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Distributed Continuous-Time Optimization:
Nonuniform Gradient Gains, Finite-Time

Convergence, and Convex Constraint Set
Peng Lin, Wei Ren, Fellow, IEEE, and Jay A. Farrell, Fellow, IEEE

Abstract—In this paper, a distributed optimization prob-
lem with general differentiable convex objective functions
is studied for continuous-time multi-agent systems with
single-integrator dynamics. The objective is for multiple
agents to cooperatively optimize a team objective function
formed by a sum of local objective functions with only local
interaction and information while explicitly taking into ac-
count nonuniform gradient gains, finite-time convergence,
and a common convex constraint set. First, a distributed
nonsmooth algorithm is introduced for a special class of
convex objective functions that have a quadratic-like form.
It is shown that all agents reach a consensus in finite time
while minimizing the team objective function asymptoti-
cally. Second, a distributed algorithm is presented for gen-
eral differentiable convex objective functions, in which the
interaction gains of each agent can be self-adjusted based
on local states. A corresponding condition is then given
to guarantee that all agents reach a consensus in finite
time while minimizing the team objective function asymptot-
ically. Third, a distributed optimization algorithm with state-
dependent gradient gains is given for general differentiable
convex objective functions. It is shown that the distributed
continuous-time optimization problem can be solved even
though the gradient gains are not identical. Fourth, a dis-
tributed tracking algorithm combined with a distributed es-
timation algorithm is given for general differentiable con-
vex objective functions. It is shown that all agents reach a
consensus while minimizing the team objective function in
finite time. Fifth, as an extension of the previous results, a
distributed constrained optimization algorithm with nonuni-
form gradient gains and a distributed constrained finite-time
optimization algorithm are given. It is shown that both algo-
rithms can be used to solve a distributed continuous-time
optimization problem with a common convex constraint set.
Numerical examples are included to illustrate the obtained
theoretical results.
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I. INTRODUCTION

D
ISTRIBUTED optimization problems for multi-agent sys-

tems have received significant attention in the control

community [1]–[16]. The objective is to solve an optimiza-

tion problem cooperatively in a distributed manner where the

team objective function is composed of a sum of local objective

functions, each of which is known to only one agent. Earlier

work about distributed optimization problems mostly concen-

trated on discrete-time algorithms. For example, article [1] gave

a discrete-time projection algorithm where each agent is re-

quired to lie in a closed convex set and showed that all agents

reach an optimal point in the intersection of all the convex

sets even when the communication topologies are dynamically

changing as long as the edge weight matrix is doubly stochas-

tic. Moreover, articles [4]–[8] addressed distributed optimiza-

tion problems with inequality-equality constraints or using other

discrete-time algorithms and derived conditions to ensure that

all agents converge to the optimal point or its neighborhood.

Recently, some researchers turned their attention to distributed

optimization problems for multi-agent systems with continuous-

time dynamics. For example, article [9] proposed a continuous-

time zero-gradient-sum algorithm. Article [10] and its extension

[16] studied a continuous-time version of the work in [1]. Ar-

ticle [11] studied the continuous-time distributed optimization

problem for undirected graphs and derived explicit expressions

for a lower bound on the algorithm’s convergence rate. Article

[12] proposed a novel distributed continuous-time algorithm for

distributed convex optimization by introducing a dynamic inte-

grator. Founded on the work of [12], articles [13], [14] studied

the distributed continuous-time optimization problem for gen-

eral strongly connected balanced directed graphs and gave the

estimate of the convergence rate of the algorithm.

Although excellent work has been presented in [1]–[16] to

solve the distributed optimization problem, there are still is-

sues that need to be addressed, in particular when nonuniform

gradient or subgradient gains and finite-time convergence are

taken into account. For example, in [5], a distributed optimiza-

tion problem with nonuniform subgradients was studied from a

view point of stochastic theory, but by taking the mathematical

expectation, it can be seen that the given algorithm uses uniform

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



2240 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017

subgradient gains in nature. In reality, it is a difficult task to keep

the gradient or subgradient gains uniform for different agents

all the time, in particular when the number of agents is huge. It

is important and necessary to design algorithms for distributed

optimization with nonuniform gradient gains. However, due to

coexistence of the nonuniformity of the gradient gains and the

nonlinearity of the gradients of the local objective functions, the

convergence rates of the local objective functions are no longer

uniform for the distributed optimization problem with nonuni-

form gradient gains and hence the existing approaches cannot be

applied directly. Besides this aspect, most of the existing works

on the distributed optimization problem (e.g., [1]–[16]), studied

only the asymptotical stability of the algorithm and rare results

are concerned about the finite-time convergence of the algo-

rithms. Due to the existence and the nonlinearity of the objective

functions, the existing approaches for the distributed finite-time

consensus problem (e.g., [17], [18]) cannot be extended directly

to the distributed finite-time optimization problems. Though

some results have been obtained in our previous works in [19],

[20] for the distributed finite-time optimization problem, they

are limited to a special class of convex objective functions that

have a quadratic-like form and the approaches cannot be applied

to more general convex objective functions. It is meaningful

and challenging to study the distributed finite-time optimization

problem for more general convex objective functions.

In this paper, we are interested in solving the distributed

optimization problem with general differentiable convex objec-

tive functions for continuous-time multi-agent systems with the

consideration of nonuniform gradient gains, finite-time conver-

gence, and a common convex constraint set. First, a distributed

nonsmooth algorithm is introduced for a special class of convex

objective functions that have a quadratic-like form. It is shown

that all agents reach a consensus in finite time while minimizing

the team objective function asymptotically. Second, an adaptive

distributed algorithm is presented where the interaction gains of

each agent can be self-adjusted based on local states. It is shown

that the distributed continuous-time optimization problem can

be solved when general differentiable convex local objective

functions are taken into account. Third, to relax the synchro-

nization requirement of the system on the gains of the gradients,

a distributed algorithm with state-dependent gradient gains is

given. It is shown that the optimization problem can be solved

even though the gradient gains are not identical. After that, a

distributed tracking algorithm combined with a distributed es-

timation algorithm is given. It is shown that all agents reach

a consensus while minimizing the team objective function in

finite time. Finally, as an extension of the previous results, a dis-

tributed constrained optimization algorithms with nonuniform

gradient gains and a distributed constrained finite-time opti-

mization algorithm are given. It is shown that both algorithms

can be used to solve a distributed continuous-time optimization

problem with a common convex constraint set.

II. NOTATION AND PRELIMINARIES

We adopt the following notation throughout this paper: R
m

denotes the set of all m dimensional real column vectors; R
m×n

denotes the set of all m × n real matrices; I denotes the index

set {1, . . . , n}; si denotes the ith component of the vector s;

Aij denotes the ijth entry of the matrix A; sT and AT denote,

respectively, the transpose of the vector s and the matrix A;

||s|| denotes the Euclidean norm of the vector s; d
ds and ∂

∂s
denote, respectively, the differential operator and partial differ-

ential operator with respect to s; ∇f(s) denotes the gradient of

the function f(s) at s with [∇f(s)]i = ∂f (s)
∂si

; the matrix∇2f(s)
denotes the Hessian or second-order partial derivative matrix of

the function f(s) at s with [∇2f(s)]ij = ∂ 2 f (s)
∂si ∂sj

; sgn(s) denotes

a component-wise sign function of s; the symbol / denotes the

division sign; Y − X denotes the relative complement set of

X in Y for any two sets X and Y ; and PX (s) denotes the

projection of the vector s onto the closed convex set X , i.e.,

PX (s) = arg mins̄∈X ‖s − s̄‖.

LetG(V, E ,A) be a graph of order n, whereV = {1, . . . , n} is

the set of nodes, E ⊆ V × V is the set of edges, and A = [aij ] ∈
R

n×n is the weighted adjacency matrix. An edge of (i, j) ∈ E
denotes that agent i can obtain information from agent j. The

weighted adjacency matrix A is defined as aii = 0 and aij = 1
if (i, j) ∈ E and aij = 0 otherwise. The graph G is undirected if

aij = aj i for all i, j. The set of neighbors of node i is denoted

by Ni = {j ∈ V : (i, j) ∈ E}. A path is a sequence of edges

of the form (i1 , i2), (i2 , i3), . . ., where ij ∈ V . The graph G is

connected, if there is a path from every node to every other node.

Lemma 1: [22] Let f0(s) : R
m → R be a differentiable con-

vex function. f0(s) is minimized if and only if ∇f0(s) = 0.

Lemma 2: [23] Suppose that Y �= ∅ is a closed convex set

in R
m . The following two statements hold:

(a) For any y ∈ R
m , ‖y − PY (y)‖ is continuous with re-

spect to y and ∇ 1
2 ‖y − PY (y)‖2 = y − PY (y).

(b) For any y, z ∈ R
m and all ξ ∈ Y, [y − PY (y)]T (y −

ξ) ≥ 0, ‖PY (y) − ξ‖2 ≤ ‖y − ξ‖2 − ‖PY (y) − y‖2

and ‖PY (y) − PY (z)‖ ≤ ‖y − z‖.

III. DISTRIBUTED CONTINUOUS-TIME OPTIMIZATION

WITHOUT CONSTRAINTS

Consider a multi-agent system consisting of n agents. Each

agent is regarded as a node in an undirected graph G(t), and

each agent can interact with only its neighbors. Suppose that the

agents satisfy the continuous-time dynamics

ẋi(t) = ui(t), i ∈ I, (1)

where xi(t) ∈ R
m is the state of agent i, and ui(t) ∈ R

m is the

control input of agent i. Our objective is to design ui(t) using

only local interaction and information, such that all agents co-

operatively find the optimal state s∗ that solves the optimization

problem

minimize
∑n

i=1fi(s) subject to s ∈ R
m ,

where fi(s) : R
m → R denotes the local objective function of

agent i, which is convex, differentiable, and known only to

agent i. Clearly,
∑n

i=1fi(s) is also a differentiable function. The

problem described above is equivalent to the problem that all

agents reach a consensus while minimizing the team objective

function
∑n

i=1fi(xi), i.e.,

minimize
∑n

i=1fi(xi) subject to xi = xj ∈ R
m . (2)
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Assumption 1: Each set Xi �
{

s
∣

∣∇fi(s) = 0
}

is nonempty

and bounded.

To illustrate Assumption 1, we consider the convex function

fi(s) : R
2 → R:

fi(s) =

{

0, if ‖s‖ ≤ 1,
0.5(‖s‖ − 1)2 , otherwise.

