual

temperature sensor in order to keep the reliability of the IoT

network. In this way, the monitoring and control efficiency of

the IoT network is improved.

A. CASE STUDY EXPERIMENTAL SETUP

This case study supposes that the IoT nodes (i.e., temperature

sensor) can undergo 4 accuracy states throughout their useful

life (A = high accuracy, B = accurate, C = low accuracy,

F = failure). The probability that a sensor in state A at instant

t shift to state F in the time interval (t, t+1t) is 0.11t+o(1t),
if it is in state B it is 0.21t + o(1t) and if it is in state C it

is 0.51t + o(1t). In this simulation we assume that the time

during which the sensors remain in state A is an exponential

time of λ = 2.1 in state A and µ = 1.2 in state B.

From A in a time interval (t, t +1t) the sensor can pass to

F with probability 0.11t + o(1t). If ξ is the time the sensor

stays at A, you have it:

P(ξ > t+1t|ξ > t) =
e−2.1(t+1t)

e−2.1t

= e−2.11t = 1−2.11t + o(1t) (47)

Therefore, the (47) is the probability of remaining in state A

at instant ti+1 if it was in A at instant ti. Then, the probability

of shifting to B between t and t + 1t is

1 − ((1 − 2.11t + o(1t)) − (0.11t + o(1t)))

= 21t + o(1t) (48)

In the successive stages we finally reach to a calculation in

which the transition matrix is between t and t+1t , as shown

in Table 3.

Thus, the derivative of the matrix in the zero is:

P′(0) =









−2.1 2 0 0.1

0 −1.2 1 0.2

0 0 −0.5 0.5

0 0 0 0









(49)

which may be expressed using the Jordan matrix form for the

whole period of time t as follows:

P(t) =
1

0.504









1 1 2 1

1 0.8 0.9 0

1 0.56 0 0

1 0 0 0









·









1

e−0.5t

e−1.2t

e−2.1t









·









0 0 0 0.504

0 0 0.9 −0.9

0 0.56 −0.8 0.24

0.504 −1.12 0.7 −0.084









(50)

For example, the term pAF (t) represents the probability that

a sensor that begins its useful life at stage A, will function

incorrectly at time t, so:

P(Life span ≤ t)

= pAF

= 1 −
0.9

0.504
e−0.5t +

0.48

0.504
e−1.2t −

0.084

0.504
e−2.1t (51)

Figure 5 shows a graphical representation of the Markov

chain. Probabilities of changes in the accuracy states of

the sensors are shown in Table 3. The instance simulation

presented in this section demonstrates that sensors in any
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TABLE 3. In this case study, we have assumed that state F is absorbent. That is, for the sensor to move from F to any other state, it needs to be repaired
by a maintenance worker.

FIGURE 6. Map of the supermarket showing the distribution of the
sensors, a sample of an indoor surface for testing our model and a
sample of a sensor.

of the precision states (i.e., A,B,C) can move to a state

of malfunction(F).In this figure, however, the sensors only

degrade by one state; from state A to state B and from state B

to state C. This is so, since in this example we assume that

the sensor from any of its precision states can fail, while,

we assume that a high accuracy sensor (A), has to go through

the precise state (B) before moving to the low accuracy

state (C).

Given the Markov chain used for this simulation with

transition matrix given by the (50), the stationary paths given

by the probabilities of change of precision state of the sensors

are shown in Fig. 5. This figure illustrates the probability that

a sensor’s initial accuracy, state A, will shift to a different

state in time t . Let’s assume that tmax = 5 years (i.e., lifespan

of the sensor is 5 years), then at t = 0, the probability

that the sensor remain in state A is 1, while at t ≥ 0 this

probability decreases. Thus, the greater the value of t , the

greater the probability that a sensor change to state B, C and F

respectively. For t −→ ∞, the accuracy state F of the sensor

has a probability of 1 (i.e., the sensor is in failure state) [21].

B. GENERAL DESCRIPTION OF THE EXPERIMENT

To test the proposed model, we have chosen a supermarket.

At the time the IoT nodes measured the temperature, the ther-

mostat of the supermarket showed 23◦C. A mesh was used to

place the sensors on the surface of the ground floor (Fig. 6).

With the help of laser levels, the IoT nodes were placed

vertically one in every section of the supermarket. A total

of 25 IoT nodes were deployed.

