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Distributed Control Design for Spatially
Interconnected Systems

Raffaello D’Andrea and Geir E. Dullerud

Abstract—This paper deals with analysis, synthesis, and imple-
mentation of distributed controllers, designed for spatially inter-
connected systems. We develop a state space framework for posing
problems of this type, and focus on systems whose model is spatially
discrete. In this paper, analysis and synthesis results are developed
for this class of systems using the 2-induced norm as the perfor-
mance criterion. The results are stated in terms of linear matrix
inequalities and are thus readily amenable to computation. A spe-
cial implementation of the resulting controllers is presented, which
is particularly attractive for distributed operation of the controller.
Several examples are provided to further illustrate the application
of the results.

Index Terms—Distributed control, , interconnected systems,
linear matrix inequalities (LMIs).

I. INTRODUCTION

M
ANY systems consist of similar units which directly

interact with their nearest neighbors. Even when these

units have tractable models and interact with their neighbors

in a simple and predictable fashion, the resulting system

often displays rich and complex behavior when viewed as a

whole. There are many examples of such systems, including

automated highway systems [37], airplane formation flight

[42], [9], satellite constellations [39], cross-directional control

in paper processing applications [40], and very recently,

micro-cantilever array control for massively parallel data

storage [31]. One can also consider lumped approximations of

partial differential equations (PDEs)—examples include the

deflection of beams, plates, and membranes, and the tempera-

ture distribution of thermally conductive materials [41].

An important aspect of many of these systems is that sensing

and actuation capabilities exist at every unit. In the examples

above, this is clearly the case for automated highway systems,

airplane formation flight, satellite constellations, and cross-di-

rectional control systems. With the rapid advances in micro

electromechanical actuators and sensors, however, we will soon

be able to instrument systems governed by partial differential

equations with distributed arrays of actuators and sensors,

rendering lumped approximations with collocated sensors and

actuators valid mathematical abstractions.
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If one attempts to control these systems using standard

control design techniques, severe limitations will quickly be

encountered as most optimal control techniques cannot handle

systems of very high dimension and with a large number

of inputs and outputs. It is also not feasible to control these

systems with centralized schemes—the typical outcome of most

optimal control design techniques—as these require high levels

of connectivity, impose a substantial computational burden, and

are typically more sensitive to failures and modeling errors

than decentralized schemes.

In order for any optimal control technique to be suc-

cessful, the structure of the system must be exploited in order

to obtain tractable algorithms. In this paper, we present a

state-space approach to controlling systems with a highly

structured interconnection topology; in particular, we consider

linear, spatially invariant systems that can be captured as

fractional transformations on temporal and spatial operators.

By doing so, many standard results in control—such as the

Kalman–Yakubovich–Popov (KYP) Lemma, optimization,

and robustness analysis—can be generalized accordingly. The

state space formulation yields conditions that can be expressed

as linear matrix inequalities (LMIs) [7], resulting in tractable

computational tools for control design and analysis.

The types of problems considered in this paper have a long

history. In [30], optimal regulation for a countably infinite

number of objects is considered by employing a bilateral

-transform, which is analogous to the spatial shift operators

introduced in this paper. In [8], it was shown that discretization

of certain classes of PDEs result in control systems defined on

modules, and that the resulting structure can be exploited to

reduce computational effort.

Recently, [3], control problems for spatially invariant systems

with quadratic performance criteria (such as and ) are

tackled by extending familiar frequency-domain concepts for

one-dimensional systems. The control design problem is then

solved for a parameterized (over frequency) system of finite-

dimensional systems. It is also shown that the optimal controller

has a degree of spatial localization (similar to the plant) and can

therefore be implemented in a distributed fashion.

Robust stability analysis problems for multidimensional sys-

tems are considered in [26]. Results are derived using Laplace

transforms in several complex variables which show that the

problem can be solved by the methods of structured uncertainty

analysis ( analysis) [33].

Cross-directional control of paper machine processes is con-

sidered in [40]. The notion of loop shaping [29] is extended

to two-dimensional systems (one temporal, one spatial). The

special structure of the paper machine problem, and of similar
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problems, is exploited to apply the results in [3] and obtain

a computationally attractive practical control design method-

ology to address performance and robustness issues.

The paper is organized as follows. We introduce the notation

and the basic concepts used throughout the paper in Section II.

The class of systems considered in this paper are described in

Section III. Analysis conditions are then presented in Section IV,

which are used in Section V for controller design. An in-depth

discussion on controller implementation may be found in Sec-

tion VI. Several examples are included in Section VII, and con-

cluding remarks are found in Section VIII.

II. PRELIMINARIES

The set of integers is denoted . The set of real numbers is

denoted denotes the nonnegative subset. The notation

will be used to denote real valued, finite vectors whose size

is either clear from context or not relevant to the discussion. We

will often use the short-hand notation to capture a

vector with several (not necessarily scalar) components.

The space of by matrices is denoted ; the space

of symmetric by matrices is denoted . The by

identity matrix is denoted ; when the dimension is clear from

context, it is simply denoted . Given real symmetric matrix

denotes property for all

. The maximum singular value of a matrix is denoted

.

