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Sensor networks are gaining a central role in the research

community. This paper addresses some of the issues arising

from the use of sensor networks in control applications.

Classical control theory proves to be insufficient in modeling

distributed control problems where issues of communication

delay, jitter, and time synchronization between components

are not negligible. After discussing our hardware and software

platform and our target application, we review useful models

of computation and then suggest a mixed model for design,

analysis and synthesis of control algorithms within sensor

networks. We present a hierarchical model composed of

continuous time-trigger components at the low level and

discrete event-triggered components at the high level.
Index Terms— distributed control, sensor network, DPEG,

pursuit evasion game, TinyOS, NesC, mote, Mica, embedded

I. INTRODUCTION

Sensor Networks (SN) are gaining a role of importance

in the research community. Embedded computers are well

settled in our lives, in our houses, in our cars, and in our

work environments.

Embedded systems, by definition, interact with the physical

world. They are sensors, actuators, and controllers which are

programmed to perform specified functions. As the range

of applications grows, the need arises to network several

embedded systems to perform incrementally complex tasks.

The automotive domain is an excellent illustrative example.

Here several embedded systems interact to provide a safe,

comfortable driving experience.

Recent developments in MEMS technology have provided

us with a wealth of cheap, customizable, embedded sensor

systems capable of wireless communication among each

other. The advantage of wireless sensor networks is enormous

– deploying and maintaining a network of thousands of nodes

is impractical considering the thousands of miles of wire

that would be needed for the connections. Several hardware

platforms are available, developed by both startups [1], [2],

[3] and universities [4].

Applications in various fields of research are being devel-

oped. Interesting ongoing projects include extensive experi-

mentation of structural response to earthquakes [5], habitat

monitoring [6], and intelligent transportation systems [7].

Other important fields of applications include home and
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building automation, and military applications. Self config-

urable, ubiquitous, easy to deploy, secure, undetectable sensor

networks are an ideal technology to employ in intelligence

operations and war scenarios for detecting movements of

enemy troops and artillery, and for monitoring and managing

friendly resources.

The research community has quickly acknowledged the

importance of large scale ad hoc networks, and developed

several services to support applications. Time services [8] pro-

vide the network with a globally consistent notion of time, lo-

calization services [9] allow computing nodes to acquire their

coordinates relative to each other, routing services [10], [11]

reliably deliver packets while dynamically adapting to the

ever changing network topology, and tracking services [12],

[13] follow objects moving through the network.

System design and implementation on such a versatile

platform introduces a series of issues. The longevity of

these networks requires a stable software platform capable of

self configuration, self upgrade, and adaptation to changing

environmental conditions. Another set of issues arises when

a sensor network is used for control applications. This is

the thrust of this paper. Throughout our discussion, we will

see several keys issues presenting themselves time and time

again: location determination, time synchronization, reliable

communication, power consumption management, coopera-

tion and coordination, and security.

The goal of our research is to design robust controllers

for distributed systems that violate typical control assump-

tions. Designed controllers will be evaluated on a distributed

control application testbed. Among the wealth of available

applications, we have selected a pursuit evasion game (PEG)

application. In our particular application, the sensor network

is deployed in the environment where the game is played and

cooperates with the pursuers’ team.

This application includes many interesting research prob-

lems in the areas of tracking, control design, security, and

robustness. For a PEG, the sensor network must be capable

of multiple vehicle tracking that can distinguish pursuers

from evaders. Furthermore, the network needs to have a

dynamic routing structure to deliver information to pursuers in

minimal time. Since the game will be played in a distributed

fashion, distributed sensing, control, and actuation need to

be accounted for during controller design. To prevent the

evader’s team from intercepting sensitive information, the

network must provide security features. Finally, since any one

node of a sensor network can fail, control algorithms should
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Fig. 1. Pursuit-Evasion Game: what pursuers really see.

show graceful performance degradation.

II. PURSUIT EVASION GAMES

The framework of PEGs captures fundamental features for

modeling multi-agents in cooperative robotics and has been

an active area of research in the past decades. In this section,

we give a brief overview of the research history on PEGs,

describe the advantages of adding SNs to standard PEGs, and

enumerate additional issues that arise when using SNs.

