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Distributed Continuous-time Optimization with
Scalable Adaptive Event-based Mechanisms

Zizhen Wu, Zhenhong Li, Zhengtao Ding, and Zhongkui Li

Abstract—This paper investigates the distributed continuous-
time optimization problem, which consists of a group of agents
with variant local cost functions. An adaptive consensus-based
algorithm with event triggering communications is introduced,
which can drive the participating agents to minimize the global
cost function and exclude the Zeno behavior. Compared to the ex-
isting results, the proposed event-based algorithm is independent
of the parameters of the cost functions, using only the relative
information of neighboring agents, and hence is fully distributed.
Furthermore, the constraints of the convexity of the cost functions
are relaxed.

Index Terms—Distributed optimization, event-triggered con-
trol, cooperative control, adaptive control.

I. INTRODUCTION

Distributed optimization problem (DOP) has been a vibrant
research field over the past decade for its wide applications in
a variety of scenarios, including statistical machine learning,
economic dispatch of power system over networks, distributed
parameter estimation [1], [2], [3], [4], [5]. The study of DOP
paves the way for the development of other cooperative control
problems discussed as in, e.g., [6], [7], [8], [9], [10], [11], [12],
[13]. This paper considers a representative class of DOP, where
the agents in the network collaborate to minimize the global
objective function, which is the sum of local cost functions.
Each of local cost functions is available to the corresponding
agent only.

While many existing algorithms are discrete-time, see, e.g.,
[5], [14] and related references, the continuous-time DOP
algorithms have also attracted significant attention recently;
see [15], [16], [17], [18]. In particular, the consensus-based
gradient methods are studied by many scholars from different
perspectives. For instance, the theories provided in [15] can
solve the convex optimization problems cooperatively, where
the agents are abstracted as simple dynamics model and equip
with local gradient sensing abilities. In [16], the authors
propose a continuous-time zero-gradient-sum algorithm to
acquire the optimal solution with consensus-based strategy.
By increasing the communication and computation overhead
for the introducing of extra auxiliary variables, the methods in
[17] improve the convergence character. The DOP for multi-
agent system with high-order linear model is analyzed in [18].
The adaptive algorithms in [19] successfully solve DOP with
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non convex local cost functions without the knowledge of
connectivity on directed graphs.

In the aforementioned papers on continuous-time DOP,
the information exchanges among agents require continuous
communication processes. Since the bandwidth and power of
the network system are limited source in most circumstances,
the event-based control strategy is raised as an effective
remedy [20], [21]. Continuous-time algorithms for DOP with
event-based communication mechanisms is characterized by
[22], [23]. Nevertheless, as the authors mentioned in [22],
[23], the algorithm parameters to be designed need to sat-
isfy some conditions that contain global information of the
network topology, which may turn out to be undesirable for
some applications. Therefore, how to remove the limitation of
requiring global information in the designed distributed event-
based optimization algorithm is still an open problem.

This paper intends to solve the continuous-time DOP by
proposing a fully distributed consensus-based algorithm with
event-triggered communication mechanisms. Since only sam-
pled local information between neighboring agents is available,
the adaptive algorithm with continuous communications in
[19] is not applicable. The design of adaptive DOP algorithms
with event-triggered mechanisms faces new challenges, such
as the nonlinearity of local gradient, the coupling among
the real-time states, sampled states at the communication
moment, and the internal states. By dynamically updating
the parameters using sampled local information determined
by the triggering function, we present a distributed adaptive
event-based algorithm, which can drive the participating agents
to minimize the global cost function and exclude the Zeno
behavior, i.e., an infinite number of triggered events in a finite
period of time. Compared to the existing related works, one
main contribution of the proposed adaptive event-triggered
algorithm is that it is fully distributed, which is independent
of either the knowledge of local cost functions or any global
information about the network topology. Furthermore, we
can establish the convergence analysis for the general case
where the local cost functions can be nonconvex, relaxing the
constraint of the convexity of the local cost functions in, e.g.,
[22], [23].

The remainder of this paper is organized as follows. The
continuous-time event-based DOP is formulated in Section II.
The main results are presented in Section III. In Section IV, il-
lustration are conducted by numerical simulation. Conclusions
are drawn in Section V.
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II. PROBLEM FORMULATION

The system model is considered as a group of N agents.
For all the agents in this network, assign each of them a local
cost function fi(s) : Rn → R. The sum of them f(s) =∑N

i=1 fi(s) is defined as the global cost function. The intention
of this paper is proposing a distributed algorithm to ensure the
agents cooperatively solve the following optimization problem:

min
s∈Rn

f(s). (1)

For this purpose, we make the following assumption about
the cost functions mentioned before.