We are dealing with signals which are vector valued functions

indexed by independent variables: ,

where denotes the temporal variable, and the the spatial

variables. We restrict ourselves to continuous time systems, and

take to be in . We also restrict ourselves to lumped systems,

and only consider that are integer valued. In particular, each

of the can either be in , which captures infinite spatial extent

in dimension , or in some finite set , which captures

periodicity of period in spatial dimension . We thus take

to be in , where is either or . When

, modular arithmetic is used: . The

L-tuple is denoted by .

We often consider signals at a fixed time; it is thus convenient

to separate the spatial and temporal parts of a signal, which mo-

tivates the following definitions:

Definition 1: The space is the set of functions mapping

to for which the following quantity is finite:

(1)

The inner product on is defined as

(2)

with corresponding norm .

Definition 2: The space is the set of functions mapping

to for which the following quantity is finite:

(3)

The inner product on is defined as

(4)

with corresponding norm .

With a slight abuse of notation, a signal can thus

be considered a function of independent variables,

. Thus, for fixed and is an element of

and is a real-valued vector.

Let be scalar valued. We can define the spatial shift

operators , acting on signals in , as follows:

(5)

While we always work with signals that have a finite spatial

norm at any instant in time, we sometimes work with signals

that do not have a finite overall norm. We thus define to be

the set of functions mapping to for which the following

quantity is finite for every :

(6)

An operator on is said to be bounded if

(7)

where is used to denote the induced gain of operator .

The adjoint of a bounded operator is denoted , and is the

unique operator which satisfies for all

. A bounded operator is said to be invertible on

if there exist bounded operators and such that

and are the identity operators. Similar definitions hold for

operators on .

It is useful to extend the definition of an operator on to

the space in the following natural way:

(8)

For example, .

III. INTERCONNECTED SYSTEMS

We next introduce the systems considered in this paper. In the

interest of clarity, we first present the relevant definitions and

results for systems in one spatial dimension, i.e., the signals in

question are of the form , where . Extensions

to more than one spatial dimension are deferred to the end of

this section.

A. Periodic and Infinite Interconnections

Consider the diagram in Fig. 1. It consists of a finite dimen-

sional, linear time-invariant system governed by the following

state-space equations:

(9)
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where

(10)

and is fixed. We assume that and are the

same size, and that and are the same size. We

next consider two types of interconnections based on identical

copies of the basic building depicted in Fig. 1.

1) Periodic Interconnection: Let the number of units be

. Define a periodic interconnection as follows:

(11)

(12)

(13)

(14)

This interconnection is depicted for in Fig. 2. Once the

interconnection has been formed, the system inputs are simply

, and the system outputs are ; and can be considered

internal system variables.

2) Infinite Interconnection: Consider an infinite number of

units, interconnected as follows:

(15)

This is depicted in Fig. 3. This type of interconnection is sim-

ilar to the one considered in [30], where a control system is de-

signed for an infinite number of vehicles. As was pointed out in

[30], and more recently in [3], an infinite approximation may be

sufficient when dealing with a large number of systems. In par-

ticular, the scale of influence of localized effects is often much

less than the scale of the whole system. Even if the uncontrolled

system does not satisfy this property, it is likely that the con-

trolled system will.

There is another important reason for considering infinite

extent system; as is discussed in Section IV-D, if the infinite

extent system is well-posed, stable, and contractive—notions

to be defined in Section IV—these properties are inherited

by all periodic interconnections, irrespective of the number

of subsystems.

B. System Realization

In (9) and (10), let denote the size of the subsystem states

the size of interconnection variables and

, and the size of interconnection variables

and . Let , and define the fol-

lowing structured operator on :

(16)

The role of in will become apparent shortly. Note that

we can now express the interconnection as

, and we may thus write the interconnected system as

follows:

(17)

Fig. 1. Basic building block, one spatial dimension.

Fig. 2. Periodic interconnection.

Fig. 3. Infinite interconnection.

Unless explicitly stated, we will assume that the initial con-

dition for the state . By eliminating interconnection

variables , we can express the system as

(18)

(19)

where

(20)

and it is assumed that is invertible on . This

assumption is equivalent to assuming that the interconnection is

well-posed, a physically motivated concept that is formalized in

Section IV-A. Note that well-posedness implies that operators

, and are bounded. Define

(21)

(22)
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Fig. 4. Periodic interconnection in both spatial dimensions.

where operator is extended to , as per (8). Given constant

matrices , and of compatible dimension, and three-

tuple , we may thus express a system in the following succinct

form:

(23)

where . The system generated by

, and is denoted . In

order to simplify notation, we will use to denote both the

system of equations generated by , and , and the

actual matrices and tuple . It will be clear from

context which meaning is being ascribed to .

C. Interconnected Systems in Higher Dimensions

The basic building block depicted in Fig. 1, and the periodic

and infinite interconnections described earlier, can readily be

extended to more than one spatial dimension. For example, in

two dimensions and

(24)

(25)

Various interconnections can then be defined; the details are

omitted. For example, a periodic interconnection in both spatial

dimensions is depicted in Fig. 4—in the interest of clarity, only

a portion of the resulting torus is depicted and the inputs and

the outputs have been omitted from the diagram.