The type of sensor deployed in the supermarket was a

combination of the ESP8266 microcontroller in its com-

mercial version ‘‘ESP-01’’ and a DHT22 temperature and

humidity sensor (Fig. 6). The sum of both allows us for

greater flexibility when collecting data and adaptability to the

case study, since the DHT22 sensor is designed for indoor

spaces (it has an operating range of 0◦C to 50◦C) according
to its datasheet [http://www.micropik.com/PDF/dht22.pdf].

The microcontroller obtains data from this sensor through

the onewire protocol and communicates it to the environment

via Wi-Fi using HTTP standards and GET/POST requests.

The ESP-IDF programming environment provided by the

manufacturer of the microcontroller, was used to program the

device.

The temperature sensors had been collecting data at

15 minute intervals, for an entire day. For the analysis we

selected the data collected by the sensors in a time interval

that began on 2018-10-17T09:00:00Z and ended on 2018-

10-17T21:15:00Z. A specific moment was selected since the

game that has been defined is static and not dynamic (i.e.,

it does not process the data in a temporal evolution). Table 4

provides a statistical summary of the measurements that were

collected by the sensors.

TABLE 4. Statistical table of measurements of the IoT nodes.

In this experiment we have considered the next time inter-

val (t, t + 1t): 1
365·5 (i.e., a day). To validate the model

we applied the accuracy state prediction model to the data

collected by the sensors placed in the supermarket.

C. CASE STUDY RESULTS

In this case study, we have tested the proposed model,

designed to increase the efficiency of monitoring and control

of an IoT network. This is achieved by improving the quality

of the data collected by the IoT nodes and the predicted

maintenance of these nodes. In this way, the reliability of

the data is increased and the energy efficiency of the smart

supermarket is greater. The temperature collected by the IoT

nodes in the input of the control algorithm.

Fig. 7, shows how the temperature evolves from its initial

state (i.e., data collected by the IoT nodes) until the control

algorithm sends the data to the process to set the regulators
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FIGURE 7. Graphic representation of the matrix of initial temperatures,
the evolution of the temperature and the final temperatures obtained in
this case study. Figure 4.1, gives the temperatures collected by the IoT
nodes and the values that the control algorithm considers false data.
Final temperatures, obtained after the final execution of the control
algorithm, are provided in figure 4.6.

that control the temperatures of the supermarket sections. The

supermarket temperature is slightly warmer in areas where

there are large temperature differences. The control algorithm

finds these zones and, if necessary, self-corrects these tem-

peratures to reach the equilibrium in which the temperature

is uniform in the whole supermarket.

FIGURE 8. Data before applying the algorithm (left) and after applying
the algorithm (right). In this figure it can be found that the final data is
auto-corrected to eliminate the anomalous temperatures collected by the
IoT network.

Fig. 8, shows the study of the temperature clusters that

exist before and after the application of the control algorithm.

The optimum number of clusters for the data collected by the

IoT nodes is 6. On the left-hand side of the figure, it can be

seen that the clusters are formed with the initial temperature.

In some areas, the clusters are mixed indicating significant

temperature variations. In turn, the right-hand side of the

figure shows the clusters after the application of the control

algorithm, it can be seen that the clusters are very different

(i.e., no cluster has regions of other clusters inside it).

IV. CONCLUSIONS

This paper has addressed the problem of predictive control

of accuracy in continuous-time NCSs. The feasibility of the

proposed approach was verified with a case study in which

the closed-loop system was modeled as a continuous-time

feedback system with the Kolmogorov differential equa-

tions, improving the quality of the data collected by the IoT

nodes. Through a newly constructed feedback control-based

algorithm, an improved control system has been created.

It allows to derive a smart supermarket’s maximum allow-

able energy efficiency such that the resulting closed-loop

system improves the control of an IoT network. A numer-

ical case study illustrates the efficiency of our model.

However, in many real scenarios, the ability to detect an

imprecise or malfunctioning IoT node from a hot (cold) spot

is limited. In a future work, we will try to solve this prob-

lem with artificial intelligence. Also, we will use blockchain

technology and control algorithms to bring security and con-

fidentiality to the data [16], [23].

REFERENCES

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, ‘‘A survey of recent results

in networked control systems,’’ Proc. IEEE, vol. 95, no. 1, pp. 138–162,

Jan. 2007.

[2] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, ‘‘False data injection

attacks against state estimation in wireless sensor networks,’’ in Proc. 49th

IEEE Conf. Decision Control (CDC), Dec. 2010, pp. 5967–5972.