By simple calculations, we have

∇f(s) =

{

[0, 0]T , if ‖s‖ ≤ 1,
(‖s‖ − 1) s

‖s‖ �= [0, 0]T , otherwise.

Clearly, Xi = {s|‖s‖ ≤ 1} and hence fi(s) satisfies

Assumption 1.

In Assumption 1, we only make assumptions on each fi(s)
rather than the team objective function

∑n
i=1fi(s) because the

team objective function
∑n

i=1fi(s) is a global information for

all agents and cannot be used by each agent in a distributed way.

Define X �
{

s
∣

∣

∑n
i=1∇fi(s) = 0

}

. From Lemma 1, all Xi

and X are the minimum sets of fi(s) and
∑n

i=1fi(s) for all i.
Lemma 3: Let f(s) : Ξ �→ R be a differentiable convex

function and Y be its minimum set in Ξ, where Ξ ⊆ R
n is

a closed convex set. Suppose that Y is bounded and closed. For

any z = λPY (y) + (1 − λ)y with λ ∈ (0, 1),

0 < ∇f(z)T y−PY (y )
‖y−PY (y )‖ ≤ ∇f(y)T y−PY (y )

‖y−PY (y )‖

for any y ∈ Ξ − Y .

Proof: Let

z = λPY (y) + (1 − λ)y

with λ ∈ (0, 1) for any y ∈ Ξ − Y . Clearly, z ∈ Ξ − Y . From

the convexity of the function f(s), we have f(y) − f(z) ≥
∇f(z)T (y − z) and f(z) − f(y) ≥ ∇f(y)T (z − y). Thus,

0 = f(y) − f(z) + f(z) − f(y) ≥
[

∇f(z) −∇f(y)
]T

(y −
z). Note that y �= z, y �= PY (y) and z �= PY (y). Hence

y−z
‖y−z‖ = y−PY (y )

‖y−PY (y )‖ = z−PY (y )
‖z−PY (y )‖ , and ∇f(y)T y−PY (y )

‖y−PY (y )‖
= ∇f(y)T y−z

‖y−z‖ ≥ ∇f(z)T y−z
‖y−z‖ = ∇f(z)T y−PY (y )

‖y−PY (y )‖ , i.e.,

∇f(y)T y−PY (y )
‖y−PY (y )‖ ≥ ∇f(z)T y−PY (y )

‖y−PY (y )‖ . Furthermore, since

PY (y) ∈ Y and Y is the minimum set, from the convexity of

the function f(s), we have 0 > f(PY (y)) − f(z) ≥ ∇f(z)T

(PY (y) − z). That is, ∇f(z)T z−PY (y )
‖z−PY (y )‖ > 0. Recalling that

y−PY (y )
‖y−PY (y )‖ = z−PY (y )

‖z−PY (y )‖ , we have ∇f(z)T y−PY (y )
‖y−PY (y )‖ > 0. �

Lemma 4: Under Assumption 1, the following two state-

ments hold:

(1) lim‖y‖→+∞ fi(y) = +∞ for all i and accordingly

lim‖y‖→+∞
∑n

i=1fi(y) = +∞.

(2) All Xi and X are nonempty closed bounded convex sets

for all i.
Proof: From the convexity of the functions fi(s),

∑n
i=1fi(s)

is convex and hence all Xi and X are also convex. Under

Assumption 1, each Xi is nonempty and bounded. Now, we

prove that all Xi are closed sets. If this is not true, there ex-

ists an integer ie such that Xie
is an open set. Then there

must exist a vector se /∈ Xie
and a vector sequence {s̃k ∈

Xie
} such that se = limk→+∞ s̃k . Clearly, fie

(s̃k ) = ρie
for

all k, where ρie
denotes the minimum value of the function

fie
(s). From the continuity of the function fie

(s), we have

fie
(se) = limk→+∞ fie

(s̃k ) = ρie
. This implies that se ∈ Xie

,

which yields a contradiction. Therefore, all Xi are closed sets.

Let Yi be a closed bounded convex set such that

Xi ⊂ Yi and miny /∈Y i
‖y − PX i

(y)‖ > 0. Clearly, maxy∈Y i

‖y − PX i
(y)‖ < ̟0 for some positive constant ̟0 > 0.

From the property of a continuous function on a closed

bounded set and Lemma 3, we have ̟1 � miny∈∂̄ Y i
∑n

i=1∇fi(y)T y−PX i
(y )

‖y−PX i
(y )‖ > 0 and ̟2 � maxy∈∂̄ Y i

∑n
i=1

∇fi(y)T y−PX i
(y )

‖y−PX i
(y )‖ > 0, where ∂̄Yi denotes the boundary

of the set Yi . Integrating ∇fi(s) along the line from PY i
(y)

to y, from Lemma 3, we have fi(y) − fi(PX i
(y)) =

∫ y

PX i
(y ) ∇fi(s)

T ds =
∫ ‖y−PX i

(y )‖
0 ∇fi(PX i

(y) +
y−PX i

(y )

‖y−PX i
(y )‖s)

T y−PX i
(y )

‖y−PX i
(y )‖ds ≥ ̟1‖y − PY i

(y)‖ − ̟2̟0 .

It follows that lim‖y‖→+∞ fi(y) = +∞. Thus,

lim
‖y‖→+∞

n
∑

i=1

fi(y) = +∞. (3)

On the other hand, since each fi(y) is lower bounded,
∑n

i=1fi(y) is lower bounded and hence its infimum exists, de-

noted by ω2 . From (3), for any sufficiently large constant ω3 >
ω2 , there exists a constant hl > 0 such that

∑n
i=1fi(y) > ω3

for any ‖y‖ > hl . Let Ỹ = {‖y‖ ≤ hl}. It is clear that if X is

nonempty, X ⊂ Ỹ . Note that Ỹ is a closed bounded set. Since
∑n

i=1fi(y) is continuous with respect to y, from the property

of a continuous function on a closed bounded set, we have the

minimum set of
∑n

i=1fi(y) in Ỹ is nonempty. That is, X is

nonempty. Then by using the same analysis approach as for Xi ,

it can be proved that X is bounded and closed. �

Assumption 2: The length of the time interval between any

two contiguous switching times is no smaller than a given con-

stant, denoted by dw .

Arbitrary switching of the graph G(t) might lead to the Zeno

behavior. Hence Assumption 2 is imposed to prevent the system

from exhibiting the Zeno behavior. Throughout this paper, our

analysis is founded on Assumption 2. For simplicity, this will

not be repeatedly mentioned except when it is necessary.

A. Distributed Gradient Optimization

In this subsection, we design ui(t) for (1) to solve the con-

vex optimization problem (2). In particular, all agents are driven

to reach a consensus in finite time while minimizing the team

objective function as t → +∞. We propose the following algo-

rithm

ui(t) = α
∑

j∈N i (t)

sgn
(

xj (t) − xi(t)
)

− γ∇fi(xi(t)), (4)

where α > 0 and γ > 0 are two constants. In (4), the role of the

first term, α
∑

j∈N i (t)
sgn
(

xj (t) − xi(t)
)

, is to drive all agents

to reach a consensus, while the second term, −γ∇fi(xi(t)),
is a weighted negative gradient of fi(xi(t)) playing a role in

minimizing fi(xi(t)).
Remark 1: As our algorithms discussed in this paper contain

sign functions that is piecewise differentiable, the solution of the

system (1) would be considered in the sense of Filippov [24].
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Assumption 3: Let ∇fi(s) = σs + φi(s), where σ ≥ 0 and

‖φi(s)‖ < g for a certain positive number g and all s ∈ R
m .

In [2], the subgradients of the local objective functions were

assumed to be bounded and the most common quadratic convex

functions were not considered. Under Assumption 3, when σ =
0, the gradient of each local objective function is bounded, and

when σ > 0, the gradient of each local objective function con-

tains a linear term and a bounded term, which includes the sce-

narios of [2] and the quadratic convex functions as special cases.

Proposition 1: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 2 and 3 hold. For system (1)

with algorithm (4), if α/γ > 2ng, all agents reach a consensus

in finite time. That is, there exists a positive number T such that

xj (t) = xi(t) for all t > T and all i, j ∈ I.

Proof: Consider the Lyapunov function candidate

V (t) =
1

2

n
∑

i=1

∥

∥xi(t) −
1

n

n
∑

j=1

xj (t)
∥

∥

2
. (5)

It is clear that when V (t) = 0, xi(t) = xj (t) for all i, j. Calcu-

lating V̇ (t) along the solutions of system (1) with (4), we have

V̇ (t)

=
∑n

i=1
[xi(t) −

1

n

∑n

k=1
xk (t)]T

×
[

α
∑

j∈N i (t)
sgn(xj (t) − xi(t))

− γ∇fi(xi(t)) −
1

n

∑n

j=1
ẋj (t)

]

=
∑n

i=1

[

xi(t) −
1

n

∑n

k=1
xk (t)

]T

×
[

α
∑

j∈N i (t)
sgn(xj (t) − xi(t))

− [γ∇fi(xi(t)) − γσxi(t) + γσxi(t)]

+
γσ

n

∑n

j=1
xj (t)

]

(6)

where the second equality holds because
∑n

i=1 [xi(t) −
1
n

∑n
k=1xk (t)]T 1

n

∑n
j=1 ẋj (t) = 0 × 1

n

∑n
j=1 ẋj (t) = 0 and

∑n
i=1 [xi(t) − 1

n

∑n
k=1xk (t)]T 1

n

∑n
j=1xj (t) = 0 × 1

n
∑n

j=1xj (t) = 0. Since the graph G(t) is undirected, then

(i, j) ∈ E if and only if (j, i) ∈ E . Thus,

∑n

i=1

[

xi(t) −
1

n

∑n

k=1
xk (t)

]T

×α
∑

j∈N i (t)
sgn(xj (t) − xi(t))

=
∑n

i=1

∑

j∈N i (t)
α

[

xi(t) −
1

n

∑n

k=1
xk (t)

]T

× sgn(xj (t) − xi(t))

=
∑n

i=1

∑

j∈N i (t)

{

α

2

×
[

xi(t) −
1

n

∑n

k=1
xk (t)

]T

sgn(xj (t) − xi(t))

+
α

2

[

xj (t) −
1

n

∑n

k=1
xk (t)

]T

sgn(xi(t) − xj (t))

}

=
∑n

i=1

∑

j∈N i (t)

{

α

2

[

xi(t) −
1

n

∑n

k=1
xk (t)

−xj (t) +
1

n

∑n

k=1
xk (t)

]T

sgn(xj (t) − xi(t))

=
∑n

i=1

∑

j∈N i (t)