In terms of the realization of a system, we can proceed as

follows. For a given

(26)

is defined as

(27)

Similarly, is defined as follows:

(28)

IV. WELL-POSEDNESS, STABILITY, AND PERFORMANCE

There are three main considerations when analyzing a

system: well-posedness, stability, and performance. In this

section, these concepts are defined, and an LMI condition

for establishing well-posedness, stability, and performance is

presented.

A. Well-Posedness

Simply put, a system is well-posed if it is physically real-

izable. The following simple examples illustrate the concept

of well-posedness. Consider the feedback interconnection in

Fig. 5, where all signals are simply a function of time. Let

and be unity gain systems: .

This interconnection is not well-posed because there do not exist

solutions to the loop equations for all possible exogenous sig-

nals and .

Now let be a unity gain system, and let be a linear

time invariant system with transfer function .

This interconnection is also not well-posed because the resulting

transfer function from exogenous signal to interconnection

signal is not proper, and in fact equal to . There is thus differ-

entiating action from one of the closed-loop system inputs to one

of the closed-loop system outputs (all the closed-loop dependent

variables are considered outputs: ). The reader is

referred to [44] for an in-depth discussion of well-posedness.
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Fig. 5. Standard interconnection.

We can extend the definition of well-posedness in [44] to the

systems considered in this paper.

Definition 3: Consider a system with signals injected at the

interconnection points

(29)

(30)

A system is said to be well-posed if there exist strictly positive

numbers and such that for any inputs and which satisfy

for all in , there exist unique

signals , and which satisfy (29) and (30), with

and norm constraints

(31)

The interpretation of well-posedness is equivalent to the stan-

dard one [44]: there must exist unique solutions to the system

equations when signals are injected anywhere in the loop. In

addition, on a sufficiently small time interval, the gain from sig-

nals injected anywhere in the loop to all system outputs must be

bounded. This is depicted in Fig. 6 for a periodic interconnection

in one spatial dimension. The proof of the following statement

is found in the Appendix.

Proposition 1: A system is well-posed if and only if

is invertible on .

We will always require that a given system is well-posed;

conditions for establishing well-posedness are presented in Sec-

tion IV-D. One method for ensuring system well-posedness is

to simply require that no direct feed-through terms exist in an

interconnection , since is always invertible.

The physical interpretation of this requirement is that informa-

tion transfer among the subsystems is bandwidth limited.

B. Stability

For a well-posed system, operators , and are

bounded, and we may readily write down the solution to (18)

for some intitial condition :

(32)

where is the continuous semigroup defined by

(33)

Fig. 6. Test for well-posedness, one spatial dimension, periodic
interconnection.

the reader is referred to [10] and [4] for details. For the reader

not familiar with semigroup theory, the key point is that the

boundedness of , and allows us to formally treat these

systems analogous to their finite dimensional counterparts. Also

note that , and are bounded since the underlying

spatial dynamics being considered are discrete; this should be

compared with spatially continuous systems which typically

have unbounded system operators [10].

A system is said to be stable if there exist and greater

than zero such that for all

(34)

This is often referred to as exponential stability [10].

C. Performance

When a system is stable, we define to be the oper-

ator which maps to for zero initial condi-

tions. The induced gain of a bounded system is denoted

. When this gain is less than one, system is said to be

contractive. Contractiveness is the performance measure used

throughout the paper; in particular, when we consider control

design in Section V, the objective will be to design a controller

which renders the closed-loop system contractive.

D. Analysis Condition for Well-Posedness, Stability, and

Performance

Given a system , the equations gov-

erning the evolution of the system can be partitioned according

to the spatial and temporal components of , as per (17). The

data can further be partitioned to reflect the structure of :

. . .

...
...

(35)

(36)
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Define the matrices as shown in

. . .

...
... (37)

. . .

...
... (38)

(39)

Define the following sets of scaling matrices:

(40)

(41)

The following result allows us to check the well-posedness,

stability, and performance of a system via an LMI. The proof

may be found in the Appendix.

Theorem 1: A system is well-posed,

stable, and contractive if there exist in and in

such that , where

(42)

Remarks:

• The analysis condition is valid for both periodic and in-

finite interconnections, and is independent of the number

of blocks in a periodic interconnection. The size of the

resulting LMI is only a function of the size of the basic

building block used to describe the interconnection.

• The condition may be conservative in capturing the

stability and performance requirements. This is intimately

tied to the fact that , the structured singular value, is gen-

erally not equal to its upper bound [33].

• In the absence of spatial dynamics (no operator ),

condition simply reduces to the KYP Lemma (see

[36], for example). Also note that in the absence of tem-

poral dynamics (no state ), and in one spatial dimension

with only forward shifts , the above reduces

to the discrete time version of the KYP lemma, with the ex-

ception of the missing constraint ; this constraint

would impose spatial causality (see [14], for example),

which is not a requirement for the types of systems con-

sidered in this paper.

By eliminating all inputs, outputs, and temporal dynamics, one

may readily extract an LMI condition for establishing system

well-posedness.

Corollary 1: A system is well-posed

if there exists in such that

(43)

It can readily be shown that this condition is also necessary when

(one spatial dimension).