Assumption 1: For each agent i, the local cost function
fi(s) is first-order continuously differentiable and its gradient
∇fi(s) is locally Lipschitz on Rn, namely, there always exists
Mi ∈ R>0 meet the inequality that |∇fi(x) − ∇fi(y)| ≤
Mi∥x− y∥ for x,y ∈ S , where S ⊂ Rn is compact set and
∥ · ∥ represents the Euclidean norm. The global cost function
f(s) is strictly convex over Rn and first-order continuously
differentiable.

In order to solve the DOP (1), the agents need to exchange
information over a communication network. The topology of
the network is characterized by an undirected graph G =
(V, E) , where V = 1, . . . , N, is the node set and E ⊆ V × V
is the edge set. The elements of E characterize the interactive
relations between the nodes in V . Specifically, an edge (i, j)
means that the nodes i and j can exchange information with
each other. An undirected graph G is connected if there exists
a path between each pair of distinct nodes. The adjacency
matrix A is defined as aij > 0 if (i, j) ∈ E and aij = 0
otherwise. Corresponding, the Laplacian matrix of G is defined
as Lii =

∑
j ̸=i aij and Lij = −aij , i ̸= j.

Regarding the communication graph, we have the following
assumption.

Assumption 2: The topology graph G is undirected and
connected.

Therefore, the Laplacian matrix L of undirected graph has
the following property.

Lemma 1 ([6]): The Laplacian matrix L has a simple
zero eigenvalue and all the other eigenvalues are positive.
The corresponding eigenvector of simple eigenvalue is N
dimension column vector 1N with all entries equal to one.

To guarantee the unique solution of the DOP (1), the global
cost function must be strictly convex throughout this paper.
Similarly as did in [15], [17], we can reformulate the problem
(1) as

min
xi∈Rn

f(x) =

N∑
i=1

fi(xi), subject to (L ⊗ In)x = 0, (2)

under Assumptions 1 and 2, where xi is the real-time state
variable of the i-th agent, the state vector of the whole network
is x = [xT

1 ,x
T
2 , . . . ,x

T
N ]T , In represents the n dimension

identity matrix, and ⊗ denotes the Kronecker product.
The objective is to solve the DOP (1) by designing a

distributed consensus-based algorithm with event triggering
communications, and excluding the Zeno behavior. In this
case, the agents broadcast their information to the neighbors
only at aperiodic event time instants and thereby the distributed
optimization algorithm is more challenging.

III. MAIN RESULTS

Based on sampled information from neighboring agents, a
distributed event-triggered coordination control algorithm is
designed as

ẋi = −∇fi(xi)−
N∑
j=1

cijaij(x̃i − x̃j)− vi,

v̇i =

N∑
j=1

cijaij(x̃i − x̃j),

ċij = kijaij(x̃i − x̃j)
T (x̃i − x̃j),

(3)

where x̃i(t) = xi(t
i
k),∀t ∈ [tik, t

i
k+1), denotes the commu-

nication moment state and vi is the auxiliary variable of the
i− th agent, the time-varying coupling coefficient cij for the
edge (i, j) satisfies cij(0) = cji(0), and kij = kji are positive
constants.

In (3), tik denotes the k-th event triggering instant of the i−
th agent, which is determined by the following event triggering
function:

Ti(t) =

N∑
j=1

(1 + σcij)aije
T
i ei − µe−νt

− 1

4

N∑
j=1

aij(x̃i − x̃j)
T (x̃i − x̃j),

(4)

where ei(t) represents the measurement error of the i − th
agent, defined as ei(t) , x̃i(t) − xi(t), i = 1, . . . , N, and
µ, ν and σ are all prescribed positive constants. The event
sequence {tik} represents the time instants that node i updates
its controller and sends its present information to its neighbors.
The sequence {tik} is defined as tik+1 = inf{t > tik|Ti(t) ≥
0}. At each event instant, the measurement error ei(t) will be
reset to zero.