α

2
[xi(t) − xj (t)]

T

× sgn(xj (t) − xi(t)). (7)

Under Assumption 3,∇fi(xi(t)) = σxi(t) + φi(xi(t)), σ >
0 and ‖φi(xi(t))‖ < g. Since γ > 0, it follows from (6) and (7)

that

V̇ (t)

=
∑n

i=1

∑

j∈N i (t)

α

2
[xi(t) − xj (t)]

T

× sgn(xj (t) − xi(t))

−
∑n

i=1

[

xi(t) −
1

n

∑n

j=1
xj (t)

]T

γφi(xi(t))

− γσ
∑n

i=1

∥

∥xi(t) −
1

n

∑n

j=1
xj (t)

∥

∥

2

≤
∑n

i=1

∑

j∈N i (t)

α

2
[xi(t) − xj (t)]

T

× sgn(xj (t) − xi(t))

+
∑n

i=1
‖xi(t) −

1

n

∑n

j=1
xj (t)‖γg. (8)

Consider the quantity xi(t) − 1
n

∑n
j=1xj (t) for all i ∈ I. Let

i0 , j0 ∈ I be the integers such that ‖xi0
(t) − xj0

(t)‖ =
maxi,j∈I ‖xi(t) − xj (t)‖ at time t. It is clear that

‖xi(t) − 1
n

∑n
j=1xj (t)‖ ≤ 1

n

∑n
j=1‖xi(t) − xj (t)‖ ≤

‖xi0
(t) − xj0

(t)‖. Since G(t) is connected, there must

exist a path (i0 , i
0), (i0 , i1), . . . , (ih−1 , ih), (ih , j0) that con-

nects nodes i0 and j0 . Note that ‖xi0
(t) − xj0

(t)‖ ≤ ‖xi0
(t) −

xi0 (t)‖ +
∑h

k=1‖xik −1 (t) − xik (t)‖ + ‖xih (t) − xj0
(t)‖ ≤

∑n
i=1

∑

j∈N i (t)
‖xi(t) − xj (t)‖. Therefore, ‖xi0

(t) −
xj0

(t)‖ ≤∑n
i=1

∑

j∈N i (t)
‖xi(t) − xj (t)‖. Also, note that

‖xi(t) − xj (t)‖ ≤ −[xi(t) − xj (t)]
T sgn(xj (t) − xi(t)) for

all i, j ∈ I from the relations of operator norms. It follows that

∥

∥

∥

∥

xi(t) −
1

n

∑n

j=1
xj (t)

∥

∥

∥

∥

≤ ‖xi0
(t) − xj0

(t)‖

≤ −
∑n

i=1

∑

j∈N i (t)
[xi(t) − xj (t)]

T

× sgn(xj (t) − xi(t)). (9)
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If α/γ > 2ng, it follows from (8) and (9) that

V̇ (t) ≤
∑n

i=1

∑

j∈N i (t)
[xi(t) − xj (t)]

T

× sgn(xj (t) − xi(t))
(α

2
− γng

)

≤ 0.

This implies that V (t) and hence ‖xi0
(t) − xj0

(t)‖ are bounded.

When V (t) �= 0, i.e., ‖xi0
(t) − xj0

(t)‖ �= 0, noting from (9)

that
√

V (t) ≤
√

n
2 ‖xi0

(t) − xj0
(t)‖, it follows that

V̇ (t)
√

V (t)
≤
∑n

i=1

∑

j∈N i (t)
[xi(t) − xj (t)]

T sgn(xj (t) − xi(t))
1√
2

√
n‖xi0

(t) − xj0
(t)‖

×
(α

2
− γng

)

≤ −(α/
√

2n −
√

2nγg) < 0.

Integrating both sides of this inequality, we have

2
√

V (t) − 2
√

V (0) < −(α/
√

2n −
√

2nγg)t. (10)

It is clear that V (t) converges to zero in finite time. Namely, all

agents reach a consensus in finite time. �

Theorem 1: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1, 2 and 3 hold. For system

(1) with algorithm (4), if α/γ > 2ng, all agents reach a consen-

sus in finite time and minimize the team objective function (2)

as t → +∞.

Proof: Define

x∗(t) �
1

n

n
∑

j=1

xj (t). (11)

Under Assumption 3, Proposition 1 holds. From Proposition 1,

there exists a positive number T such that xi(t) = x∗(t) for

all t > T and all i ∈ I. Since the graph G(t) is undirected, it

follows that for all t > T,

ẋ∗(t) =
1

n

∑n

i=1
ẋi(t)

=
1

n

∑n

i=1

[

α
∑

j∈N i (t)
sgn(xj (t) − xi(t))

− γ∇fi(xi(t))

]

= −γ

n

∑n

i=1
∇fi(x

∗(t)). (12)

Consider the Lyapunov function candidate V (t) = 1
2 ‖x∗(t) −

PX (x∗(t))‖2 for t > T . Calculating V̇ (t) along the solutions of

(12), it follows from Lemma 2 and the convexity of
∑n

i=1fi(s)
that

V̇ (t) = [x∗(t) − PX (x∗(t))]T ẋ∗(t)

= −γ

n
[x∗(t) − PX (x∗(t))]T

∑n

i=1
∇fi(x

∗(t))

≤ −γ

n

[

∑n

i=1
fi(x

∗(t)) −
∑n

i=1
fi(PX (x∗(t)))

]

(13)

for t > T . Let Y = {s ∈ R
m | ‖s − PX (s)‖ ≤ l1} for some

constant l1 > 0 and ρ = mins∈∂̄ Y

∑n
i=1 [fi(s) − fi(PX (s))],

where ∂̄Y denotes the boundary of Y . Since PX (s) ∈ X ,

from the definition of X , we have ρ > 0. Moreover, from

Lemma 3,
∑n

i=1 [fi(s) − fi(PX (s))] > ρ for any s /∈ Y . Thus,

V̇ (t) ≤ − γ
n ρ for any x∗(t) /∈ Y and t > T . This implies that

there exists a constant T0 > T for any l1 > 0 such that ‖x∗(t) −
PX (x∗(t))‖ ≤ l1 for all t > T0 . In view of the arbitrariness of l1 ,

letting l1 → 0, we have limt→+∞ ‖x∗(t) − PX (x∗(t))‖ = 0. It

follows from the definition of X that the team objective function

(2) is minimized as t → +∞. �

B. Distributed Adaptive Gradient Optimization Algorithm

In algorithm (4), it is required that the gains α and γ should be

known to all agents and it can only be used to deal with quadratic-

like convex objective functions. In this subsection, we design a

distributed adaptive algorithm for (1) to solve the optimization

problem (2) for general convex local objective functions. The

algorithm is given by

ui(t) =
∑

j∈N i (t)
qij (t)sgn

(

xj (t) − xi(t)
)

−∇fi(xi(t)),

q̇ij (t) =

{

sgn(maxs∈[t−c0 ,t] ‖xj (s) − xi(s)‖), if (i, j) ∈ G(t),
0, otherwise,

qij (0) = qj i(0) = 0, (14)

where c0 > 0 is an arbitrary constant. In (14), the role of the first

term,
∑

j∈N i (t)
qij (t)sgn

(

xj (t) − xi(t)
)

, is to drive all agents

to reach a consensus, while the second term, −∇fi(xi(t)), is

the negative gradient of fi(xi(t)) playing a role in minimizing

fi(xi(t)).
Theorem 2: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1 and 2 hold. For system

(1) with algorithm (14), all agents reach a consensus in finite

time and minimize the team objective function (2) as t → +∞.

Proof: We first show that all xi(t) remain in a bounded

region. Under Assumption 1, it follows from Lemma 4 that all

Xi and X are nonempty closed bounded convex sets for all

i. Therefore, there is a closed bounded convex set Y such that

xi(0) ∈ Y, X ⊂ Y and Xi ⊂ Y for all i. Consider the Lyapunov

function candidate V (t) =
∑n

i=1‖xi(t) − z‖2 for some z ∈ X .

Let Y be sufficiently large for all zj ∈ Xj such that fi(xi(t)) −
fi(z) ≥∑n

j=1,j �=i [fj (z) − fj (zj )] for all i and all xi(t) /∈ Y .

Calculating V̇ (t), we have

V̇ (t) =
∑n

i=1

(

xi(t) − z
)T

×
∑

j∈N i (t)
qij (t)sgn

(

xj (t) − xi(t)
)

−
∑n

i=1

(

xi(t) − z
)T ∇fi(xi(t)). (15)

Since z ∈ X , from the convexity of the function fi(xi(t)),
we have ∇fi(xi(t))

T (z − xi(t)) ≤ fi(z) − fi(xi(t)). More-

over, since the graph G(t) is undirected, similar to the proof

of Proposition 1, we have

∑n

i=1
xi(t)

T
∑

j∈N i (t)
qij (t)sgn

(

xj (t) − xi(t)
)

=
∑n

i=1

∑

j∈N i (t)

qij (t)

2

(

xi(t) − xj (t)
)T

× sgn
(

xj (t) − xi(t)
)

≤ 0 (16)
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and
∑n

i=1
zT
∑

j∈N i (t)
qij (t)sgn

(

xj (t) − xi(t)
)

= 0. (17)

From (15), (16) and (17), we have V̇ (t) ≤ −∑n
i=1 [fi(xi(t)) −

fi(z)]. If xi0
(t) /∈ Y for some i0 , we have fi0

(xi0
(t)) −

fi0
(z) ≥∑n

j=1,j �=i0
[fj (z) − fj (zj )] for all zj ∈ Xj and

hence V̇ (t) ≤ −[fi0
(xi0

(t)) − fi0
(z)] +

∑n
j=1,j �=i0

[fj (z) −
fj (zj )] ≤ 0. This implies that all xi(t) remain in Y . Note that

each function fi(s) is differentiable and Y is bounded. Thus

each ∇fi(s) is bounded. That is, ‖∇fi(s)‖ < ρf for some con-

stant ρf > 0.

Now, we show that all agents reach a consensus in finite time.

Let 0 < tk1 ≤ tk2 < tk+1,1 ≤ tk+1,2 denote the contiguous

switching times for all k ∈ {1, 2, . . .} such that xi(t) �= xj (t)
for some two integers i, j ∈ I and all t ∈ [tk1 , tk2) and xi(t) =
xj (t) for all i, j ∈ I and all t ∈ [tk2 , tk+1,1). Suppose that

consensus is not reached in finite time and
∑+∞

k=1(tk2 − tk1) <
+∞. It is clear that tk2 − tk1 > 0 when k → +∞. From the dy-

namics of qij (t), we have that limt→+∞
∑n

i=1

∑n
j=1 qij (t) =

+∞. Then by a similar approach to the following case of
∑+∞

k=1(tk2 − tk1) = +∞, it can be shown that consensus can

be reached in finite time, which is a contradiction.