A. PEG Overview

Pursuit-Evasion Games (PEGs) are a mathematical abstrac-

tion arising from numerous situations which addresses the

problem of controlling a swarm of autonomous agents in the

pursuit of one or more evaders. Typical examples are search

and rescue operations, surveillance, localization and tracking

of moving parts in a warehouse, and search and capture

missions. In some cases, the evaders are actively avoiding

detection as in capture missions, whereas in other cases their

motion is approximately random as in rescue operations.

Different versions of PEGs have been analyzed according

to different frameworks and assumptions. Deterministic PEGs

on finite graphs have been extensively studied [14], [15]. In

these games, the playing field is abstracted to be a finite

set of nodes and the allowed motions for the pursuers and

evaders are represented by edges connecting nodes. An evader

is captured if both the evader and one of the pursuers occupy

the same node. One of the most important problems arising

from this framework is the computation of the search number,

i.e., the smallest number of pursuers necessary to capture

a single evader in a finite time, regardless of the escaping

policy adopted by the evader. It has been shown that this

problem is NP-hard [15], [16]. This approach is limited only

to worst case motions of the evaders, and it is in general

overly pessimistic. A great deal of research has focused on

how to reduce a continuous space into a discrete number

of regions, each to be mapped into a node of the graph,

so that the game on the reduced graph is equivalent to the

Fig. 2. Pursuit-Evasion Game: sensor network increases visibility.

original game in the continuous space. For example LaValle

et al. proposed a method of decomposing the continuous

space into a finite number of regions for known polygonal

environments [17] and simply connected, smooth-curved, two

dimensional environment [18].
Another active area of research deals with PEGs where

the environment is unknown. In this framework, an additional

map-learning phase is required to precede the pursuit phase.

The map-learning phase is, by itself, time-consuming and

computationally intensive even for simple two-dimensional

rectilinear environments [19]. Moreover, inaccurate sensors

complicate this process and a probabilistic approach is often

required [20].
Finally, a recent approach to PEGs has dealt with combin-

ing map-learning and pursuit into a single problem. This is

done in a probabilistic framework to avoid the conservative-

ness inherent in worst-case assumptions on the motion of the

evader. A probabilistic framework also naturally takes into

account inaccurate sensor readings, uncertain a priori map of

terrain, and evaders motion policies [21], [22].

B. Sensor Networks in PEGs

The use of a sensor network can greatly improve the

overall performance of a PEG. Pursuers have a relatively

small detection range. They usually employ computer vision

or ultrasonic sensors, providing only local observability over

the area of interest. This constraint makes designing a co-

operative pursuit algorithm harder because lack of complete

observability only allows for suboptimal pursuit policies. See

Figure 1. Furthermore, a smart evader is difficult to catch

unless appropriately detected.
Communication among pursuers may be difficult over a

large area. Lack of communication, even partially, among

pursuers is a major disruption for any pursuit policy. Because

of the expense of unmanned vehicles, it is unrealistic to

deploy a large number of them to continuously monitor a

large region.
With sensor networks, complete visibility of the field and

communication over a long radius is possible. See Figure 2.

Global pursuit policies can then be used to efficiently find
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the optimal solution regardless of the level of intelligence

of the evader. Also, with a sensor network, the number of

pursuers needed is likely a function exclusively of the number

of evaders and not to the size of the field.

This DPEG scenario exposes a number of issues fun-

damental to any sensor network. Resolving these issues is

complicated by the desire to make the solutions robust even

in a dynamic, ad-hoc network.

Time – The notion of time presents two distinct problems.

First, coordinating sensing and actuating in the physical world

requires either a sense of global time or the ability to resolve

different time measurements to a meaningful representation.

Second, many existing design techniques assume that the

computation of control and the processing of sensing and

actuation occur within a negligible amount of time; thus,

requiring new design and analysis techniques for sensor

networks.

Communication – It is expected that a network of motes

will span a spatial area significantly greater than a single

mote’s maximum communication area. For a mote to send a

message to another, distant mote, intermediate motes must be

able to relay the message. Additionally, because motes can

go offline without warning, the underlying communication

protocol must be robust to network changes.

Location – Sensing and actuating events in the physical

world must be paired with the relative or absolute location

of the mote to be useful to control algorithms. That location

must be assumed, provided, or deduced.

Cooperation – Tasks that require the combined effort of

two or more motes, such as any form of distributed sensing

or distributed computing, require protocols and structures that

provide handshaking, coordination, and possibly hierarchy.