The compact form can be written as

ẋ = −∇f(x)− (Lc ⊗ In)x̃− v,

v̇ = (Lc ⊗ In)x̃,

ċij = kijaij(x̃i − x̃j)
T (x̃i − x̃j),

(5)

where x̃ = [x̃T
1 , · · · , x̃T

N ]T , v = [vT
1 , · · · ,vT

N ]T , ∇f(x) =
[∇f1(x1)

T , . . . ,∇fN (xN )T ]T , and Lc is defined as Lij
c =

−cijaij , i ̸= j, and Lii
c =

∑N
j=1,j ̸=i cijaij . Obviously, the

matrix Lc with a time-varying weight cijaij for each edge
(i, j) is also a symmetric Laplacian matrix when the graph G
is undirected.

As the first step in the analysis, we certify the following
lemma.

Lemma 2: Under Assumptions 1 and 2, the optimal solution
of the DOP (1) is the equilibrium-point of the system (5) when∑N

i=1 vi(0) = 0.
Proof 1: Since the network topology is undirected and

connected, according to the definition of Lc, we can verify
the property that 1T

NLc = 0N . Therefore,

(1N ⊗ In)
T v̇ = (1N ⊗ In)

T (Lc ⊗ In)x̃ ≡ 0n. (6)

Then we have

(1N ⊗ In)
Tv(t) = (1N ⊗ In)

Tv(0) = ϑ, (7)
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where ϑ ∈ Rn denotes a constant vector. When ϑ = 0, then
the equilibrium point (x̄, v̄) of (5) satisfies

0 = −∇f(x̄)− (Lc ⊗ In)x̄− v̄, (8)

0 = (Lc ⊗ In)x̄. (9)

Through Lemma 2, we can obtain that the vector x̄ belongs
to the zero space of Lc from (9). Thus, x̄ = 1N ⊗ ς ,
where ς ∈ Rn is a constant vector. Multiplying (8) by
(1N⊗In)

T from the left side and using (7), we can obtain that
ΣN

i=1∇fi(x̄i) = 0. Then the optimality condition of the system
(5), i.e., ∇f(x∗) = 0 is satisfied, which, by noting the strict
convexity of f , means that x̄ = x∗ is uniquely determined.
Consequently, we have v̄i = −∇fi(xi

∗). This completes the
proof.

Based on the aforementioned analysis, we are well ready to
present the main results of this paper.

Theorem 1: Provided that Assumptions 1 and 2 hold, the
algorithm (3) drives the state of involved agents asymptotically
converge to the optimazation of the DOP (2) and achieve
consensus with the initial condition

∑N
i=1 vi(0) = 0.

Proof 2: Firstly, we apply a state transformation to transfer
the equilibrium point (x̄, v̄) of (5) to zero. Let φ = x − x̄,
ψ = v − v̄. Analogously, we have φ̃ = φ + e, hence, φ̃ =
x̃− x̄. Then, we can rewrite (5) as

φ̇ = −g − (Lc ⊗ In)φ̃−ψ,
ψ̇ = (Lc ⊗ In)φ̃,

ċij = kijaij(x̃i − x̃j)
T (x̃i − x̃j),

(10)

where g = ∇f(x)−∇f(x̄). Evidently, the proposed algorithm
(3) can solve the DOP (2), if limt→∞φ(t) = 0, meanwhile,
limt→∞ψ(t) = 0.

Next, consider the Lyapunov functions candidate:

V1 =
1

2
ϕφTφ+

1

2
(φ+ψ)T (φ+ψ)

+
N∑
i=1

N∑
j=1,j ̸=i

(
√
ϕcij − 1√

ϕ
α)2

8kij
,

(11)

where ϕ and α are positive scalars to be designed later.
Definitely, V1 is positive definite.

The time derivative of the Lyapunov function V1 along the
trajectory of (11) can be written as

V̇1 = (ϕ+ 1)φT φ̇+φT ψ̇ +ψT φ̇+ψT ψ̇

+
N∑
i=1

N∑
j=1,j ̸=i

2(ϕcij − α)

8kij
ċij

= −(ϕ+ 1)φTg − ϕφT (Lc ⊗ In)φ̃− (ϕ+ 1)φTψ

−ψTg −ψTψ +
N∑
i=1

N∑
j=1,j ̸=i

(ϕcij − α)

4kij
ċij .

(12)

By using the facts that xi−xj = φi−φj , x̃i−x̃j = φ̃i−φ̃j ,
and ei = x̃i − xi, we can obtain that

−φT (Lc ⊗ In)φ̃

= −x̃T (Lc ⊗ In)x̃+ eT (Lc ⊗ In)x̃

≤ −x̃T (Lc ⊗ In)x̃+
1

2
x̃T (Lc ⊗ In)x̃+

1

2
eT (Lc ⊗ In)e

= −1

2
φ̃T (Lc ⊗ In)φ̃+

1

2
eT (Lc ⊗ In)e.