Suppose that
∑+∞

k=1(tk2 − tk1) = +∞. Then from the

dynamics of qij (t), there must exist a pair of agents, denoted by

i0 �= j0 , such that limt→+∞ qi0 j0
(t) = +∞. In the following,

we prove that there exist a pair of agents, denoted by i1 �= j1 ,

such that (i1 , j1) /∈ {(i0 , j0), (j0 , i0)}, i1 ∈ {i0 , j0} and

limt→+∞ qi1 j1
= +∞. If this is not true, we have qii0

(t) < γq

and qij0
(t) < γq for some constant γq > ρf , all t and all

i ∈ ∪s∈[0,+∞) [Ni0
(s) ∪ Nj0

(s)] with i �= i0 and i �= j0 . Since

limt→+∞ qi0 j0
(t) = +∞, there exists a sufficiently large

constant T0 > 0 for any γ0 > 6nmγq such that qi0 j0
(t) > γ0

for all t > T0 . By simple calculations based on (14), when

(i0 , j0) ∈ G(t) and ‖xi0
(t) − xj0

(t)‖ �= 0 for t > T0 , we have
d
dt ‖xi0

(t) − xj0
(t)‖ ≤ x i 0

(t)−xj 0
(t)

‖x i 0
(t)−xj 0

(t)‖2qi0 j0
(t)sgn

(

xj0
(t) −

xi0
(t)
)

+ 2nmγq ≤ −2nmγq . When there exist at least an

agent i such that i ∈ Nĩ(t) and ‖xĩ(t) − xi(t)‖ �= 0 for

ĩ ∈ {i0 , j0} and either (i0 , j0) /∈ G(t) or ‖xi0
(t) − xj0

(t)‖ = 0
holds, we have d

dt ‖xi0
(t) − xj0

(t)‖ ≤ 2nmγq for t > T0 . Since

all xi(t) remain in a bounded region, ‖xi0
(t) − xj0

(t)‖ < ρv for

some positive constant ρv . Let τa(T1) and τb(T1), respectively,

denote the total time in the interval (T0 , T1) for any T1 > T0

for the case when (i0 , j0) ∈ G(t) and ‖xi0
(t) − xj0

(t)‖ �= 0
and the case when there exist at least an agent i such that

i ∈ Nĩ(t) and ‖xĩ(t) − xi(t)‖ �= 0 for ĩ ∈ {i0 , j0} and either

(i0 , j0) /∈ G(t) or ‖xi0
(t) − xj0

(t)‖ = 0 holds. Thus,

0 ≤ ‖xi0
(T1) − xj0

(T1)‖
≤ ‖xi0

(T0) − xj0
(T0)‖ + 2nmγqτb(T1)

− 2nmγqτa(T1)

≤ ρv + 2nmγqτb(T1) − 2nmγqτa(T1). (18)

Since limt→+∞ qi0 j0
(t) = +∞, from the dynamics of qij (t),

we have limT1 →+∞ τa(T1) = +∞ and hence from (18) we

have limT1 →+∞ τb(T1) = +∞. That is, there exist a pair of

agents i1 �= j1 such that (i1 , j1) /∈ {(i0 , j0), (j0 , i0)}, i1 ∈
{i0 , j0} and limt→+∞ qi1 j1

(t) = +∞. Similarly, it can be

proved that there exist a pair of agents i2 �= j2 such that

(i2 , j2) /∈ {(i0 , j0), (j0 , i0), (i1 , j1), (j1 , i1)}, i2 ∈ {i0 , j0 , i1}
and limt→+∞ qi2 j2

(t) = +∞. By analogy, it can be proved that

limt→+∞ qij (t) = +∞ for all i, j. Since each ‖∇fi(xi(t))‖
is bounded for all t, there is a constant T2 > 0 such that

qij (t) > 2nmaxk ‖∇fk (xk (t))‖ for all i, j and all t > T2 . Sim-

ilar to the proof of Proposition 1, we have all agents reach a

consensus in finite time. This contradicts with the precondition

that
∑+∞

k=1(tk2 − tk1) = +∞.

Summarizing the above analysis, all agents reach a consen-

sus in finite time. Then there exists a number T > 0 such that

xi(t) = x∗(t), where x∗(t) is defined in (11), for all t > T
and all i ∈ I. Similar to the proof of Theorem 1, it can be

proved that the team objective function (2) is minimized as

t → +∞. �

C. Distributed Optimization Algorithm With Nonuniform

Gradient Gains

In the existing works, the gradient gains are usually assumed

to be uniform and need to be known in advance, e.g., [1]. In this

subsection, we extend to consider the nonuniform gradient gains

based on the agents’ states for general convex local objective

functions. The algorithm is given by

q̇i(t) = arctan(e‖x i (t)‖), qi(0) > 0,

ui(t) =
∑

j∈N i (t)
sgn
(

xj (t) − xi(t)
)

− ∇fi(xi(t))
√

qi(t)
(19)

for all i. Here, the gain 1/
√

qi(t) is used to ensure the weighted

gradient
dfi (x i (t))√
q i (t)dx i (t)

to tend to zero as time evolves. In practical

applications, it is hard for all agents to have a uniform system

clock and know its value accurately at any time. So, we do not

use the information of the system clock directly in the design of

the gradient gains.

Remark 2: Here, we use the inverse tangent functions and the

exponential functions to guarantee q̇i(t) to be upper and lower

bounded by two positive constants (here the two constants are
π
2 and π

4 ). As a matter of fact, there are some other functions,

e.g., saturation function, that can be used to play the same role.

For easy readability, we do not give the general form of such

functions.

Theorem 3: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1 and 2 hold. For system

(1) with algorithm (19), all agents reach a consensus in finite

time and minimize the team objective function (2) as t → +∞.

Proof: Note that π/4 ≤ arctan(e‖x i (s)‖) ≤ π/2 for all s and

all i. There exists a constant T > 0 such that 2
√

t >
√

qi(t) >√
t

2 for all i and all t > T . Consider the Lyapunov function can-

didate V (t) =
∑n

i=1‖xi(t) − z‖2 for z ∈ X and t > T . Under

Assumption 1, it follows from Lemma 4 that all Xi and X are

nonempty closed bounded convex sets for all i. Let Y be a closed

bounded convex set such that xi(T ) ∈ Y, X ⊂ Y, Xi ⊂ Y
and fi(xi(t)) − fi(z) ≥ 4

∑n
j=1,j �=i [fj (z) − fj (zj )] for all i,



LIN et al.: DISTRIBUTED CONTINUOUS-TIME OPTIMIZATION: NONUNIFORM GRADIENT GAINS, FINITE-TIME CONVERGENCE, AND CONVEX 2245

all zj ∈ Xj and all xi(t) /∈ Y . It follows that 1√
q i (t)

[fi(xi(t)) −
fi(z)] ≥∑n

j=1,j �=i
1√
qj (t)

[fj (z) − fj (zj )] for all t > T , all i,

all zj ∈ Xj and all xi(t) /∈ Y . Then similar to the proof

of Theorem 2, it can be proved that all ‖xi(t)‖ and all

∇fi(xi(t)) are bounded for all t > T . That is, |fi(xi(t))| < µc

and
∥

∥∇fi(xi(t))
∥

∥ < µc for some constant µc > 0, all i and all

t > T . Moreover, note that X is bounded and each fi(s) is dif-

ferentiable for all i and all s. Let µc be sufficiently large such

that µc > 2n
∥

∥∇fi(xi(t))
∥

∥ and µc >
∣

∣fi(s)
∣

∣ for all i, all t > T

and all s ∈ X . Let T0 > T be a constant such that
√

T0

2 > µc .

Similar to the proof of Proposition 1, it can be proved that all

agents reach a consensus in finite time. That is, there exists a

constant T1 > T0 such that xi(t) = x∗(t) for all i and all t > T1 ,

where x∗(t) is defined in (11).

Now, we prove that the team objective function (2) is min-

imized as t → +∞. Let E = {s ∈ R
m | ‖s − PX (s)‖ ≤ l1}

for some constant l1 > 0 and ρ = mins∈∂̄E

∑n
i=1 [fi(s) −

fi(PX (s))], where ∂̄E denotes the boundary of E.

Since PX (s) ∈ X , from the definition of X , we have

ρ > 0. From Lemma 3,
∑n

i=1 [fi(s) − fi(PX (s))] > ρ for

any s /∈ E. Note that qi(t) − qi(T1) = qj (t) − qj (T1) =
∫ t

T1
arctan(e‖x

∗(s)‖)ds � q∗(t) and qi(t) = q∗(t)/∆i(t) for all

i, j and t > T1 , where ∆i(t) = 1/(1 + q i (T1 )
q ∗(t) ). Since the graph

G(t) is undirected and connected, it follows that for all t > T1 ,

ẋ∗(t)

=
1

n

∑n

i=1
ẋi(t)

=
1

n

∑n

i=1

[

∑

j∈N i (t)
sgn(xj (t) − xi(t)) −

∇fi(xi(t))
√

qi(t)

]

= − 1

n

∑n

i=1

√

∆i(t)∇fi(x
∗(t))

√

q∗(t)
. (20)

On the other hand, recall that π/4 ≤ arctan(e‖x i (s)‖) ≤ π/2 for

all s and all i. From the definition of q∗(t), there exists a constant

T2 > T1 for any 0 < ǫ < ρ
4n such that 2

√
t >
√

q∗(t) >
√

t
2

and 1 −
√

∆i(t) < ǫ
2µc

for all i and all t > T2 . Let φi(t) =

fi(x
∗(t)) − fi(PX (x∗(t))) for all i. Since |fi(x

∗(t))| < µc and

|fi(PX (x∗(t)))| < µc , it follows that |φi(t)[1 −
√

∆i(t)]| < ǫ
for all i.