For a given system, the condition in Theorem 1 yields a

tractable method for checking the well-posedness, stability,

and performance of a system, since it is an LMI in the decision

variables and . In what follows, we provide an alternate

test for well-posedness, stability, and performance based on

the condition in Theorem 1 which will be used directly for

controller synthesis in Section V. We will first require the use

of the following matrix transformation.

Definition 4: Given a system , where

is assumed to be invertible, let be the following

matrix:

. . .
(44)

Define function as

(45)

where

(46)

(47)

(48)

(49)

(50)
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This transformation is a modified bilinear transformation.

The subscript “D2C” is in fact used to suggest that it is very

similar to the standard bilinear transformation used to convert

a discrete time problem to a continuous time problem

[2].

Theorem 2: Given a system and

scaling matrices in and in , define as per (42).

The following two conditions are equivalent:

I) .

II) The following two conditions are satisfied:

1) is invertible;

2) the following inequality is satisfied:

(51)

where and

.

The proof may be found in the Appendix. Note that the matrix

on the left-hand side of (51) is affine in the system data ,

and , which is not the case for ; as we shall see in Section V,

this equivalent check for well-posedness, stability, and perfor-

mance is instrumental in obtaining convex synthesis conditions.

Note that the condition in (51) is very similar to the contin-

uous time version of the KYP Lemma. The only differences are

that is structured and not necessarily positive definite.

V. CONTROL DESIGN PROBLEM

For control design, the basic building block is aug-

mented to include sensor and actuator variables, as de-

picted in Fig. 7 for one spatial dimension. In particular, let

be the given open-loop plant

(52)

where , and have been partitioned as to be consis-

tent with the partition of the inputs into and , and the outputs

into and . Signals are the exogenous disturbances, the

control signals, the error signals which must be kept small,

and the sensor signals.

The control system to be designed will have as its in-

puts and as its outputs. We restrict ourselves to controllers that

have the same structure as the plant’s. For example, the basic

building block for the controller, in one spatial dimension, is de-

picted in Fig. 8. The resulting closed-loop system, for periodic

interconnections in one spatial dimension, is depicted in Fig. 9.

In particular, the control design objective is to construct a

system

(53)

such that the closed-loop system is well-posed, stable, and

contractive. Note that in the absence of spatial dynamics (no

interconnection variables), this simply reduces to the standard

design problem [18].

Fig. 7. Basic building block for control design, one spatial dimension.

Fig. 8. Basic building block for controller, one spatial dimension.

Fig. 9. Closed-loop system, periodic interconnection, one spatial dimension.

We may readily construct the data which

define the closed-loop system . Assuming that

is invertible, and can be eliminated from (52) and (53) to

yield

(54)

where matrices , and can readily be constructed

from the matrices in and ; the details are omitted,

since we will not be exploiting this dependence in the text. The

closed-loop system equations in (54) are not in the standard

form given in (23). In particular, ),

and thus the temporal and spatial variables are not grouped
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together as they are in (23). Define permutation matrix as

follows:

(55)

where

(56)

...

...

(57)

Note that , and that

(58)

where , i.e., . The closed-loop

system is thus , where

(59)

as per (23), where Note that

are unique and well defined as long as is in-

vertible. It can readily be shown that when this matrix is not

invertible, the closed-loop system is not well-posed. Define the

function which generates the data in from and

as follows: . We can then formalize the

problem formulation as follows.

Problem Formulation:

Given a system , find a system such that

is invertible, and the system defined by

is well-posed, stable, and contractive.

We will solve the control design problem by constructing

and scaling matrices in and in such that

the inequality in (51) is satisfied. Note that even though the in-

equality in (51) is affine in , and , and affine in , and

thus independently convex in and , it is not jointly convex

in and . As we shall see, the tools in [32], [24], and [1]

can be brought to bear on the inequality in (51) and the problem

convexified.

A complication with the inequality in (51) is that the

controller data appears in the inequality after the

plant and controller data are jointly transformed via

. The following result, however,

states that the order in which the transformation and the

interconnection are applied can be interchanged; the proof

follows from straight forward matrix manipulations, and is thus

omitted.

Proposition 2: Given and , assume that

and are invertible, and define

and . If and

are invertible, then

(60)

We may thus first transform to yield

, use the condition in (51) to find a suitable

, and upon finding such an , find an such that

. The details of constructing a suitable

from are deferred to Section VI.

In order to perform transformation , matrices

and must be invertible. This is in fact a natural

assumption on the plant and controller: If is not

invertible, the well-posedness assumption is violated; similarly

for . This is captured by Lemma 1. As discussed

in Section IV-A, it is reasonable to assume that the plant and

controller are governed by well-posed systems of equations,

justifying this assumption.

Lemma 1: If is invertible on , then

is invertible.

The proof may be found in the Appendix. Note that we

must also assume that and are

invertible in Proposition 2. This assumption is not restrictive,

however, since the problem formulation requires

to be invertible for well-posedness, and can always be

perturbed by a small amount if a candidate results in a

singular .

We are now in a position to apply the tools in [24] to obtain

LMI conditions for controller synthesis. The development is vir-

tually the same as that in [24], with two differences.