(13)
Substituting (13) into (12) yields

V̇1 = − (ϕ+ 1)

2
φTg − ϕφT (Lc ⊗ In)φ̃+

1

4
∥g∥2

+
1

4
(ϕ+ 1)2φTφ− ∥g

2
+

(ϕ+ 1)φ

2
+ψ∥2

+
ϕ

4

N∑
i=1

N∑
j=1

cijaij(x̃i − x̃j)
T (x̃i − x̃j)

− α

4

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)
T (x̃i − x̃j)

≤ − (ϕ+ 1)

2
φTg − ϕ

2
φ̃T (Lc ⊗ In)φ̃+

1

4
∥g∥2

+
1

4
(ϕ+ 1)2φTφ+

ϕ

2
eT (Lc ⊗ In)e

− ∥g
2
+

(ϕ+ 1)φ

2
+ψ∥2 + ϕ

2
φ̃T (Lc ⊗ In)φ̃

− α

4

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)
T (x̃i − x̃j).

(14)

Note that

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)
T (x̃i − x̃j)

=
N∑
i=1

N∑
j=1

aij(xi − xj)
T (xi − xj)

+
N∑
i=1

N∑
j=1

aij(ei − ej)
T (ei − ej)

+ 2
N∑
i=1

N∑
j=1

aij(xi − xj)
T (ei − ej).

(15)

In light of the well-known Young’s inequality [24], we can get

−
N∑
i=1

N∑
j=1

aij(xi − xj)
T (ei − ej)

≤1

4

N∑
i=1

N∑
j=1

aij(xi − xj)
T (xi − xj)

+
N∑
i=1

N∑
j=1

aij(ei − ej)
T (ei − ej),

(16)
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and
N∑
i=1

N∑
j=1

aij(ei − ej)
T (ei − ej)

≤2

N∑
i=1

N∑
j=1

aije
T
i ei + 2

N∑
i=1

N∑
j=1

aije
T
j ej

=4

N∑
i=1

N∑
j=1

aije
T
i ei.

(17)

According to Assumption 1, there exists Mi ∈ R>0 for each
gradient such that ∥∇fi(xi)−∇fi(x̄i)∥ ≤ Mi∥xi − x̄i∥, i =
1, 2, . . . , N, for (x,v) ∈ S. Recalling the definition of φ and
g, we can exploit the fact that ∥g∥2 ≤ M2

maxφ
Tφ, where

Mmax = max(M1, . . . ,MN ). In light of (15), (16), and also
the aforementioned facts, we can obtain from (14) that

V̇1 ≤ −1

2
(ϕ+ 1)φTg +

ϕ

2
eT (Lc ⊗ In)e

− ∥g
2
+

(ϕ+ 1)φ

2
+ψ∥2 − 1

4
φTφ

+
1

4
[(ϕ+ 1)2 +M2

max + 1]φTφ

− α

8

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)
T (x̃i − x̃j)

− α

16

N∑
i=1

N∑
j=1

aij(xi − xj)
T (xi − xj)

+
α

8

N∑
i=1

N∑
j=1

aij(ei − ej)
T (ei − ej).

(18)

For further analysis, we define a convex set

C = {(x,v) ∈ RNn ×RNn|
∥x− x̄∥ ≤ ∥x(0)− x̄∥, ∀v ∈ RNn},

(19)

which contains the equilibrium point (x̄, v̄). Since the opti-
mal solution x∗ is unique and the set C is compact for x.
For (x,v) ∈ C, we can have ω = φ(x(0))Tφ(x(0)) ≥
φ(x(t))Tφ(x(t)), where ω ∈ R>0. When the agents do
not achieve consensus yet, there always exists an arbitrary
small positive δ satisfying the inequality:

∑N
i=1

∑N
j=1 aij(xi−

xj)
T (xi − xj) ≥ δ. The left-hand side item of this inequality

equals to zero if and only if the states of all agents are
coincident. Hence, a sufficiently large α always can be found
to assure that αδ

4 ≥ [(ϕ+ 1)2 +M2
max + 1] · ω.