Power – Energy is a valued resource in a sensor network.

Service and performance guarantees provided by a sensor

network must be balanced against overall power consumption.

Security – To prevent numerous potential abuses of a

sensor network, a communication security layer must provide

known guarantees for access control, message integrity, and

confidentiality.

When developing control applications on a sensor network

platform, we are particularly interested with issues related to

time, communication, and location. We will focus on these

issues throughout.

C. Distributed PEGs

To start our distributed pursuit evasion game (DPEG) sce-

nario, the motes comprising the sensor network are deployed

onto the playing field in a sleep state. The mote sensor

network then goes through an initialization and calibration

stage for bootstrapping their provided services. The pursuers

and evaders then enter the playing field and remain within

the field for the duration of the game.

The sensor network provides a variety of services to

both pursuers and other sensor motes: time synchronization,

localization, moving entity (pursuer or evader) estimation, etc.

For the purpose of the game, the sole goal of these services is
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Fig. 3. Evolution of motes from the Berkeley TinyOS group.

to produce estimates on the positions, velocity, and identity of

entities in the playing field. This information is time stamped

and routed to all pursuers in the playing field. The pursuers

have onboard computation facilities comparable to a laptop

computer. We may choose to have the pursuers communicate

through a separate robust channel to coordinate to capture the

evader when and if that channel is available.

When all evaders are captured (a capture occurs when

a pursuer is “close enough” to it), the game ends. A base

station is outside the playing area and provides logging and

visualization services.

III. IMPLEMENTATION

Our implementations span hardware, software, and various

application scenarios to explore and demonstrate distributed

control via sensor networks. In the hardware section, we

discuss our current embedded network devices. Then, in the

software section, we review our new programming language,

operating system, and system service architecture. Finally,

we survey our current and future testbeds for interacting and

learning at the whole-system level.

A. Hardware

The hardware platform developed by the TinyOS group at

Berkeley consists of numerous, small, extendible embedded

network devices. Each device has limited power, computation,

and storage resources – significantly limited when compared

to modern desktop computer systems. The goal of each hard-

ware platform is to provide computation, sensing, actuation,

and communication resources embedded in miniature packag-

ing. By making the conscious design decision to significantly

limit the resources available per mote, we leave the door open

for reaching the goal of dust-sized devices.

The current platforms are designed to be both modular

and flexible; providing ease in re-targeting motes to new and

unanticipated applications while allowing for significant code

reuse. Figure 3 shows the evolution of the base computation

modules. In particular, the most recent transition from the

Rene2/Dot to Mica (Figure 4) gave at least a four-fold

increase in program memory, RAM, and radio transmission
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Fig. 4. Mica mote (2′′ × 1
′′
×

3

4

′′

) with attached weather board module.

rate. All motes have otherwise had some form of an 4 MHz,

8-bit Atmel microcontroller and an RFM TR1000 radio.

Add-on boards for the motes may be designed for general

purpose sensing or targeted toward a particular application.

For instance, the weather sensing board has humidity, baro-

metric pressure, infrared, temperature, and light sensors and

is used for experiments on Great Duck Island [23] in Maine.

And, a motor/servo and whisker/accelerometer board were

developed for COTS-BOTS [24] (Figure 5) for controlling

off-the-shelf miniature cars. We also have various general-

purpose sensor boards that have some combination of photo-

diodes, temperature sensors, magnetometers, accelerometers,

microphones, and sounders.

The overall modularity of these devices comes at the cost

of size. A device targeted at large-scale deployment can do

away with the add-on connector and supporting circuitry. The

resulting space savings in the current platforms easily allows

for a final form-factor with diameter smaller than a quarter.

All together, the hardware platforms have been sufficient

to meet the needs of both research and experimentation.

B. System services

We build our embedded software with NesC [25], a new,

open-source programming language developed at Berkeley.

NesC extends the standard C language with semantics and

syntax for component-based architectures. Component be-

haviors are described with bidirectional interfaces that either

provide commands or require the dependent to handle events.

Components are statically wired together to form a whole

program or system; which when compiled with a whole-

program compiler, allow for greater optimizations and effi-

ciency. Whole programs also match well with formal analysis

tools for verifying system functionality.