[3] F. Amato, M. Ariola, and C. Cosentino, ‘‘Finite-time stabilization via

dynamic output feedback,’’ Automatica, vol. 42, no. 2, pp. 337–342, 2006.

[4] F. Amato, M. Ariola, and C. Cosentino, ‘‘Finite-time control of discrete-

time linear systems: Analysis and design conditions,’’ Automatica, vol. 46,

no. 5, pp. 919–924, May 2010.

[5] A. Polyakov, D. Efimov, and W. Perruquetti, ‘‘Robust stabilization of

MIMO systems in finite/fixed time,’’ Int. J. Robust Nonlinear Control,

vol. 26, no. 1, pp. 69–90, 2016.

[6] V. I. Korobov, S. S. Pavlichkov, and W. H. Schmidt, ‘‘Global positional

synthesis and stabilization in finite time of MIMO generalized triangular

systems by means of the controllability function method,’’ J. Math. Sci.,

vol. 189, no. 5, pp. 795–804, 2013.

[7] Q. Hui, W. M. Haddad, and S. P. Bhat, ‘‘Finite-time semistability and con-

sensus for nonlinear dynamical networks,’’ IEEE Trans. Autom. Control,

vol. 53, no. 8, pp. 1887–1900, Sep. 2008.

[8] S. Khoo, L. Xie, S. Zhao, and Z. Man, ‘‘Multi-surface sliding control for

fast finite-time leader–follower consensus with high order SISO uncer-

tain nonlinear agents,’’ Int. J. Robust Nonlinear Control, vol. 24, no. 16,

pp. 2388–2404, 2014.

[9] Y. Li, S. Tong, and T. Li, ‘‘Composite adaptive fuzzy output feedback con-

trol design for uncertain nonlinear strict-feedback systems with input sat-

uration,’’ IEEE Trans. Cybern., vol. 45, no. 10, pp. 2299–2308, Oct. 2015.

[10] Y.-X. Li and G.-H. Yang, ‘‘Event-triggered adaptive backstepping control

for parametric strict-feedback nonlinear systems,’’ Int. J. Robust Nonlinear

Control, vol. 28, no. 3, pp. 976–1000, 2018.

[11] R. Casado-Vara, F. Prieto-Castrillo, and J. M. Corchado, ‘‘A game theory

approach for cooperative control to improve data quality and false data

detection in WSN,’’ Int. J. Robust Nonlinear Control, vol. 28, no. 5,

pp. 5087–5102, Nov. 2018.

[12] L. L. Pipino, Y. W. Lee, and R. Y. Wang, ‘‘Data quality assessment,’’

Commun. ACM, vol. 45, no. 4, pp. 211–218, 2002.

[13] R. Y. Wang, ‘‘A product perspective on total data quality management,’’

Commun. ACM, vol. 41, no. 2, pp. 58–65, 1998.

[14] R. Casado-Vara, P. Chamoso, F. De la Prieta, J. Prieto, and J. M. Corchado,

‘‘Non-linear adaptive closed-loop control system for improved efficiency

in IoT-blockchain management,’’ Inf. Fusion, 2019.

[15] K. Liu, A. Seuret, E. Fridman, and Y. Xia, ‘‘Improved stability conditions

for discrete-time systems under dynamic network protocols,’’ Int. J. Robust

Nonlinear Control, vol. 28, no. 15, pp. 4479–4499, 2018.

[16] R. Casado-Vara, Z. Vale, J. Prieto, and J.M. Corchado, ‘‘Fault-tolerant tem-

perature control algorithm for IoT networks in smart buildings,’’ Energies,

vol. 11, no. 2, p. 3430, 2018.

[17] X. Zhang and Y. Lin, ‘‘Adaptive output feedback tracking for a class of

nonlinear systems,’’ Automatica, vol. 48, no. 9, pp. 2372–2376, 2012.

[18] X. Zhang and Y. Lin, ‘‘Adaptive output feedback control for a class of

large-scale nonlinear time-delay systems,’’ Automatica, vol. 52, pp. 87–94,

Feb. 2015.

11982 VOLUME 7, 2019



R. Casado-Vara et al.: Distributed Continuous-Time Fault Estimation Control

[19] J.-X. Zhang and G.-H. Yang, ‘‘Fault-tolerant leader-follower formation

control of marine surface vessels with unknown dynamics and actuator

faults,’’ Int. J. Robust Nonlinear Control, vol. 28, no. 14, pp. 4188–4208,

2018.