1) Scaling matrix is not positive definite. This will affect

the coupling condition which typically arises in the LMI

formulation of optimization.

2) Scaling matrix is structured. This is analogous to the

gain scheduling results in [32] and [1].

For a given , let be a candidate controller. Define

and . Assume, without

loss of generality, that ; this is a standard approach

known as loop shifting [38]. In particular, if is designed

under this assumption, it can be mapped via the transforma-

tion for nonzero (see [38] for details) shown in (61) at the

bottom of the page. We may thus design the controller assuming

(61)
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that , and then apply the transformation to yield the re-

quired controller equations.

Let . Let be the permutation matrix

in (58). Then it can readily be shown that

(62)

where

(63)

(64)

(65)

(66)

Modulo notational differences and permutation matrix ,

these expressions are identical to [24, eqs. (7), (8), and (9)].

When there are no spatial operators , permutation matrix

is equal to the identity and the expressions are equivalent to

those in [24].

We can express the inequality in (51) as

(67)

where . Recall the structure of scaling matrix

(68)

(69)

(70)

(71)

Scaling matrix inherits the following structure:

(72)

where

(73)

Define the following sets of scaling matrices:

(74)

(75)

(76)

We have the following Lemma.
Lemma 2: Let be fixed. Given and in

, there exists and in , and
and in such that

(77)

if and only if

(78)

Furthermore, one may choose
.

Proof: Due to the structure of the matrices, (78) is equiv-
alent to

(79)

(80)

The equivalence of the inequality (78) and
to the existence of , and such that

(79) is satisfied is proved in [34] and [24]. To complete the proof,
apply the following proposition, whose proof may be found in
the Appendix, to and .

Proposition 3: Given in , let

. Then, there exist in and in
such that

(81)

We are now in a position to state the main result of this
section.

Theorem 3: Let be given. Let the columns of form a
basis for the null space of , and the columns
of form a basis for the null space of . Then,

there exist ,
and such that the inequality in (67) is satis-
fied if and only if there exist and in such that the
three LMIs shown in (82)–(84) at the bottom of the next page
are satisfied.

Proof: A direct application of the results in [24] yields the
inequalities (82) and (83) and the coupling conditions in (77).
We may then invoke Lemma 2 to yield the required result.

Remarks:

• If the LMIs of Theorem 3 have feasible solutions and
, one may construct by first solving

for via Lemma 2, and then solving the inequality in
(67), which is affine in .
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• Note that and are coupled only through and
in the above inequalities. This is intimately tied to the

definition of stability and the physical observation that a
change of independent variables does not in
any way change the problem formulation; the problem is
spatially symmetric. This same argument cannot be ap-
plied to the temporal independent variable .

• The system of LMIs can be used to construct a controller
that stabilizes the system and that results in an induced
gain less than one. The performance index, which we have
assumed to be one, can be readily changed to (i.e., the
induced gain is less than ) by replacing the terms in
(82) and (83) by . The performance level can thus
become a decision variable which can be minimized.

• Like the analysis LMI, the synthesis condition is valid for
both periodic and infinite interconnections, and is inde-
pendent of the number of blocks in a periodic intercon-
nection. The size of the resulting LMI is only a function
of the size of the basic building block used to describe the
interconnection. This has an obvious application to recon-
figurability: elements can be added or removed without af-
fecting the well-posedness, stability, and performance of
the closed-loop interconnection.

We conclude this section with the following proposition,
which states that the feasibility of the analysis, and hence
synthesis, LMIs is coordinate independent. This fact is used in
the next section for controller implementation.

Proposition 4: Let the following data be given.

•

.

• invertible,

.

• invertible,

.

• .

Define

•

.

•

.

• .

• .

• , where the permutation matrix

is defined in Section 2, and .

Then

1) , where .

2)

(85)

Proof: Condition 1) follows from direct substitution,

while condition 2) follows from the following equality:

VI. CONTROLLER IMPLEMENTATION

The synthesis procedure of Section V yields . There are

two issues that need to be resolved.

1) Construct such that .

2) Outline a method for implementing the equations associ-

ated with the control system .

As we shall see, these two issues are intimately related.

Constructing essentially consists of finding the inverse

of function . It is easy to see, however, that such an inverse

is not unique, since there are many ways in which can be

defined and be consistent with (see Definition 4). More

intuitively, in terms of the operators , we have the freedom

of expressing the controller equations in terms of or .

For example, consider the following two systems of equations,

where the signals are only a function of one spatial independent

variable :

(86)

(82)

(83)

(84)
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Fig. 10. Signal flow interpretation.

These two systems of equations yield the same input-output be-

havior from to : for every , there exists a that

satisfies both system of equations. In fact, the internal variables

and are related by . The advantage of the re-

alization on the right-hand side of (86) is that it lends itself to

practical implementation, since it can be given a stable, recur-

sive signal flow interpretation. This is depicted in Fig. 10. At

each location signal is the following quantity:

(87)

We do not, however, need to physically connect an infinite

number of signals to our local controller at location in order

to generate . The recursive law on the right-hand side of

(86), depicted in Fig. 10, allows us to implement this relation

via nearest neighbor coupling with coupling signal .