Berkeley’s open-source embedded operating system,

TinyOS [26], provides basic system services, such as com-

munication and simple process scheduling, and access to

Fig. 5. COTS-BOTS developed by Sarah Bergbreiter and Kris Pister.

hardware components, such as sensor and actuators. It is

specifically designed for extremely resource-limited devices

that have only a few kilobytes of memory. TinyOS is written

in NesC using a component-based architecture with layered

access to hardware resources, which provides robustness,

flexibility, and extensibility.

Using NesC and TinyOS as building blocks, we have been

working with a number of other groups on the NEST project

funded by DARPA to develop a coherent architecture of sys-

tem services to help solve fundamental sensor network stum-

bling issues. The crucial services we have currently identified

are estimation, grouping, localization, power management,

routing, service coordination, and time synchronization. We

feel that these components will facilitate a large set of rich

and adaptive applications.

To address time issues within a sensor network, we propose

a time synchronization API that supports two time manage-

ment protocols: a global NTP-like synchronization protocol,

and a local time protocol with the means to transform

time readings between individual motes. It is expected that

NTP-like global synchronization will offer lower precision

time measurements, but otherwise provide an immediately

available global time on the mote. Local transformations

between individual mote “time-zones” has the advantages of

higher precision between pairs of motes, being able to back-

calculate synchronized times for past events, and guarantees

monotonicity in local time by not directly modifying the

local clock [8]. Various applications can have vastly different

time synchronization requirements, and we feel these two

methodologies together can more adequately serve a broad

set of applications.

To address communication issues within a sensor network,

we propose a general routing framework that supports a num-

ber of routing methodologies. First, because sensor networks

primarily sense and interact with phenomena in the physical

world, routing to geographic regions is expected to be the

common-case. Second, to assist in routing packets around

physical obstacles, routing based on geographic direction is

expected to be useful. Third, the more obvious case of routing

to symbolic network identifiers is reserved for dynamically

routing to physically moving destinations within the network.

Finally, the general-case of constraint-based routing provides
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Fig. 6. Sample component architecture demonstrating the design method-
ology.

means to route based on arbitrary criteria, such as power level,

sensor values, and so on.

To resolve the physical location of motes in a sensor net-

work [9], we propose a top-to-bottom localization framework.

A localization service requires a broad set of coordination

and processing stages between motes: coordinated sensors

and actuators, group data management, and computation.

Separating localization into a number of distinct components

that work together allows for an amount of heterogeneity in

the sensor network that may be necessary given the limited

resources of the motes.

To address the issues of coordination between motes, we

propose both application targeted grouping algorithms and

general purposing grouping services. A group management

service must provide means to send and receive data from

a group, the ability to join and leave a group, and leader

election. For tracking a moving evader in a PEG scenario,

decisions to join and leave groups can be tied to sensor read-

ings. This simplifies the handshaking and decision process,

allowing for overall lower overhead. There are concerns that

these services in the general case impose significant overhead

on a sensor network.

Issues of power management are on the agenda but are

currently unaddressed in the architecture. Issues of security

are being solved at the operating system level, providing

transparent authentication, encryption, and concealment.

Our methodology for creating an infrastructure for these

services is to first specify a set of prototypes that define ab-

stract programming interfaces for classes of components and

services. Developers then create components that instantiate

an algorithm using one or more prototypes. Some components

may behave as services whose execution and behavior are

managed by a central coordinator. Finally, interaction between

components must be formalized by specifying protocols and

types. Figure 6 illustrates this methodology in a sample

architecture that shows the interactions and protocols between

components, services, a service coordinator, sensors, and

radio channel.

Figure 7 further shows the relationship between these

services, components, TinyOS, and a DPEG application layer.

Sensor Net

Clients

(Pursuers)

Request evader 

position updates

Communicate and coordinate 

with other pursuers

Actuate to 

capture

Sensor Net

Middleware

Platform level components (tinyOS/nesC)
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Power MgmtTime SyncGrouping
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Fig. 7. Relationship between proposed services and components.

C. Testbeds

Our current experimental platform is functional but limited

when compared to the scope of a full DPEG scenario. It

is the result of a focused effort to produce a solution for

a set of particular goals rather than to provide a general

framework. To that end, it exists more as a proof that a highly

constrained DPEG solution is achievable and that NesC and

TinyOS provide a suitable platform for development.
Figure 8 shows the setup for that platform. A human

remotely controls a miniature car, and the sensor network

remotely controls a pan-tilt-zoom camera to track the car.