[20] H. Wang, K. Liu, X. Liu, B. Chen, and C. Lin, ‘‘Neural-based adaptive

output-feedback control for a class of nonstrict-feedback stochastic non-

linear systems,’’ IEEE Trans. Cybern., vol. 45, no. 9, pp. 1977–1987,

Sep. 2015.

[21] T. Mailund, ‘‘Continuous-time Markov chains,’’ in Domain-Specific Lan-

guages in R. Berkeley, CA, USA: Apress, 2018, pp. 167–182.

[22] J. Kees, C. Berry, S. Burton, and K. Sheehan, ‘‘An analysis of data qual-

ity: Professional panels, student subject pools, and Amazon’s mechanical

Turk,’’ J. Advertising, vol. 46, no. 1, pp. 141–155, 2017.

[23] R. Casado-Vara, A. González-Briones, J. Prieto, and J. M. Corchado,

‘‘Smart contract for monitoring and control of logistics activities: Pharma-

ceutical utilities case study,’’ in Proc. 13th Int. Conf. Soft Comput. Models

Ind. Environ. Appl. Cham, Switzerland: Springer, Jun. 2018, pp. 509–517.

[24] J. L. Doob, Stochastic Processes, vol. 7, no. 2. NewYork, NY, USA:Wiley,

1953.

ROBERTO CASADO-VARA (S’17) received the

degree in mathematics from the University of

Salamanca and the master’s degree in big data

and visual analytics from the International Uni-

versity of la Rioja. He is currently pursuing the

Ph.D. degree in computer engineering with the

BISITE Research Group. He is with Viewnext as a

Data Scientist and is a Powercenter Consultant for

important clients in the pharmaceutical and public

administration sectors. He is a member with the

BISITE Research Group. As a researcher, his interests include deep learning,

advanced mathematical models for intelligent robust and non-linear control

and monitoring, blockchain, and knowledge discovery data as well as other

fields.

PAULO NOVAIS received the Ph.D. degree in

computer sciences and the Habilitation degree in

computer science (Agregação ramo do conhec-

imento em Informática) from the University of

Minho, Braga, Portugal, in 2003 and 2011, respec-

tively, where he is currently a Professor of com-

puter science with the Department of Informatics,

School of Engineering, and a Researcher with the

ALGORITMI Centre, in which he is the Leader of

the Research Group ISlab–Synthetic Intelligence,

and a Coordinator of the research line Computer Science and Technol-

ogy. He is the Director of the Ph.D. Program in Informatics and also the

Co-Founder and the Deputy Director of the master in law and informatics

with the University of Minho.

He started his career developing scientific research in the field of intel-

ligent systems/artificial intelligence (AI), namely, in knowledge representa-

tion and reasoning, machine learning, and multi-agent systems. His interest,

in the last years, was absorbed by different, yet closely related concepts

of ambient intelligence, ambient assisted living, intelligent environments,

behavioral analysis, conflict resolution, and the incorporation of AI methods

and techniques in these fields. His main research aim is to make systems a

little more smart, intelligent, and also reliable. He has led and participated

in several research projects sponsored by Portuguese and European public

and private institutions and has supervised several Ph.D. and M.Sc. students.

He has co-authored over 300 book chapters, journal papers, and conference

and workshop papers and books.

He is a member of the International Federation for Information

Processing–TC 12 Artificial Intelligence and the Executive Committee of

the Iberoamerican Society of Artificial Intelligence (IBERAMIA). He is

a Senior Member of the Institute of Electrical and Electronics Engineers.

He has been the President of the Portuguese Association for Artificial

Intelligence (APPIA), since 2016, and amember of the Executive Committee

of IBERAMIA. During the last years, he has served as an Expert/Reviewer

for several institutions, such as EUCommission and FCT (Portuguese agency

that supports science, technology, and innovation).

ANA BELÉN GIL received the degree in physics

and the Ph.D. degree in computer science and

automatics from the University of Salamanca,

in 1997 and 2011, respectively, where she is cur-

rently with the Department of Computer Science

and Automatics, and she is the Secretary of the

Department. She is the Coordinator of the degree

in computer engineering. She currently teaches

both undergraduate and graduate courses, specifi-

cally the University Master’s and Computer Engi-

neering, where she teaches the advanced paradigms of human–computer

interaction and information positioning, searches, and retrieval. Her research

interests include artificial intelligence, human–computer interaction, recom-

mender systems, and databases.