Consider the Lyapunov function candidate V̄ (t) =
1
2 ‖x∗(t) − PX (x∗(t))‖2 for t > T2 . Calculating ˙̄V (t) along the

solutions of (20), it follows from Lemma 2 and the convexity of
∑n

i=1fi(s) that

˙̄V (t) = [x∗(t) − PX (x∗(t))]T ẋ∗(t)

= − 1

n
√

q∗(t)
[x∗(t) − PX (x∗(t))]T

×
∑n

i=1
∇fi(x

∗(t))
(

1 − 1 +
√

∆i(t)
)

≤ − 1

n
√

q∗(t)

∑n

i=1
φi(t) −

∑n

i=1
φi(t)

1 −
√

∆i(t)

n
√

q∗(t)

≤ − 1

n
√

q∗(t)

∑n

i=1
φi(t) +

ǫ
√

q∗(t)
(21)

for t > T2 . Since 2
√

t >
√

q∗(t) >
√

t
2 for all t > T2 and

ǫ < ρ
4n , then ˙̄V (t) ≤ − 1√

q ∗(t)
[ ρ
n − ǫ] ≤ − 1√

t
[ ρ
2n − 2ǫ] < 0 for

any x∗(t) /∈ E and all t > T2 . Integrating both sides of this in-

equality from T2 to t, we have ˙̄V (t) ≤ −(
√

t −√
T2)[

ρ
n − 4ǫ].

This implies that there exists a constant T3 > T2 for any

l1 > 0 such that ‖x∗(t) − PX (x∗(t))‖ ≤ l1 for all t > T3 .

In view of the arbitrariness of l1 , letting l1 → 0, we have

limt→+∞ ‖x∗(t) − PX (x∗(t))‖ = 0. That is, the team objective

function (2) is minimized as t → +∞. �

Remark 3: In the existing works, the gradient or subgradient

gains are usually assumed to be uniform for all agents at any time

instant, and moreover their values for all time instants need be

known in advance. For example, in [2], for discrete-time multi-

agent systems, the gains should satisfy that
∑n

i=1αk = +∞
and
∑n

i=1α
2
k = +∞, where αk denotes the uniform subgradi-

ent gain for all agents at time instant k. One example of the

selection is αk = 1
1+k , k = 0, 1, . . .. To determine the gains,

the exact time clock (i.e., k in the discrete-time case) should be

known by all agents and the values of the gains for all agents

need be kept identical at any time instant. In contrast, in this

paper, the gradient gains in algorithm (19) are state-dependent

and can be self-adjusted based on the agents’ current states. At

each time instant, the agents only need to know their current

states xi(t) to determine their own gains and there is no need

to know the current time clock (i.e., t in the continuous-time

case). Note that while xi(t) is a function of time, the agents do

not use the current time to calculate xi(t) but instead the states

are obtained by measurements without the need for explicitly

knowing the exact clock. The gradient gains can be different for

different agents, which might distinctly relax the synchroniza-

tion requirement on the system. In [5], a distributed algorithm

with nonuniform subgradient gains was also given to solve the

distributed optimization problem, but the algorithm can only be

used in the stochastic sense. By taking the mathematical expec-

tation, it uses uniform subgradient gains for all agents in nature.

D. Distributed Finite-Time Optimization Algorithm

Most of the existing works on the distributed optimization

problem (e.g., [1]–[16]) as well as the algorithms introduced

in Section III.A–III.C, studied only the asymptotic stability of

the algorithm, and are rarely concerned with the finite-time

convergence of the algorithms. To this end, in this subsection, we

design one algorithm for (1) such that distributed optimization

can not only be achieved, but achieved in finite time.

The finite-time algorithm for system (1) is given by

ψ̇i(t) =
∑

j∈N i (t)
pij (t)sgn(θj (t) − θi(t)),

θi(t) = ψi(t) + ∇fi(xi(t)), ψi(0) = 0,
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ṗij (t) =

{

sgn(maxs∈[t−c0 ,t] ‖θj (s)−θi(s)‖), if (i, j) ∈ G(t),
0, otherwise,

pij (0) = pj i(0) = 0,

ui(t) =
∑

j∈N i (t)
qij (t)sgn(xj (t) − xi(t))

− θi(t)

‖θi(t)‖
− gci(t),

q̇ij (t) =

{

sgn(maxs∈[t−c0 ,t] ‖xj (s)−xi(s)‖), if (i, j) ∈ G(t),
0, otherwise,

qij (0) = qj i(0) = 0,

gci(t) =

⎧

⎨

⎩

0, if θj (t) = θi(t)
and xi(t) = xj (t) for all j ∈ Ni(t),
xi(t) − PX i

(xi(t)), otherwise,

(22)

where c0 > 0 is an arbitrary constant, and θi(t) and ψi(t) are

the internal states of the dynamic averaging estimator for all

i. Here the dynamic averaging estimator is motivated by [21].

Here, to eliminate the singular point of the function x
‖x‖ , we

define x
‖x‖ = 0 when x = 0.

In algorithm (22), the role of θi(t) is to estimate the average

derivative of all local objective functions fi(xi(t)) with respect

to xi(t), the role of the time-varying gains pij (t) is to ensure

the influence of ∇2fi(x
∗(t))ẋ∗(t) on the tracking of the average

derivative of all fi(xi(t)) to vanish to zero as time evolves, and

the role of the time-varying gains qij (t) is to force all agents to

reach a consensus and move along the negative direction of the

average derivative of all local objective functions fi(xi(t)).
Remark 4: There are three difficulties in the analysis of sys-

tem (1) with algorithm (22): (a) this system is a time-varying

system with a strong nonlinearity since the interaction gains

pij (t) and qij (t) are time-varying and this system contains a

strongly nonlinear term∇2fi(x
∗(t))ẋ∗(t) as shown later in (31);

(b) there exist four strong couplings: the first one is between the

variables θi(t) and xi(t) in each agent; the second one is among

the variables θi(t) for neighbor agents; the third one is among

the variables xi(t) for neighbor agents; and the last one is be-

tween the variables θi(t) and xj (t) for neighbor agents; (c) each

∇fi(xi(t)) and each ∇2fi(x
∗(t)) are not bounded and hence

θi(t) might tend to infinity as time evolves, which might destroy

the system stability.

Assumption 4: Suppose that each [∇2fi(s)]jk = ∂ 2 f (s)
∂sj ∂sk

is

continuous with respect to s, and either one of the following

conditions holds:

(a) There exists a scalar δ > 0 and a vector s̄ ∈ X such that

{ξ|‖ξ − s̄‖ ≤ δ} ⊂ X [1].

(b) There is a neighborhood of X , denoted by S, and a

uniform constant 0 < cs ≤ 1 such that (s − PX (s))T

1
n

∑n
i=1∇fi(s) ≥ cs

∥

∥

1
n

∑n
i=1∇fi(s)

∥

∥‖s − PX (s)‖ for

all s ∈ S.

Below are some lemmas that will be used in the proof of the

main theorem.

Lemma 5: Let Z be a closed bounded convex set con-

taining X , and s̄ be defined in Assumption 4(a). Under

Assumption 4(a), there exists a uniform constant 0 < cx ≤ 1

such that (s − s̄)T 1
n

∑n
i=1∇fi(s) ≥ cx

∥

∥

1
n

∑n
i=1∇fi(s)

∥

∥‖s −
s̄‖ for any s ∈ Z − X .

Proof: As all fi(s) are twice differentiable convex functions,
1
n

∑n
i=1fi(s) is a twice differentiable convex function as well.

It follows that

1

n

∑n

i=1
fi(s

0)

≥ 1

n

∑n

i=1
fi(s) +

1

n

∑n

i=1
∇fi(s)

T (s0 − s),

i.e.,

(

1

n

∑n

i=1
∇fi(s)

)T

(s − s0)

≥ 1

n

∑n

i=1
fi(s) −

1

n

∑n

i=1
fi(s

0) > 0,

(23)

for all s0 ∈ X and all s ∈ Z − X . If this lemma

does not hold, there exists a sequence of vectors

{yk ∈ Z − X} such that limk→+∞
1
n

∑n
i=1∇fi(yk )T (yk −

s̄)/
∥

∥

1
n

∑n
i=1∇fi(yk )

∥

∥/‖yk − s̄‖ = 0. Since each

[∇2fi(s)]jk = ∂ 2 f (s)
∂sj ∂sk

is continuous, 1
n

∑n
i=1∇fi(yk ) is contin-

uous. Since Z is bounded,
∥

∥

1
n

∑n
i=1∇fi(yk )

∥

∥ and ‖yk − s̄‖ are

both upper bounded. Thus, limk→+∞
1
n

∑n
i=1∇fi(yk )T (yk −

s̄) = 0. Let dk ∈ R
m be an arbitrary unit vector for any k.

Under Assumption 4(a), s̄ + 1
2 δdk ∈ X for all k, where δ

is defined in Assumption 4(a). In view of the arbitrariness

of the direction dk , we can adopt a proper dk such that
1
n

∑n
i=1∇fi(yk )T dk =

∥

∥

1
n

∑n
i=1∇fi(yk )

∥

∥. As k → +∞,
1
n

∑n
i=1∇fi(yk )T (yk − s̄ − 1

2 δdk )/
∥

∥

1
n

∑n
i=1∇fi(yk )

∥

∥/‖yk −
s̄ − 1

2 δdk‖ = − 1
2 δ/‖yk − s̄ − 1

2 δdk‖. Since yk ∈ Z − X and

s̄ + 1
2 δdk ∈ X , we have that ‖yk − s̄ − 1

2 δdk‖ is upper bounded

from the boundedness of X and Z and ‖yk − s̄ − 1
2 δdk‖ ≥ 1

2 δ
from the definition of s̄. Therefore, 1

n

∑n
i=1∇fi(yk )T (yk −

s̄ − 1
2 δdk )/

∥

∥

1
n

∑n
i=1∇fi(yk )

∥

∥/‖yk − s̄ − 1
2 δdk‖ is upper

bounded by a negative constant as k → +∞, which contradicts

with (23). �

Lemma 6: Consider the system given by ẏ(t) =
−∑n

i=1∇fi(y(t))/
∥

∥

∑n
i=1∇fi(y(t))

∥

∥. Let Z be a closed

bounded convex set containing X . If y(t) ∈ Z for all t and

Assumption 4 holds, there exists a constant T > 0 such that

y(t) ∈ X for all t > T .