Because we have not yet integrated a self-localization service

on the motes, the sensor network is a uniform grid of 25

motes, where each mote presumes its location given its

network address. Each mote shares its location with its local

neighborhood, which is necessary both for position estimation

and geographic-based routing. When a mote detects change

in its local magnetic field, it broadcasts its readings to its

local neighbors and records similar broadcasts from other,

nearby motes. In this way, local behaviors are expected; we

are currently not attempting to aggregate readings from the

entire network to produce a single, global estimate. The mote

with the highest reading is implicitly elected the leader, who

calculates a position estimate from its cached neighborhood

readings. That estimate is sent via reliable geographic-based

multi-hop routing to a base station mote, which relays it

to a camera mote. The camera mote performs the actuation

necessary to point toward the estimated location.
What we would like to do is to use the sensor network

software architecture to implement this scenario in a more

versatile, general framework. We are looking forward to a

more complete, outdoor PEG scenario, shown in Figure 9.

Beyond that scenario, we look forward to expanding our

understanding of whole-system behavior through formalism

and parameterization of distributed sensor networks.

IV. METHODOLOGY

Our initial DPEG implementation has provided valuable

insight into the pressing issues that a control design method-

ology must address, and we will use these ideas to inform our
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Fig. 8. Indoor sensor-based tracking testbed.

proposed design methodology. In this section, we will first

review existing design approaches that address the issues of

scalability and distribution. During this discussion, we will

be interested in extracting the essence of existing algorithms

while abstracting away the particular choice of model. Fol-

lowing this, models of computation will be explored that are

useful for describing such systems. Finally, we will discuss

our proposed design methodology that will be applied to the

next DPEG implementation.

A. Scalability and Distributed Control

Distributed control systems are an integral part of our world

and have been studied in many different contexts ranging from

biology to artificial intelligence to control systems. Naturally

occurring distributed systems such as ants searching for food,

bacteria foraging, and the flight formations of some birds

have been well studied by biologist and are beginning to

receive more attention from other communities interested

in distributed algorithms. Indeed, the artificial intelligence

community has considered such systems in more abstract

terms for several years. Additionally, the continuous time

control community has addressed many of the features that

distinguish distributed control systems from classical central-

ized control systems.

Nature provides us with several good examples of

distributed control in action. For example, schooling in

fishes [27] and cooperation in insect societies [28] exhibit

complex collective patterns arising from rather simple indi-

vidual behavior. These social behaviors have been argued to

improve food search, predator avoidance and colony survival

for the species as a whole rather than for the individual.

Some researchers have been turning to such examples to gain

insight into these naturally optimized distributed algorithms.

Investigating bacteria foraging of E. coli, Passino [29] has

developed a distributed optimization algorithm. The algorithm

models how E. coli bacteria move in a solution as they

collectively search for nutrients and avoid toxins to reach an

optimal state where the collection of bacteria is satisfied with

their surroundings.

Fig. 9. Outdoor DPEG testbed.

The artificial intelligent community has addressed such

systems under the title of distributed agents for several

years [30]. Some researchers in this community have devel-

oped approaches such as free market systems [31] that mimic

our own trade system. In this architecture, each agent, which

could be a robot with a specialized ability, bids on a particular

task based on its cost function which combines the robot’s

reward and effort. It is even possible for robots to become

leaders who bid on tasks and then subcontract the task out to

several other robots.

The continuous control community has wrestled with

distributed systems for many years in the realm of pro-

cess control, and has independently addressed many of the

caveats of distributed systems such as jitter compensation

and scheduling. Martı́ et al [32] have identified the types

of jitter that can occur in distributed systems and investi-

gated compensation techniques. Their method first analyzes

whether on-line or off-line compensation is needed. If on-

line compensation is feasible, then the parameters of the

control law are dynamically updated according to the next

time the controller will be executed. Other researchers have

reformulated the typical scheduling problem as a dynamic

system so that the techniques of control theory may be

applied [33]. In [34], a centralized scheduling rule is replaced

with local instantiations of integral controllers that are shown

to drive the state to a viable solution.