In general, assume that a realization

has been constructed such

that . The control system is thus captured

by the following equations:

(88)

If is invertible on and can be expressed as

(89)

the control system can be implemented by interconnecting the

following finite-dimensional, linear time-invariant subsystems:

(90)

with the nearest neighbor coupling law

. It should be stressed that even though the controllers

are coupled only to their nearest neighbors, the overall transfer

of information can occur over larger distances.

The controller implementation problem thus consists

of constructing such

that and such that the operator

can be expanded as per (89). The

following procedure will achieve this task.

Step 1) Given , define the

following set of scaling matrices:

(91)

Solve the following LMI for :

(92)

where without loss of generality, is invertible.

This LMI may not have a solution; see the remarks

at the end of this procedure for a detailed discussion

of when the LMI is guaranteed to have a solution.

Step 2) Factor each as follows:

(93)

where . Define

, and apply the following coordi-

nate transformation to :

(94)

By Proposition 4, this change of coordinates still

yields a suitable realization . Note that in this

coordinate system

(95)

where is defined analogously to in (44).

Step 3) Define and

, where the and were defined

implicitly in (93). Note that if the inequality in (95)

is satisfied, is invertible; we can thus

solve for , and in Definition 4 in

terms of , and to yield

(96)

(97)

(98)

(99)

Define ; by con-

struction, . Also, note that by

construction, is invertible, since

, and thus by Proposition

2, Theorem 2, and Theorem 1, the control system

solves the problem formulation of Section V.

In addition, note that

(100)
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which by (95) implies that . Finally,

since is a bounded, unitary operator and

(101)

operator exists, and can be ex-

pressed as in (89) (see [6, p. 169], for example), as

required.

Remarks:

• The above procedure can only be performed if the well-

posedness LMI in Step 1) has a solution. This is not

guaranteed, even if is perturbed by a small amount,

since the scaling matrix is structured. There are some

instances, however, when such a scaling matrix is

guaranteed to exist.

1) If there is only one spatial dimension, a scale exists if

and only if has no purely imaginary or zero

eigenvalues, which can always be ensured by a

small perturbation of .

2) If matrix is block diagonal, the factorization

problem reduces to independent LMIs, which

always have a solution as argued beforehand. The

second example in Section VII results in a block

diagonal , for example.

3) If the open-loop plant data satisfies

(102)

it can readily be shown that the resulting closed-loop

system matrix is

(103)

where and are the permutation matrices

defined in (57). It is then easy to show that if

the closed-loop system matrix satisfies the

well-posedness LMI (43), then so must and

. Since the synthesis LMIs guarantee that the

well-posedness LMI is satisfied for the closed-loop

system, it then follows that the well-posedness LMI

for the controller in Step 1) will have a solution.

The physical interpretation of the

assumption is that nearest neighbor information

cannot directly affect the sensor signals, but must

rather go through some temporal dynamics first.

Similarly, the physical interpretation of the

assumption is that the actuator signals cannot

directly affect the sensor signals.

A dual result holds for the assumption

(104)

where the resulting closed-loop system matrix

is

(105)

• The nearest neighbor information transfer captured by

is assumed to be instan-

taneous; in practice, there will be delays and distortion

in the transfer of information, due to the nonidealities of

any real communication channel. A method for analyzing

systems with these nonidealities may be found in [35],

and a discrete time algorithm for transferring nearest

neighbor information is presented in [11].

VII. EXAMPLES

We applied the techniques developed in this paper to two

problems. The first consists of a numerical problem in two

spatial dimensions. The second consists of control design for

a finite difference approximation of the two-dimensional heat

equation; this example was chosen to suggest how the tools and

techniques in this paper could be extended to control systems

governed by PDEs.

A. Numerical Example in Two Spatial Dimensions

Consider the following system equations, expressed in oper-

ator form for brevity:

Each signal is a function of one temporal independent vari-

able, and two spatial independent variables: ,

etc. A realization of this system, as per (52), can readily

be constructed using the software package described in

[13]. It has two temporal states ( is a

two by two matrix), and each of the interconnection vari-

ables , and

is of size two ( is an eight by eight matrix);

the details are omitted.

Some things to note about the example are as follows.

1) The disturbance acts through a spatial high-pass filter.

In particular, the filter completely rejects disturbances

that are constant in space, but passes through disturbances

whose entries alternate in sign with their nearest neigh-

bors. For example, focusing in on a three by three grid,

this high frequency disturbance would have the following

profile:

...

...

(106)

where is some function of time.

2) The same spatial filter is used to define error variable .

We are thus interested in rejecting high spatial frequency

variations of variable .

3) The second error variable is the control effort . The

sensor signal is simply corrupted by noise . The

control signal acts directly on the equation.
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4) The unforced dynamics

(107)

have a simple interpretation: the force on a mass particle

at location , in a direction orthogonal to the grid,

is a function of the difference between the displacements

of the particle and its nearest neighbors, in a direction

orthogonal to the grid, and is repulsive in nature.

This example is perhaps the simplest, nontrivial applications

of the tools presented in this paper. In particular, note the fol-

lowing.

1) It is in two spatial dimensions. An explicit state-space

representation of a10 10 grid, for example, would result

in a 200 by 200 state transition matrix.