Proof: (a) Under Assumption 4(a), Lemma 5 holds and con-

sider the Lyapunov function candidate Va(t) = ‖y(t) − s̄‖ for

all t. Calculating V̇a(t), we have

V̇a(t) = − (y (t)−s̄)T
∑ n

i = 1 ∇fi (y (t))
∥

∥y (t)−s̄
∥

∥

∥

∥

∑ n
i = 1 ∇fi (y (t))

∥

∥

≤ −cx

for a constant cx > 0 and all y(t) ∈ Z − X . Integrating both

sides of this inequality, we have Va(t) − Va(0) ≤ −cxt for all

y(t) ∈ Z − X . It is clear that there exists a constant T > 0 such

that y(t) ∈ X for all t > T .
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(b) Under Assumption 4(b), there is a neighborhood of X ,

denoted by S, and a uniform constant 0 < cs ≤ 1 such that

(y(t) − PX (y(t)))T 1

n

∑n

i=1
∇fi(y(t))

≥ cs

∥

∥

∥

∥

1

n

∑n

i=1
∇fi(y(t))

∥

∥

∥

∥

‖y(t) − PX (y(t))‖

for all y(t) ∈ S. Similar to the proof of Lemma 4,

miny∈∂̄ S

∑n
i=1∇fi(y)T y−PX (y )

‖y−PX (y )‖ > 0, where ∂̄S denotes

the boundary of the set S. From Lemma 3, it follows

that ̟ ≤ 1
n

∑n
i=1∇fi(y(t))T y (t)−PX (y (t))

‖y (t)−PX (y (t))‖ for some con-

stant ̟ > 0 and any y(t) ∈ Z − S. Since Z is bounded,
∥

∥

1
n

∑n
i=1∇fi(y(t))

∥

∥ < cg for some constant cg > 0 and all

y(t) ∈ Z. Hence

(y(t) − PX (y(t)))T 1

n

∑n

i=1
∇fi(y(t))

≥ ̟

cg

∥

∥

1

n

∑n

i=1
∇fi(y(t))

∥

∥‖y(t) − PX (y(t))‖

for some constant ̟ > 0 and any y(t) ∈ Z − S. Consider the

Lyapunov function candidate Vb(t) = ‖y(t) − PX (y(t))‖ for

all t. In the same way as the proof of (a), it can be proved

that there exists a constant T > 0 such that y(t) ∈ X for all

t > T . �

Remark 5: Under Assumption 4(a), X is a nonempty closed

convex set and contains at least one interior point while

Assumption 4(b) considers the case that X has no interior points

and excludes the singular situation where

lim
‖s−PX (s)‖→0

(s − PX (s))T

‖s − PX (s)‖

× 1

n

∑n

i=1
∇fi(s)

/∥

∥

1

n

∑n

i=1
∇fi(s)

∥

∥ = 0,

i.e., 1
n

∑n
i=1∇fi(s) tends to be orthogonal to s − PX (s) as s

converges to X . In [25], some finite-time results are given for

nonconvex functions, but when convex functions are considered,

the results can only be used to a special case of Assumption 4(b)

because the convexity of the functions was not fully exploited.

Lemma 7: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1, 2 and 4 hold. For system

(1) with algorithm (22), the following statements hold:

(a) xi(t) ∈ Z for all t and a closed bounded region Z and

there exists a constant T0 > 0 such that xi(t) = xj (t)
for all t > T0 ;

(b) Each ‖θi(t)‖ is bounded for all i and all t.
Proof: Under Assumption 1, it follows from Lemma 4

that all Xi and X are nonempty closed bounded convex sets

for all i. Consider the Lyapunov function candidate V (t) =
∑n

i=1‖xi(t) − z0‖2 for some z0 ∈ X . Let dD = max
{

‖y1 −
y2‖ | y1 , y2 ∈

(

X
⋃n

i=1 Xi

)}

and Y = {y | ‖y − PX (y)‖ ≤
L0} ⊂ R

m for some constant L0 > 0 be a closed bounded con-

vex set such that

mini{‖y − PX (y)‖, ‖y − PX i
(y)‖} ≥ dD (24)

for any y /∈ Y and

maxi{‖y − PX (y)‖, ‖y − PX i
(y)‖} ≤ 3dD (25)

for all y ∈ Y . Then, from the triangle relationship, for any y /∈
Y , the angle between y − PX i

(y) and y − z0 is no larger than
π
3 for all i. That is,

(y − PX i
(y))T (y − z0) ≥ 1

2 ‖y − PX i
(y)‖‖y − z0‖ (26)

for any y /∈ Y . Let Z = {y | ‖y − PX (y)‖ ≤ L1} ⊂ R
m for

some constant L1 > L0 be a closed bounded convex set such

that Y ⊂ Z, xi(0) ∈ Z and

min
i
{‖y − PX i

(y)‖, ‖y − z0‖}

> max{8n + 6ndD , 0.5max
z1 ∈Z

‖z1 − z0‖} (27)

for all i and any y /∈ Z.

We first consider the case where θi(t) �= θj (t) or xi(t) �=
xj (t) for some i �= j. Suppose that there exists an agent

i0 such that xi0
(t) /∈ Z. Then there must exist an agent i1

such that xi0
(t) = xi1

(t) /∈ Z and gci1
(t) �= 0. If this is not

true, from (22), xj (t) = xi0
(t) /∈ Z and θj (t) = θi0

(t) for all

j ∈ Ni0
(t). Since the graph G(t) is undirected and connected,

it follows that xi(t) = xj (t) /∈ Z and θi(t) = θj (t) for all i, j.

This yields a contradiction. Without loss of generality, suppose

that ‖xi1
(t) − z0‖ = max{‖xi(t) − z0‖ | xi(t) /∈ Z, gci(t) �=

0}. Clearly, ‖xi1
(t) − z0‖ = maxi{‖xi(t) − z0‖ | xi(t) /∈ Z}.

Calculating V̇ (t), from (16) and (27), we have

V̇ (t) = −
∑n

i=1
(xi(t) − z0)

T

[

θi(t)

‖θi(t)‖
+ gci(t)

−
∑

j∈N i (t)
qij (t)sgn(xj (t) − xi(t))

]

≤
∑n

i=1

∑

j∈N i (t)

qij (t)

2

(

xi(t) − xj (t)
)T

× sgn
(

xj (t) − xi(t)
)

+
∑n

i=1
‖xi(t) − z0‖

−
∑n

i=1
(xi(t) − z0)

T gci(t)

≤ 2n‖xi1
(t) − z0‖ −

∑n

i=1
(xi(t) − z0)

T gci(t).

From (22), (25) and (26), we have (xi(t) − z0)
T gci(t) ≤

3‖xi1
(t) − z0‖dD for any xi(t) ∈ Y and (xi(t) − z0)

T (xi(t) −
PX i

(xi(t))) ≥ 1
2 ‖xi(t) − z0‖‖xi(t) − PX i

(xi(t))‖ for any

xi(t) /∈ Y . It follows from (27) that −∑n
i=1(xi(t) −

z0)
T gci(t) ≤ −‖xi1

(t) − z0‖(4n + 3ndD − 3ndD ). Thus,

V̇ (t) ≤ −2n‖xi1
(t) − z0‖.

Now, we consider the case where θi(t) = θj (t) and xi(t) =

xj (t) for all i, j. Calculating V̇ (t), we have

V̇ (t) = −
∑n

i=1
(xi(t) − z0)

T

[

θi(t)

‖θi(t)‖

−
∑

j∈N i (t)
qij (t)sgn(xj (t) − xi(t))

]

≤ −
∑n

i=1
(xi(t) − z0)

T θi(t)

‖θi(t)‖
. (28)
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Since G(t) is connected and ψi(0) = 0 for all i, we have
∑n

i=1 ψ̇i(t) = 0 and thus
∑n

i=1 ψi(t) = 0, which implies that

1

n

n
∑

i=1

θi(t) =
1

n

n
∑

i=1

[

∇fi(xi(t))
]

for all t. Since θi(t) = θj (t) and xi(t) = xj (t) for all i, j, we

have

θi(t) =
1

n

n
∑

i=1

θi(t) =
1

n

n
∑

i=1

[

∇fi(xi(t))
]

=
1

n

n
∑

i=1

[

∇fi

(

1

n

∑n

i=1
xi(t)

)]

(29)

for all i. Moreover, since z0 ∈ X , from the convexity of the

functions fi(s), we have

0 ≤ 1

n

∑n

i=1
fi

(

1

n

∑n

i=1
xi(t)

)

− 1

n

∑n

i=1
fi(z0)

≤ 1

n

∑n

i=1
∇fi

(

1

n

∑n

i=1
xi(t)

)(

1

n

∑n

i=1
xi(t) − z0

)

(30)

It follows from (28), (29) and (30) that V̇ (t) ≤ 0.

Summarizing both cases, we have V̇ (t) ≤ 0 if there exists an

agent i such that xi(t) /∈ Z. Since xi(0) ∈ Z, then xi(t) ∈ Z
for all i and all t. Then similar to the proof of Theorem 2,

it can be proved that there exists a constant T0 > 0 such that

xi(t) = xj (t) = x∗(t), where x∗(t) is defined in (11), for all i
and all t > T0 . It is clear that

ẋ∗(t) = − 1

n

n
∑

i=1

(

θi(t)

‖θi(t)‖
+ gci(t)

)

for all t > T0 . Define A1k (t) � {i | θik (t) = maxi{θik (t)}},
A2k (t) � {i | θik (t) = mini{θik (t)}}, θ̄k (t) � 1

|A 1 k (t)|
∑

i∈A 1 k (t)θik (t) and θk (t) � 1
|A 2 k (t)|

∑

i∈A 2 k (t)θik (t), where

|A1k (t)| ≥ 1 and |A2k (t)| ≥ 1 denote, respectively, the cardi-

nality of A1k (t) and A2k (t). It is clear that the kth component

of each θ̇i(t) can be written as

θ̇ik (t) =
∑

j∈N i (t)
pij (t)sgn(θjk (t) − θik (t))

+ [∇2fi(x
∗(t))ẋ∗(t)]k (31)

for t > T0 .

Suppose that θ̄k (T1) ≥ maxi,x∗(t)∈Z

{∥

∥∇fi(x
∗(t))
∥

∥

}

for some T1 > T0 and θ̄k (t) �= θk (t) for t > T1 . Let

C1k (t) � {(i, j) ∈ E(G(t)) | i ∈ A1k (t), j /∈ A1k (t)}. Since

the graph G(t) is connected and θ̄k (t) �= θk (t), then C1k (t)
is nonempty. Moreover, since x∗(t) ∈ Z and each entry

of ∇2fi(x
∗(t)) is continuous from Assumption 4, then

dµ = maxi,x∗(t)∈Z

{∥

∥∇2fi(x
∗(t))ẋ∗(t)

∥

∥

}

is bounded. Let

α(t) = min(i,j )∈C1 k (t) pij (t). Note that sgn(θhk (t) − θlk (t)) ≤
0 for any l ∈ A1k (t) and any h ∈ Nl(t). It is clear from (31)

that ˙̄θk (t) = 1
|A 1 k (t)|

∑

i∈A 1 k (t) θ̇ik (t) ≤ dµ − α(t)
n . From the

dynamics of pij (t), we have ṗij (t) = 1 for any (i, j) ∈ C1k (t).