B. Models of Computation

The impossibility of characterizing these systems within

the classical control framework raises the need to select one

or more models of computation (MOCs) in order to accurately

analyze distributed control problems in sensor networks. Our

hope would be that such a combination captures the continu-

ously changing dynamics of the environment, the distribution

of resources, and the discrete nature of the hardware. To ad-

dress this issue more specifically, we investigate several com-

mon MOCs, including discrete event, continuous dynamical

systems, discrete-time dynamical systems, hybrid automata,

synchronous reactive languages, and data-flow models. For

each of these, we consider its advantages and its drawbacks

with respect to control applications within sensor networks.
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Fig. 10. Section of a distributed continuous control MOC with sensing,
actuation, and communication jitter. Shaded blocks represent a time delay.

Continuous time dynamical systems [35], [36] are a well

studied formal model. Key properties such as stability and

reachability can be deducted using available analytical and

numerical methods. Controllers can be designed to meet

desired specifications. Additionally, they are familiar to the

control community, and hence preferred for control applica-

tions. However, for distributed control applications in sensor

networks, this theory is not able to capture communication

delays, time skew between clocks, or discrete decision mak-

ing. Since all the variables are continuous, it is difficult

to model such discrete phenomena. Additionally, controllers

must be implemented on microprocessors, and control must

be piecewise constant.

To describe the controller’s piecewise constant nature, we

turn to discrete time dynamical systems [35], [36]. However,

we are again limited to characterizing systems without mode

changes. Additionally, this MOC assumes periodic activation

of the controller with instantaneous computation of the control

law which is not preserved by the underlying platform. This

model does not directly address sensing and actuation jitter,

but it can be taken into account by augmenting with time

delays between the plant and the controller. This approach

assumes that the control law is computed synchronously

on each node every T seconds, but different sensing and

actuation jitters are allowed for each node. This model is

useful when we assume that the process scheduler running

on each node can ensure synchronous operation. Additionally,

the system can be modified to distribute control computation

across nodes with state communication between them, as

shown in Figure 10.

The multi-modal nature of such systems can be described

by a hybrid automaton [37]. These systems nicely account

for both the “continuous flow” and discrete jumps of such

systems. Note, that “continuous flow”, or just flow, in a hybrid

automaton may be modeled by either differential equations

or difference equations. They allow the system to evolve

according to the flow with occasional discrete transitions.

Additionally, with each discrete transition, the equations gov-

erning the flow are allowed to change. Difference equations

allow such a model to capture the piecewise constant nature

of the controller. Mode changes can then be characterized

by the discrete dynamics, where all the discrete properties

of our application must be encoded. The discrete dynamics

are similar to finite state machines in that encoding many

discrete variables leads to a discrete state explosion problem

and quickly becomes unmanageable for sensor networks.

To consider MOCs more appealing for algorithms, we can

consider discrete event systems [38]. Such a model works

well for mode changes or task scheduling and characterizes

the hardware platform nicely, as well. It also allows for the

system to be event-triggered, which is often the case in sensor

networks. However, it does not support continuous variables,

and given the discrete nature of variables we again run up

against a state explosion problem when modeling a large

number of nodes. Finally, such systems generally do not

correlate time-steps of the model with real-time.

Dataflow [39] MOCs are intended to describe data trans-

formations. In particular, they are useful for characterizing

several communicating processes. However, this paradigm is

awkward for control since it generally considers the relation-

ship between sequences of inputs and sequences of outputs,

rather than the evolution of the output for each input signal

in turn. In general, when composing several dataflow models

in a feedback loop, the result may not be deterministic [40].

Another set of common modeling paradigms are syn-

chronous reactive languages, such as Signal [41], Lustre [42],

and Esterel [43]. These languages support a broad range of

formal verification tools to aid in debugging. Additionally, it

is possible to generate code for the platform directly from

the synchronous reactive language. However, we again find

that there is no relation between time-steps of the language

and real-time. Furthermore, synchronous reactive systems

presume the existence of a global clock and that time-

steps, and hence the computation of fixed points, happen

instantaneously. This MOC is not appropriate because it is not

congruent with the event triggered nature of sensor networks.

Finally, such a model can be counter-intuitive since it searches

for a fixed point at every step.