2) Spatial filters are used to shape the input disturbance, and

define the performance objective.

The price to be paid for this simplicity, however, is phys-

ical relevance. While one could readily ascribe a physical in-

terpretation to the above equations (a lumped approximation of

a membrane under compression, or electro-static forces acting

on a two-dimensional array of charged particles), it would not

be a realistic one. The reader is referred to [12], [27], and [22]

for applications and more realistic examples tackled using these

tools.

1) Distributed Control Design: A distributed controller

was designed using the control synthesis software de-

scribed in [13]. The resulting controller had one temporal

state , and each of the interconnection vari-

ables , and

was of size two.

It took 0.6 s to design the controller on a Pentium III,

1.13 GHz micro-processor. The upper bound to the induced

gain of the closed-loop system, as provided by the controller

synthesis routine, was 4.58. The induced gain of the system

was then calculated to be 4.20 using a frequency search (note

that these figures do not have to match, since the analysis LMI

in Section IV-D is a sufficient, but not necessary, condition).

2) Decentralized Control Design: Various decentralized

controllers were designed by making various simplifications.

Decentralized Controller Number 1: A fully decen-

tralized controller was then extracted from the distributed

controller by discarding all interconnection variables. The

resulting closed-loop system was unstable.

Decentralized Controller Number 2: A fully decentral-

ized controller was then designed by simplifying the system

equations as follows:

The simplification is obtained by considering the worst case

effects of the spatial operators. In terms of the unforced dy-

namics, the most instability is obtained when all the neighbors

are acting in unison. In terms of the disturbance and error vari-

able, the worst case effects occur when neighbors alternate in

sign.

The resulting controller was then interconnected with the

open-loop plant, and a frequency search used to determine the

gain. The result was 5.74.

Other Decentralized Control Designs: Other decen-

tralized controllers were designed by considering various

simplifications of the system equations. They either resulted in

an unstable closed-loop system, or in a closed-loop system with

a larger induced gain than that obtained with decentralized

controller number 2.

3) Centralized Control Design: Centralized controllers

were designed for periodic interconnections of various size

(corresponding to the torus in Fig. 4) using the LMI toolbox

[25]. The largest size problem that could be solved in a rea-

sonable time was a 3 3 grid, which took 378 s. The resulting

induced gain was 4.02. The controller was a nine-state,

nine-input, and nine-output system.

The computation time for a 2 2 grid was 4.14 s, and for a

6 1 grid, it was 44.95 s. By assuming a polynomial growth

in computation time as a function of the size of the problem

[7], it would take on the order of 5 years to design a central-

ized controller for a 10 10 grid (this does not take into account

computer memory limitations). It should be noted, however, that

for periodic interconnections, the spatially invariant structure al-

lows one to use the transform methods in [3], and the computa-

tions would be significantly simpler.

4) Summary: For this particular example, the distributed

controller resulted in a closed-loop gain which was 1.37 times

smaller than that obtained with the best decentralized controller,

and 1.05 times larger than that obtained with a centralized

controller for a three by three grid.

B. Finite Difference Approximation of a Heat Equation

Consider the following equation which captures the time evo-

lution of the temperature of a bi-infinite dimensional plate:

(108)

where and are the spatial independent variables, is the

temporal independent variable, is the temperature

of the plate, and is a distributed heat source. The

boundary conditions are taken to be simply

. A central,

finite difference approximation of the two spatial partial deriva-

tives results in the following continuous-time, discrete-space

approximation:

(109)

where the continuous independent variables and have been

replaced by the discrete independent variables and , as-

sumed here to take integer values. This may be expressed as

(110)
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Let be a heat disturbance, sensor noise, the control,

the penalty on the temperature of the plate, the penalty on the

control effort, and the sensed information:

(111)

(112)

(113)

(114)

A distributed controller was designed using the control syn-

thesis software described in [13]. The upper bound to the

gain was found to be . The lower bound on the achievable

performance obtained via a frequency search was 1.02, or less

than one percent from the upper bound of 1.03. A realization

was then constructed from as discussed in Section

6. The result was the realization shown in (115)–(117) at the

bottom of the page.

The controller equations are structured enough that we may

readily express in input–output form

(118)

where , and

.

VIII. CONCLUDING REMARKS

The results presented in this paper have many natural exten-
sions and applications. A method for incorporating physically
motivated boundary conditions, such as Dirichlet and Neumann
boundary conditions, is presented in [28]. Discrete time exten-
sions are discussed in [16], [15]. Model reduction is addressed
in [5]. The application of these tools to airplanes flying in
formation is presented in [23] and [22]. Relaxation of spatial
and temporal invariance is addressed in [21], [19], and [20].
Extensions to parameter varying systems is discussed in [43].
An in-depth description of how this framework can be ex-
tended to encompass uncertainty may be found in [17]. Other
natural extensions, such as nonlinear interconnected systems,
are also discussed in [17].

APPENDIX

Proof of Proposition 1: One direction of the proof is

straight-forward. Assume that is invertible on

. We can then immediately write down the solution to the

system described in Definition 3 (see Section IV-B)

(119)

(120)

where

(121)

The result then follows since , and are bounded op-

erators, and is bounded on the compact interval .