Note that the number of all parameters pij is finite, denoted

by ne , and it takes at most ndµ time for each pij to increase

from 0 to ndµ at the rate of 1. Since ˙̄θk (t) ≤ dµ and especially
˙̄θk (t) < 0 when α(t) > ndµ , we have that it takes at most

nnedµ time for α(t) to increase to ndµ when θ̄k (t) �= θk (t).
Note that when θ̄k (t) = θk (t), we have ‖θ̄k (t)‖ = ‖θk (t)‖ =
∥

∥

1
n

∑n
i=1

[

∇fi(x
∗(t))
]

k

∥

∥ ≤ maxi,x∗(t)∈Z

{∥

∥∇fi(x
∗(t))
∥

∥

}

.

Hence, θ̄k (t) < θ̄k (T1) + nned
2
µ for all t > T1 . Thus, θ̄k (t) is

upper bounded for all t and all k. In the same way, it can be

proved that θk (t) is lower bounded for all t and all k. Thus,

‖θi(t)‖ is bounded for all i and all t. �

Theorem 4: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1, 2 and 4 hold. For sys-

tem (1) with algorithm (22), all agents reach a consensus and

minimize the team objective function (2) in finite time.

Proof: Under Assumptions 1, 2 and 4, Lemma 7 holds.

Hence, xi(t) ∈ Z for all t and a closed bounded region Z and

there exists a constant T0 > 0 such that xi(t) = xj (t) = x∗(t),
where x∗(t) is defined in (11), for all i and all t > T0 . Moreover,

from Lemma 7, each ‖θi(t)‖ is bounded for all i and all t. Then,

similar to the proof of Theorem 2, it can be proved that all θi(t)
reach a consensus in finite time. That is, there exists a number

T1 > T0 such that θi(t) = θj (t) � θ∗(t) for all t > T1 .

As a result, we have

ẋ∗(t) = −θ∗(t)/‖θ∗(t)‖

for all t > T1 . Recalling (29), from Lemma 6, the team objective

function (2) will be minimized in finite time. �

Remark 6: Due to the existence and the nonlinearity of the

objective functions, the existing approaches for the distributed

finite-time consensus problem (e.g., [17], [18]) cannot be ex-

tended directly to the distributed finite-time optimization prob-

lems, which need to consider the finite-time convergence of the

consensus of the agents and the finite-time convergence of the

objective functions simultaneously. Although some results have

been obtained in our previous works in [19], [20] for the dis-

tributed finite-time optimization problem, they are limited to a

special class of convex objective functions that have a quadratic-

like form and the approaches cannot be applied to more general

convex objective functions.

IV. DISTRIBUTED CONTINUOUS-TIME OPTIMIZATION WITH A

COMMON CONVEX CONSTRAINT SET

In this section, we will extend the results in Sections III.C and

III.D and design algorithms for system (1) to solve a distributed

optimization problem with a common convex constraint set as

follows

minimize
∑n

i=1
fi(xi)

subject to xi = xj ∈ H ⊂ R
m , (32)

where H is a closed convex set.
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A. Distributed Optimization Algorithm With Nonuniform

Gradient Gains

In this subsection, we extend Theorem 3 to the problem (32)

for general convex local objective functions. Let X ⊂ R
m de-

note the optimal set of the problem (32).

When H is a closed bounded convex set, the algorithm is

given by

q̇i(t) = arctan(e‖x i (t)‖), qi(0) > 0,

ui(t) =
∑

j∈N i (t)
sgn
(

xj (t) − xi(t)
)

− gri(t) − gci(t)

gri(t) =
∇fi(xi(t))
√

qi(t)

gci(t) =
γi(t)[xi(t) − PH(xi(t))]

‖xi(t) − PH(xi(t))‖
(33)

for all i, where γi(t) > |Ni(t)| + 1 and |Ni(t)| denotes the

cardinality of Ni(t).
Lemma 8: Under Assumption 1, X is a nonempty closed

bounded convex set.

Proof: When H is a bounded closed convex set, from the

property of continuous functions on closed bounded sets and

the convexity of the functions fi(s) and the set H, it is easy to

see that X is a nonempty closed bounded convex set.

Under Assumption 1, Lemma 4 holds. Thus,

lim‖y‖→+∞ fi(y) = +∞ and lim‖y‖→+∞
∑n

i=1fi(y) = +∞.

Since
∑n

i=1fi(y) is lower bounded in H, its infimum exists.

Similar to the proof of Lemma 4, it can be proved that X is a

nonempty closed bounded convex set, when H is an unbounded

closed convex set. �

Theorem 5: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1 and 2 hold. For system (1)

with algorithm (33), all agents reach a consensus in finite time

and minimize the team objective function (32) as t → +∞.

Proof: Note that π/4 ≤ arctan(e‖x i (s)‖) ≤ π/2 for all s and

all i. There exist a constant T > 0 such that 2
√

t >
√

qi(t) >√
t

2 for all i and all t > T . Consider the Lyapunov function

candidate V (t) = 1
2 ‖xi(t) − z‖2 for z ∈ H and all t. Under

Assumption 1, it follows from Lemma 4 that all Xi and X are

nonempty closed bounded convex sets for all i. Let Y be a closed

bounded convex set such that xi(T ) ∈ Y, X ⊂ Y, Xi ⊂ Y
and fi(xi(t)) − fi(z) ≥ 4

∑n
j=1,j �=i [fj (z) − fj (zj )] for all i,

all zj ∈ Xj and all xi(t) /∈ Y . It follows that 1√
q i (t)

[fi(xi(t)) −
fi(z)] ≥∑n

j=1,j �=i
1√
qj (t)

[fj (z) − fj (zj )] for all t > T , all i,

all zj ∈ Xj and all xi(t) /∈ Y . Moreover, since z ∈ H, from

Lemma 2, we have (xi(t) − z)T γ i (t)[x i (t)−PH(x i (t))]
‖x i (t)−PH(x i (t))‖ ≥ 0. Then

similar to the proof of Theorem 2, it can be proved that all

agents remain in a bounded region and each
∥

∥∇fi(xi(t))
∥

∥

is bounded for all i and all t. Then there exist two con-

stants T0 > T and µc > 0 such that 2
√

t >
√

qi(t) >
√

t
2 >

µc > 8n
∥

∥∇fi(xi(t))
∥

∥ for all i and all t > T0 .

Consider the Lyapunov function candidate

Vi(t) =
1

2
‖xi(t) − PH(xi(t))‖2

for all i. Calculating V̇i(t), we have for all t > T0 ,

V̇i(t) = −(xi(t) − PH(xi(t)))
T
[

gri(t) + gci(t)

−
∑

j∈N i (t)
sgn (xj (t) − xi(t))

]

≤ −‖xi(t) − PH(xi(t))‖
[

γi(t) − |Ni(t)| −
1

8n

]

≤ − 7

8
‖xi(t) − PH(xi(t))‖

≤ − 7

8

√

2Vi(t)

where the second inequality holds since γi(t) > |Ni(t)| + 1

and n ≥ 1. It follows that
V̇ i (t)√
2V i (t)

≤ − 7
8 . Integrating both

sides of this inequality from T0 to t, we have 2
√

Vi(t)/
√

2 −
2
√

Vi(T0)/
√

2 ≤ − 7
8 (t − T0). Thus, Vi(t) vanishes to zero in

finite time. That is, there exist a constant T1 > T0 such that

xi(t) ∈ H and ẋi(t) =
∑

j∈N i (t)
sgn
(

xj (t) − xi(t)
)

− gri(t)

for all i and all t > T1 . Since
√

qi(t) > 8n
∥

∥∇fi(xi(t))
∥

∥ for

all i and all t > T0 , similar to the proof of Proposition 1, it can

be proved that all agents reach a consensus in finite time. That is,

there exists a constant T2 > T1 such that xi(t) = x∗(t), where

x∗(t) is defined in (11), for all i and all t > T2 . For t > T2 , we

have

ẋ∗(t) = − 1
n

∑n
i=1gri(t).

Now, we prove that the team objective function (32) can be

minimized as t → +∞. Under Assumption 1, Lemma 8 holds

and henceX is a nonempty closed bounded convex set. Consider

the Lyapunov function candidate

V̄ (t) =
1

2
‖x∗(t) − PX (x∗(t))‖2

for all t > T2 . After some calculations, we have

˙̄V (t)

= −[x∗(t) − PX (x∗(t))]T
1

n

∑n

i=1

∇fi(x
∗(t))

√

qi(t)

= −[x∗(t) − PX (x∗(t))]T
1

n

∑n

i=1

∇fi(x
∗(t))

√

q∗(t)

√

q∗(t)
√

qi(t)

where q∗(t) is defined in the proof of Theorem 3. Similar to the

proof of Theorem 3, we can let T2 be sufficiently large such that

2
√

t >
√

q∗(t) >
√

t
2 and

∣

∣

∣
1/
√

1 + q i (T0 )
q ∗(t) − 1

∣

∣

∣
< ǫ/µc for any

small ǫ > 0, all i and all t > T2 . Since
q ∗(t)
q i (t)

= 1/(1 + q i (T0 )
q ∗(t) ),
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we have

˙̄V (t)

≤ −[x∗(t) − PX (x∗(t))]T
1

n

∑n

i=1

∇fi(x
∗(t))

√

q∗(t)

+ ‖x∗(t) − PX (x∗(t))‖ ǫ

n
√

q∗(t)

≤ − 1

n
√

q∗(t)

∑n

i=1
[fi(x

∗(t)) − fi(PX (x∗(t))

− ǫ‖x∗(t) − PX (x∗(t))‖],
for all t > T2 , where the second inequality has used the convex-

ity of the functions fi(x
∗(t)), i.e.,

1

n

∑n

i=1
[fi(PX (x∗(t)) − fi(x

∗(t))]

≥ 1

n

∑n

i=1
∇fi(x

∗(t))T [PX (x∗(t)) − x∗(t)].