C. Design Approaches

In the previous two sections we described different ap-

proaches to address scalability and synchronus/asynchronous

systems. Our approach to scalability for DPEGs will rely

heavily on distributed processing of sensors readings in order

to get good estimates of positions and velocities of both

evaders and pursuers. The control of each pursuer dynamics

is performed within the pursuer itself based on network
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Fig. 11. A hierarchical system representation

readings, but higher level coordination will be distributed

between all the pursuers to maximize robustness to adversarial

attack. In order to address the issues arising from the fact

that DPEGs include synchronous and asynchronous dynam-

ics, several ad-hoc solutions are available. To compensate

for nonuniform time-delays, one approach is to buffer the

incoming data for a certain amount of time such that most

of the data has arrived. With this approach, the problem has

been reduced to the classical control problem of driving a

system with a fixed time delay. However, this result comes

at the price of suboptimal performance. As for missing data,

the most common solutions are either using the most recent

data regardless of its exact time of arrival, or estimating the

most probable measurement that is consistent with previous

measurements and the dynamics of the system.

Some issues related to the event-triggered nature of dis-

tributed control have been addressed by the hybrid system

control community. Here the idea is to develop a formalism

that combines the best of control theory and state machine

theory [44], [45], [46]. Although few analytical results are

available today, this rather intuitive and promising approach

is an active area of research.

Time synchronization research for sensor networks has

been intense, yielding promising results [8]. In our model, we

confidently assume that sensors readings come with accurate

time-stamp. Also we assume that sensors know their location

in space. A localization service ensures that the nodes in a

deployed network can compute their location relative to each

other [9]. With these two assumptions, we use the standard

control formalism with sensor networks. A choice of a model

is critical to the design of controllers for such systems. In

dealing with complex applications such as DPEGs, control

must be exercised at several levels and a hierarchical system

seems to be the natural modeling choice. A graphical repre-

sentation is shown in Figure 11.

At the low level, the continuous time dynamics of the

system need to be captured. Since the implemented controllers

are digital, the model is discretized to yield a discrete time

control system. At this level, the system is time based, in the

sense that time triggers each transition. At each time step,

an observation, generated from a sensor reading, needs to be

Filtering,

Prediction, 

State Observer

Controller,

path planner

State

Control

input
Plant

Sensing

Fig. 12. Low level controller

provided to the controller, which will in turn produce an input

to the dynamics of the system, via an actuator. In standard

control problems, the sensors are physically attached to the

plant; therefore, it is assured to receive a sensor reading at

each time step. In the case of SNs, the sensing is distributed.

This means that it may take some time for the observation

to reach its destination since packets over the network are

subject to delay and loss. Additionally, the control law needs

some information about the plant to compute the next input,

which will heavily rely on state estimation, prediction, and

smoothing. In the absence of an observation, we will make use

of the model alone to provide state estimation for control. In

this way, late packets can be used to improve current estimate.

Several methods can be used for estimation from Kalman to

particle filtering. A graphical representation of the low level

controller is shown in Figure 12.

At the higher level, the system is event based. In this

domain, the control reacts to one or more events, sequences of

which are called behaviors. Events are detected by the sensor

network and transmitted to a discrete controller that generates

the appropriate reaction. Each reaction is then transmitted to

the lower level by changing the control objective to agree

with the new specifications. Once again events occur in an

asynchronous fashion, making formal analysis difficult. To

work with such events, we implement the system using a

synchronous reactive language, where behaviors can be veri-

fied and mapped to our asynchronous platform, making sure

the verified properties are preserved. The problem of mapping

behaviors from different domains has been tackled in several

different ways. We follow the approach of Benveniste [47]

by designing controllers in a synchronous fashion, verifying

the behavior, and then de-synchronizing the algorithm to be

implemented on the asynchronous target architecture. The

advantage of this approach also includes the possibility of

automatically generating embedded code directly from a high

level specification language, thus enormously speeding up the

development phase. A graphical representation of the design

flow is shown in Figure 13.

V. CONCLUSIONS

In this paper, we presented an overview of research ac-

tivities dealing with distributed control in sensor networks.

We introduced sensor networks and related research issues.

We then presented our hardware and software platforms while

proposing an open architecture to help develop rich distributed
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Fig. 13. A graphical representation of the proposed design methodology

applications. We presented an overview of the theoretical

issues facing researchers interested in using sensor networks

for distributed control applications. We identified key proper-

ties that cause classical control theory to fail. We suggested

a general approach to control design using a hierarchical

model composed of continuous time-triggered components at

the low level and discrete event-triggered components at the

high level. For the future, we will focus on implementation,

verification, and testing of our methodologies in distributed

control systems on our proposed DPEG testbed.
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