JAVIER PRIETO (S’11–M’12) received the

Telecommunication Engineer degree, the Mar-

keting Research and Techniques degree, and the

Ph.D. degree in information and communication

technologies from the University of Valladolid,

Spain, in 2008, 2010, and 2012, respectively. Since

2007, he has been with different public and private

research centers, such as the University of Val-

ladolid and the Massachusetts Institute of Tech-

nology. He is currently a member and an Assistant

Lecturer with the University of Salamanca. He has published more than

50 papers in international journals, books, and conferences and participated

in more than 35 research projects, and is an Author of two Spanish patents.

His research interests include social computing and artificial intelligence, for

developing smarter and safer cities, localization and navigation technologies,

for indoor and outdoor environments, and Bayesian inference techniques, for

improving social welfare and environmental sustainability. He received the

Extraordinary Performance Award for Doctorate Studies from the University

of Valladolid, in 2012, and the Young entrepreneurs of Castilla y León Award

from the Youth Institute of Castilla y León, Spain, in 2013. He serves

as an Associate Editor for IEEE COMMUNICATIONS LETTERS and the Wireless

Communications and Mobile Computing Journal, as a Guest Editor for the

International Journal of Distributed Sensor Networks, and as a Reviewer

for numerous international journals. He is a member of the Scientific Com-

mittee of the Advances in Distributed Computing and Artificial Intelligence

Journal. He is a member of the Technical Program Committee of prestigious

international conferences (such as IEEE GLOBECOM or IEEE ICC), and a

Reviewer for a large number of them.

VOLUME 7, 2019 11983



R. Casado-Vara et al.: Distributed Continuous-Time Fault Estimation Control

JUAN MANUEL CORCHADO (M’10) was born

in Salamanca, Spain, in 1971. He received the

Ph.D. degree in computer sciences from the Uni-

versity of Salamanca and the Ph.D. degree in artifi-

cial intelligence from the University of theWest of

Scotland. He was the Vice President for Research

and Technology Transfer, from 2013 to 2017, and

the Director of the Science Park with the Univer-

sity of Salamanca, where he was also the Director

of the Doctoral School until 2017. He has been

elected twice as the Dean of the Faculty of Science with the University of

Salamanca. He has been a Visiting Professor with the Osaka Institute of

Technology, since 2015, and a Visiting Professor with University Teknologi

Malaysia, since 2017. He is currently a Full Professor with the Chair,

University of Salamanca. He is a member of the Advisory Group on

Online Terrorist Propaganda of the European Counter Terrorism Centre

(EUROPOL). He is the Director of the Bioinformatics, Intelligent Systems

and Educational Technology (BISITE) Research Group, which he created

in 2000. He is the President of the IEEE Systems, Man and Cybernetics

Spanish Chapter and the Academic Director of the Institute of Digital Art and

Animation, University of Salamanca. He also oversees themaster’s programs

in digital animation, security, mobile technology, community management

and management for TIC Enterprises with the University of Salamanca.

He is also an Editor and the Editor-in-Chief of specialized journals, such as

the Advances in Distributed Computing and Artificial Intelligence Journal,

the International Journal of Digital Contents and Applications, and the

Oriental Journal of Computer Science and Technology.

11984 VOLUME 7, 2019


	INTRODUCTION
	SYSTEM MODEL
	COOPERATIVE CONTROL ALGORITHM
	MATHEMATICAL DESCRIPTION OF THE ALGORITHM
	COOPERATIVE SENSOR COALITIONS
	A CHARACTERISTIC FUNCTION TO FIND COOPERATIVE TEMPERATURES
	SOLUTION OF THE COOPERATIVE GAME
	TEMPERATURES OF THE WINNING COALITION
	DIFFUSE CONVERGENCE

	CONTINUOUS-TIME MARKOV CHAINS MATHEMATICAL BACKGROUND
	CONTINUOUS-TIME MARKOV CHAINS
	TRANSITION FUNCTION AND PROCESS DISTRIBUTION

	ACCURACY STATE PREDICTION ALGORITHM
	INITIAL ACCURACY STATE
	TRANSITION MATRIX
	PREDICTIVE CONTROL ALGORITHM


	RESULTS
	CASE STUDY EXPERIMENTAL SETUP
	GENERAL DESCRIPTION OF THE EXPERIMENT
	CASE STUDY RESULTS

	CONCLUSIONS
	REFERENCES
	Biographies
	ROBERTO CASADO-VARA
	PAULO NOVAIS
	ANA BELÉN GIL
	JAVIER PRIETO
	JUAN MANUEL CORCHADO
	University