By the analysis above, and substituting (17) into inequality
(18) yields

V̇1 ≤ −1

2
(ϕ+ 1)φTg − 1

4
φTφ

− ∥g
2
+

(ϕ+ 1)φ

2
+ψ∥2

+
α

2

N∑
i=1

[
N∑
j=1

(1 +
2ϕ

ασ
· σcij)aijeTi ei

− 1

4

N∑
j=1

aij(x̃i − x̃j)
T (x̃i − x̃j)],

(20)

where ϕ can be any number greater than zero. For the reason
that the global objective function f(x) is strictly convex, φTg
will be strictly greater than 0 when x ̸= x̄. And, apparently,
∥g
2 + (ϕ+1)φ

2 + ψ∥2 ≥ 0. By choosing α ≥ max{4
δ · [(ϕ +

1)2 +M2
max + 1] · ω, 2ϕ

σ } and using the triggering functions
(4), it follows form (20) that

V̇1 ≤ −1

2
(ϕ+ 1)φTg − 1

4
φTφ

− ∥g
2
+

(ϕ+ 1)φ

2
+ψ∥2 + α

2
Nµe−νt

≤ −1

4
φTφ+

α

2
Nµe−νt.

(21)

Then, we can obtain from (21) that

0 ≤ V1(t) ≤ V1(0) +
α

2
Nµ

∫ t

0

e−ντdτ. (22)

Therefore, V1(t) is bounded, implying that φ, ψ and cij are
all bounded. Since cij is monotonically increasing, we derive
that each cij converges to some finite values. Recall the fact
that ∥g∥2 ≤ M2

maxφ
Tφ , hence, g is bounded. Invoking (10),

we further know that φ̇ is bounded too. Besides, (21) enforces
that

V1(∞)− V1(0) ≤− 1

4

∫ ∞

0

φT (τ)φ(τ)dτ

+
α

2
Nµ

∫ ∞

0

e−ντdτ

(23)

Recast (23), one has∫ ∞

0

φT (τ)φ(τ)dτ ≤ 4(V1(0)− V1(∞) +
α

2ν
Nµ). (24)

By Barbalat’s lemma [25], using (24) yields, φ asymptotically
converge to 0, which further implies that x → x̄ as t → ∞.
In light of the Lemma 2, it is easy to claim that v → v̄ as
t → ∞. This completes the proof.

Remark 1: In the previous related work [22], interesting
results are given to solve continuous-time DOP with event-
triggered communications. Nevertheless, it should be noted
that the algorithms in [22] are not fully distributed, requiring
the knowledge of the local gradients and global connectivity
information. By contrast, here, we redesign a modified dis-
tributed adaptive event-triggered algorithm, which is indepen-
dent of either the constant parameters of the cost functions and
gradients or any other global information, and therefore is fully
distributed. Besides, since the determination of the parameters
in (3) and (4) do not depend on the network connectivity,
it is not difficult to show that the adaptive algorithm (3) is
applicable to the case of dynamically switching topologies.

Remark 2: Different from the previous results in, e.g., [22],
[23], in this paper, the constraints on local cost function of
convexity and differentiability are further relaxed. As show in
Theorem 1, each agent’s cost function can be any nonconvex
and differentiable functions, and only the global objective
function must equip the strict convexity.

The following theorem shows that the Zeno behavior is
excluded through the dynamic triggering law.

Theorem 2: Under the event triggering condition (4), the
algorithm (3) can preclude the Zeno behavior.
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Proof 3: According to the definition in (4), when
∑N

j=1(1+

σcij)aije
T
i ei exceeds 1

4

∑N
j=1 aij(x̃i−x̃j)

T (x̃i−x̃j)+µe−νt,
then the triggering condition will be satisfied. Consequently,
the measurement error ei is reset to zero and the i− th agent
is triggered to broadcast its information. Hence, each agent
will update its control law in the following two cases.

i) During the interval between two adjacent events of
agent i, the neighbors of the agent are all not be triggered.
Combining the definition of ei with (3), we can write the
upper right-hand Dini derivative as

D+ei(t) = ∇fi(xi) +

N∑
j=1

cijaij(x̃i − x̃j) + vi. (25)

Note that ei(tik) = 0, hence, the solution of (25) is

ei(t) =

∫ t

tik

∇fi(xi(τ))dτ +

∫ t

tik

vi(τ)dτ

+

∫ t

tik

N∑
j=1

cijaij(x̃i(τ)− x̃j(τ))dτ.