Since all agents remain in a bounded region and X
is bounded, ‖x∗(t) − PX (x∗(t))‖ is bounded. That is,

‖x∗(t) − PX (x∗(t))‖ < µp for some constant µp > 0. Let

E = {s ∈ R
m | ‖s − PX (s)‖ ≤ l1} for some constant 0 <

l1 ≤ maxs∈H ‖s − PX (s)‖ and ρ = mins∈H∩∂̄E

∑n
i=1 [fi(s) −

fi(PX (s))], where ∂̄E denotes the boundary of E. Since

PX (s) ∈ X , from the definition of X , we have ρ > 0. From

Lemma 3,
∑n

i=1 [fi(s) − fi(PX (s))] > ρ for any s /∈ E and

s ∈ H. Let T2 be further large for any given l1 > 0 such that

ǫ < ρ
4µp

. Recall that 2
√

t >
√

q∗(t) >
√

t
2 for all t > T2 . It

follows that for any t > T2 ,
˙̄V (t) ≤ − 1

2n
√

t
ρ + 2

n
√

t
µpǫ < 0.

Integrating both sides of this inequality from T2 to t, we

have ˙̄V (t) ≤ (−ρ + 4µpǫ)(
√

t −√
T2)/n. This implies that

there exists a constant T3 > T2 for any l1 > 0 such that

‖x∗(t) − PX (x∗(t))‖ < l1 and x∗(t) ∈ E ∩H for all t > T3 .

In view of the arbitrariness of l1 , letting l1 → 0, we have

limt→+∞ ‖x∗(t) − PX (x∗(t))‖ = 0. That is, the team objective

function (32) is minimized as t → +∞. �

Remark 7: On the boundary of H, there might rise a switch-

ing surface due to the term
γ i (t)[x i (t)−PH(x i (t))]

‖x i (t)−PH(x i (t))‖ . But the term

γ i (t)[x i (t)−PH(x i (t))]
‖x i (t)−PH(x i (t))‖ does not decrease but increases the conver-

gence rate of the Lyapunov function V̄ (t) = 1
2 ‖PX (x∗(t)) −

x∗(t)‖2 for all t > T2 . This is because at the switching

surface, the angle between the vectors PX (x∗(t)) − x∗(t)

and − 1
n

∑n
i=1

γ i (t)[x
∗(t)−PH(x∗(t))]

‖x∗(t)−PH(x∗(t))‖ is no larger than π
2 , i.e.,

−[PX (x∗(t)) − x∗(t)]T 1
n

∑n
i=1

γ i (t)[x
∗(t)−PH(x∗(t))]

‖x∗(t)−PH(x∗(t))‖ ≥ 0, from

Lemma 2.

Remark 8: The approach in [10] is to analyze the conver-

gence of the largest distance from the agents to the constraint set

so as to yield a contradiction to prove the optimal convergence.

Due to the unboundedness of the local objective functions and

the nonuniformity of the gradient gains, the approach in [10]

cannot be applied in this paper. The approach in this paper is to

analyze the convergence rates of the consensus, the distance to

the constraint set, and the optimization by fully exploiting the

convexity of the objective functions and the constraint set, and

it can be used to deal with the case of the unbounded closed

convex set.

Remark 9: In Theorems 1, 2, 3 and 5, we assume that each

local objective function fi(x) is differentiable for discussion

convenience. The results obtained in these theorems can be ex-

tended to more general nondifferentiable convex functions by

using a minimum norm subgradient, denoted by lsi(s). That

is, lsi(s) = arg minz∈∂fi (s) ‖z‖, where ∂fi(s) denotes the sub-

gradient set of fi(s) at s. However, it should be noted that from

the convexity of the convex function fi(s), it can be proved

that fi(s) is minimized if and only if lsi(s) = 0. It should

also be noted that when the minimum norm subgradients are

used, after all agents reach a consensus, the Lyapunov function

‖x∗(t) − xe‖2 for xe ∈ X or xe ∈ X should be used instead to

prove that all agents minimize the team objective function as

t → +∞.

Remark 10: Since the solution sets for linear inequalities

or equalities in the form of h(x) ≥ 0 or h(x) = 0 are usually

closed convex sets, Theorem 5 might be used to deal with the dis-

tributed optimization problem with linear inequality or equality

constraints if its optimal set is bounded.

B. Distributed Finite-Time Optimization Algorithm

In this subsection, we extend Theorem 4 to the problem (32)

for general convex local objective functions. The algorithm is

given by

ψ̇i(t) =
∑

j∈N i (t)
pij (t)sgn(θj (t) − θi(t)),

θi(t) = ψi(t) + ∇fi(xi(t)), ψi(0) = 0,

ṗij (t) =

{

sgn( max
s∈[t−c0 ,t]

‖θj (s) − θi(s)‖), if (i, j) ∈ G(t),

0, otherwise,

pij (0) = pj i(0) = 0,

ui(t) =
∑

j∈N i (t)
qij (t)sgn(xj (t)−xi(t))−

θi(t)

‖θi(t)‖

−γi(xi(t) − PH(xi(t)))

‖xi(t) − PH(xi(t))‖
,

q̇ij (t) =

{

sgn( max
s∈[t−c0 ,t]

‖xj (s)−xi(s)‖), if (i, j) ∈ G(t),

0, otherwise,

qij (0) = qj i(0) = 0, (34)

where c0 > 0 is an arbitrary constant, γi > 1, and θi(t) and

ψi(t) are the internal states of the dynamic averaging estimator

for all i.
Assumption 5: Suppose that each [∇2fi(s)]jk = ∂ 2 f (s)

∂sj ∂sk
is

continuous with respect to s, and either one of the following

conditions holds:

(a) There exists a scalar δ > 0 and a vector s̄ ∈ X such that

{ξ|‖ξ − s̄‖ ≤ δ} ⊂ X .

(b) There is a neighborhood of X , denoted by S,

and a uniform constant 0 < cs ≤ 1 such that

(s − PX (s))T 1
n

∑n
i=1∇fi(s) ≥ cs‖ 1

n

∑n
i=1∇fi(s)‖

‖s − PX (s)‖ for all s ∈ S.
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Fig. 1. One undirected graph.

Fig. 2. State trajectories of all agents using (14).

Fig. 3. State trajectories of all agents using (19).

Theorem 6: Suppose that the graph G(t) is undirected and

connected for all t and Assumptions 1, 2 and 5 hold. For sys-

tem (1) with algorithm (34), all agents reach a consensus and

minimize the team objective function (32) in finite time.

Proof: This theorem can also be proved based on the ideas

of the proofs of Theorems 4 and 5 and hence its proof is

omitted. �

V. SIMULATIONS

Consider a multi-agent system with 8 continuous-time agents

in R
2 . For the algorithms (14), (19), (22), (33) and (34), the

communication graph is randomly switched among connected

graphs, the union of which is shown in Fig. 1. The local objective

functions are adopted as

f1(x1) =
1

2
x2

11 +
1

2
x2

12 ,

f2(x2) =
1

2
(x21 + 1)2 +

1

2
x2

22 ,

Fig. 4. State trajectories of all agents using (22).

Fig. 5. State trajectories of all agents using (33).

Fig. 6. State trajectories of all agents using (34).

f3(x3) =
1

2
x2

31 +
1

2
(x32 + 1)2 ,

f4(x4) =
1

2
(x41 + 1)2 +

1

2
(x42 + 1)2 ,

f5(x5) =
1

4
x4

51 +
1

4
x4

52 ,

f6(x6) =
1

4
(x61 + 1)4 +

1

4
x4

62 ,

f7(x7) =
1

4
x4

71 +
1

4
(x72 + 1)4
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and

f8(x8) =
1

4
(x81 + 1)4 +

1

4
(x82 + 1)4 ,

where xi1 and xi2 denote the 1st and 2nd components of

xi . The constrained convex set is adopted as H = {s ∈ R
2 |

‖s − [1, 1]T ‖ ≤ 1}. According to Lemma 1, by calculating the

solution of
∑n

i=1∇fi(s) = 0, we have that the team objective

function (2) is minimized if and only if s = [−0.5,−0.5]T .

From the convexity of the function
∑n

i=1fi(s), its local op-

timal point is also its global optimal point when there are

no constraints. Since [−0.5,−0.5]T /∈ H, the team objective

function (32) must have at least one optimal point at the

boundary of H. By calculating the values of
∑n

i=1fi(s) along

the boundary of H, we have that s∗
.
= [0.2929, 0.2929]T is

one of the optimal points of the team objective function

(32). Note that
∑n

i=1∇fi(s) at s∗ is approximately equal to

[7.5443, 7.5443]T and orthogonal to the tangent line of H at s∗.

Thus, the angle between the vectors
∑n

i=1∇fi(s
∗) and y − s∗

is smaller than π/2, i.e.,
∑n

i=1∇fi(s
∗)T (y − s∗) > 0, for any

y ∈ H − {s∗}. Hence from the convexity of the functions fi ,
∑8

i=1fi(y) −∑8
i=1fi(s

∗) ≥∑n
i=1∇fi(s

∗)T (y − s∗) > 0 for

any y ∈ H − {s∗}. That is, the team objective function (32)

is minimized if and only if s = s∗. The simulation results are

shown in Figs. 2–6. We use dash-dot lines to denote the two

components of the optimal state. Specifically, for the algo-

rithms (14) and (19), consensus is reached, respectively, at about

2.1 s and 2.2 s and the team objective function (2) is minimized

as t → +∞. For algorithm (22), consensus is reached at about

2.2 s and the team objective function (2) is minimized at about

2.5 s. For the algorithm (33), consensus is reached at about 1 s

and the team objective function (32) is minimized as t → +∞.

For algorithm (34), consensus is reached at about 1.7 s and the

team objective function (32) is minimized at about 2.6 s. Clearly,

all these simulation results are consistent with the obtained

theorems.

VI. CONCLUSION

In this paper, a distributed continuous-time optimization prob-

lem was studied with the consideration of nonuniform gradient

gains, finite-time convergence, and a common convex constraint

set. Six distributed algorithms were given. The first three and

the fifth dealt with a distributed gradient optimization problem

for general differentiable convex local objective functions. The

fourth and the sixth dealt with a distributed finite-time opti-

mization problem using a combination of a distributed tracking

algorithm and a distributed dynamic averaging estimator. For

the first three and the fifth algorithms, it has been shown that

the agents reach a consensus in finite time while minimizing

the team objective function as time evolves. In particular, it

has been shown that the third and the fifth algorithms can be

used to deal with general differentiable convex local objective

functions with nonuniform gradient gains, and their gradient

gains are state-dependent and need not to be known in advance.

For the fourth and the sixth algorithms, it has been shown that

all agents reach a consensus while minimizing the team objec-

tive function in finite time. In addition, it has been shown that

the last two algorithms can be used to deal with a distributed

continuous-time optimization problem with a common convex

constraint set. Our future work will be directed towards the case

of directed graphs with nonuniform convex constraint sets.
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