Now assume that the interconnection is well-posed, and let

. For any given in , let

for all . Set for all .

Since ; in addition, . By

uniqueness, there is only one that satisfies this equation.

To summarize, for all , there exists a unique

, such that . By linearity of , this

implies that is invertible on , as required.

Proof of Theorem 1: We will prove the result in three

steps.

1) Show that the system is well-posed; we will do this by

explicitly constructing .

2) Once it has been shown that the system is well-posed, we

will show that is exponentially stable.

3) Once it has been shown that the system is well-posed and

exponentially stable, we may express the system equa-

tions as per (18) and (19), where all signals are in ; we

will then show that for all ,

where is some strictly positive constant.

(115)

(116)

(117)
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Without loss of generality, assume that is invertible; if

is not invertible, it can always be perturbed to be made invert-

ible—by adding , for example— and still result in .

Well-Posedness: We will show this via two propositions.

Define as follows:

(122)

Proposition 5: If , then is invertible

on .

Proof of Proposition 5: Define

(123)

The (2, 2) block of matrix is simply ; it thus fol-

lows that if . Matrix can be factored as

, where is invertible

and commutes with , and is a permutation matrix which

reorders the columns of . Define

(124)

The condition is thus equivalent to

(125)

or, equivalently

(126)

Now

(127)

where and are diagonal operators, whose elements con-

sist of the operators ; it thus follows that exists, and

that . We have the following set of

equalities:

(128)

(129)

Since and are unitary operators, by the inequality

in (126), we may express as the following

bounded operator (see [6, p. 169]):

(130)

as required.

Proposition 6: If is invertible on , then

is invertible on .

Proof of Proposition 6: Define

. Since ,

and are bounded operators on , the result follows from

(131)

Stability: Now that we have shown that the system is

well-posed, we can construct the state transition operator

. We have the

following Lyapunov type of result.

Proposition 7: Let , and let . If , then

(132)

for some positive constant .

Proof of Proposition 7: Define

, and . Since is

strictly negative definite

(133)

for some strictly positive constant . Define and in as

(134)

(135)

It can readily be verified by direct substitution that

(136)

Note, however, that

(137)

(138)

Thus, , where

. Also note that com-

mutes with , and that . Thus

(139)

This completes the proof.

The proof that is exponentially stable now follows

directly from the Lyapunov theorem [10, Th. 5.1.3].

Performance: We will next show that . Since

the system is well-posed and stable, for any in there exist

, and in which satisfy (18) and (19), where

. Since is strictly negative

(140)
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for some strictly positive constant . Let . Define

and in as

(141)

(142)

It can readily be verified by expanding the inner product in (140)

that

(143)

As in the proof of stability, it can be shown that

for all , and

thus . We will next show

that , which will complete the

proof

(144)

(145)

(146)

as required.

Proof of Theorem 2: We first state the following proposi-

tion; the proof follows from straightforward matrix manipula-

tions, and is thus omitted.

Proposition 8: Given ,

where is assumed to be invertible, define

. Consider the fol-

lowing set of equations:

(147)

where is defined in (44). Then, the following hold true.

1) For all , there exists

such that the equations in (147) are satisfied.

2) For all , there exists

such that the equations in (147) are satisfied, and

furthermore

(148)

First, note that by the Schur complement formula the inequality

in (51) is equivalent to

(149)

:

Assume that there exists , such that

. If is invertible, define

. By Proposition 8, there exists

such that the equations in (147) are satisfied, where it can readily

be verified that . Upon substitution

(150)

where and are defined in (134) and (135). Similarly, it

can readily be verified that

(151)

From (147), note that and .

Since and .

Note, however, that and that

, and thus

(152)

and, therefore, ,

which implies that . Since ,

this completes the proof.

:

If is not invertible, assume that there exists

such that . Note that and that

, and thus

(153)

If is invertible, define , and

assume that there exists , such that

. By Proposition 8, there exists

such that the equations in (147) and (148)

are satisfied, where it can readily be verified that .

As in the previous construction, it can also be readily verified

that , which implies

that . Since , this com-

pletes the proof.

Proof of Lemma 1: We will prove the result for two

spatial dimensions , where and

; the general case is a straightforward

extension of this special case.

Assume that is not invertible. There thus exists

real vector such that . Partition into

, where

. For a fixed integer , define signal

as follows:

(154)

(155)
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Let . It follows that

(156)

(157)

(158)

(159)

(160)

Note that and that . Since

is arbitrary, we can make as large as we want, which

either proves that the inverse of is unbounded,

or that there are multiple solutions to

for fixed ; either way, this demonstrates that

does not have an inverse in , as required.

Proof of Proposition 3: Let and be full-column rank

matrices in that solve the following equation:

(161)

Note that we may express as .

Let the columns of in form a basis for the null space

of . We claim that the columns of

form a basis for the null space of the following two matrices:

(162)

This follows by direct multiplication and from the following

sequence of equalities:

(163)

Let be the unique solution to

. Note that is symmetric

which implies that is symmetric. Similarly, let

be the unique symmetric solution to

(164)

Left multiplying (164) by , it can readily be verified from the

equality

(165)

that , as required.
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