(26)

From the proof of Theorem 1, we have that V1 is bounded,
therefore, we can assume that ∥∇fi(xi)∥ ≤ γ̄f and ∥vi(t)∥ ≤
γ̄v hold. Meanwhile we have cij converge to some positive
values, which means that cij ≤ γ̄c,∀(i, j) ∈ E . γ̄f , γ̄v and γ̄c
are all positive constants. It then follows from (26) that

∥ei(t)∥ ≤ [γ̄f + γ̄v + γ̄c

N∑
j=1

aij(x̃i(t)− x̃j(t))](t− tik).

(27)
Hence, the event triggering function (4) will not be satisfied
until the following condition holds:

[γ̄f + γ̄v + γ̄c

N∑
j=1

aij(x̃i(t)− x̃j(t))]
2(t− tik)

2

=

∑N
j=1 aij(x̃i − x̃j)

T (x̃i − x̃j) + 4µe−νt

4
∑N

j=1(1 + σcij)aij
.

(28)

When the state consensus is not yet achieved, we have the
right-hand side of (28) is positive, which further implies that
the time intervals are strictly positive.

ii) During the interval between two adjacent events of agent
i, there is at least one of the neighbors of the agent being
triggered. Without loss of generality, we assume that one
neighbor agent j is triggered after tik for agent i. Then the
event triggering instant can be denoted by tjl . In other words,
tjl − tik > 0. Hence, the interval between the tik+1 − tik is
strictly positive.

In summary, we can conclude that the event triggering law
can preclude the Zeno behavior and the proof is complete.

Remark 3: Obviously, the global convergence of the al-
gorithm can be guaranteed for any kij ∈ R>0. It is not
difficult to see that the value of kij can affect the evolution
of adaptive gain cij . It is worth noting that cij not only
affects the control input but also plays a key role in the
triggering function. Generally speaking, increasing kij will
achieve a faster convergence rate but meanwhile increase the

communication frequency. Therefore, a tradeoff is needed.
This observation can be illustrated by numerical simulations
in the next section.

IV. NUMERICAL SIMULATIONS

In this section, we illustrate the theoretical results by a
numerical simulation. Consider a network system consisting of
six agents. Fig. 1 depicts the communication topology among
the nodes, which evidently satisfies Assumption 2.

1 2

3 4

5 6

Fig. 1: The communication topology graph.

The local cost functions for each agent are selected as
follows: f1 = sin(x1 − π

2 ), f2 = − cos(ln(x2
2 + 2) − 0.2),

f3 = (x3 + 0.3)2 + e0.3x3 , f4 = 0.2e−0.2x4 + 0.4e0.4x4 ,
f5 = (x5)

2(ln(x2
5+0.5))+(x5)

2, f6 = (x6)
2√

(x6)2+6
. The images

of these functions are depicted in Figs.2-3. Note that the local
cost functions of agents 1, 2 are nonconvex. Besides, the local
cost functions of agents 3, 4, 5, 6 are all convex function, and
the gradients of f3 and f4 are locally Lipschitz. It can be
verified the strict convexity of the global cost function, which
ensures the uniqueness of the optimal solution. The initial
states of xi(0) are chosen randomly within [−10, 10]. For
simplicity, suppose the initial values of vi and cij are all equal
to zero.
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Fig. 2: The images of the local cost functions for different
agent i.



6

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Fig. 3: The images of the goal cost function.
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Fig. 4: The trajectories of the agents’ states xi for different
kij .
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Fig. 5: The trajectories of the adaptive coupling gains cij for
different kij .

Fig. 6: Triggering instants of each agent, where a circle
represents an event.

In order to illustrate how the parameter kij affects the per-
formance of the event-triggered adaptive algorithm, kij = 0.1
and kij = 0.5 are considered separately. For both the cases,
the trajectories of the agents’ states, the time-varying coupling
weights cij , and the event time sequence of each agent
are depicted in Figs.4-6. Evidently, all the state trajectories
asymptotically converge to the global optimal solution and
each cij converges to a finite value. It can be further noticed
that smaller kij implies a slower convergence rate and a
reduced communication frequency. This is consistent with the
observations in Remark 3.

V. CONCLUSIONS

This paper has addressed the continuous-time DOP with
aperiodic communications. One main contribution of this pa-
per comparing the existing literature is that we have presented
a novel adaptive consensus-based event-triggering algorithm,
which can guarantee the asymptotic convergence to the op-
timal solution and exclude the Zeno behavior. The proposed
adaptive algorithm bases on only the local state information
sampled and transmitted at aperiodic time instants determined
by a given event triggering function, is fully distributed for the
independence of any global information. We may extend the
adaptive algorithm to the DOP with time-varying local cost
functions in the future.
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