
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Real-Time and Embedded Systems Lab (mLAB) School of Engineering and Applied Science

9-2013

Distributed Control for Cyber-Physical Systems Distributed Control for Cyber-Physical Systems

Rahul Mangharam
University of Pennsylvania, rahulm@seas.upenn.edu

Miroslav Pajic
University of Pennsylvania, pajic@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/mlab_papers

 Part of the Computer Engineering Commons, and the Controls and Control Theory Commons

Recommended Citation Recommended Citation

Rahul Mangharam and Miroslav Pajic, "Distributed Control for Cyber-Physical Systems", . September

2013.

@ARTICLE{JIISc-9303_distrCPS,author = {Rahul Mangharam and Miroslav Pajic}, title = {{Distributed Control for
Cyber-Physical Systems}}, journal = {Journal of the Indian Institute of Science}, year = {2013}, volume = {93},
number = {3}, pages = {353--387} }
R. Mangharam and M. Pajic. “Distributed Control for Cyber-Physical Systems” Journal of the Indian Institute of
Science, Special Issue on Cyber‐Physical Systems, Vol.93, No.3. pp. 353--388. September 2013.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mlab_papers/65
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/mlab_papers
https://repository.upenn.edu/seas
https://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fmlab_papers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=repository.upenn.edu%2Fmlab_papers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mlab_papers/65
mailto:repository@pobox.upenn.edu

Distributed Control for Cyber-Physical Systems Distributed Control for Cyber-Physical Systems

Abstract Abstract
Networked Cyber-Physical Systems (CPS) are fundamentally constrained by the tight coupling and
closed-loop control and actuation of physical processes. To address actuation in such closed-loop
wireless control systems there is a strong need to re-think the communication architectures and
protocols for maintaining stability and performance in the presence of disturbances to the network,
environment and overall system objectives. We review the current state of network control efforts for CPS
and present two complementary approaches for robust, optimal and composable control over networks.
We first introduce a computer systems approach with Embedded Virtual Machines (EVM), a programming
abstraction where controller tasks, with their control and timing properties, are maintained across
physical node boundaries. Controller functionality is decoupled from the physical substrate and is
capable of runtime migration to the most competent set of physical controllers to maintain stability in the
presence of changes to nodes, links and network topology.

We then view the problem from a control theoretic perspective to deliver fully distributed control over
networks with Wireless Control Networks (WCN). As opposed to traditional networked control schemes
where the nodes simply route information to and from a dedicated controller, our approach treats the
network itself as the controller. In other words, the computation of the control law is done in a fully
distributed way inside the network. In this approach, at each time-step, each node updates its internal
state to be a linear combination of the states of the nodes in its neighborhood. This causes the entire
network to behave as a linear dynamical system, with sparsity constraints imposed by the network
topology. This eliminates the need for routing between “sensor → channel → dedicated controller/
estimator → channel → actuator”, allows for simple transmission scheduling, is operational on resource
constrained low-power nodes and allows for composition of additional control loops and plants. We
demonstrate the potential of such distributed controllers to be robust to a high degree of link failures and
to maintain stability even in cases of node failures.

Keywords Keywords
Networked control systems, decentralized control, wireless sensor networks, structured systems, in-
network control, network coding, cooperative control

Disciplines Disciplines
Computer Engineering | Controls and Control Theory | Electrical and Computer Engineering

Comments Comments
@ARTICLE{JIISc-9303_distrCPS,author = {Rahul Mangharam and Miroslav Pajic}, title = {{Distributed
Control for Cyber-Physical Systems}}, journal = {Journal of the Indian Institute of Science}, year = {2013},
volume = {93}, number = {3}, pages = {353--387} }

R. Mangharam and M. Pajic. “Distributed Control for Cyber-Physical Systems” Journal of the Indian
Institute of Science, Special Issue on Cyber‐Physical Systems, Vol.93, No.3. pp. 353--388. September
2013.

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/mlab_papers/65

https://repository.upenn.edu/mlab_papers/65

Distributed Control for Cyber-Physical Systems
Rahul Mangharam, Member, IEEE and Miroslav Pajic, Member, IEEE.

Abstract—Networked Cyber-Physical Systems (CPS) are fun-
damentally constrained by the tight coupling and closed-loop
control and actuation of physical processes. To address actuation
in such closed-loop wireless control systems there is a strong
need to re-think the communication architectures and protocols
for maintaining stability and performance in the presence of
disturbances to the network, environment and overall system
objectives. We review the current state of network control
efforts for CPS and present two complementary approaches for
robust, optimal and composable control over networks. We first
introduce a computer systems approach with Embedded Virtual
Machines (EVM), a programming abstraction where controller
tasks, with their control and timing properties, are maintained
across physical node boundaries. Controller functionality is
decoupled from the physical substrate and is capable of runtime
migration to the most competent set of physical controllers to
maintain stability in the presence of changes to nodes, links and
network topology.

We then view the problem from a control theoretic perspective
to deliver fully distributed control over networks with Wireless
Control Networks (WCN). As opposed to traditional networked
control schemes where the nodes simply route information to
and from a dedicated controller, our approach treats the network
itself as the controller. In other words, the computation of the
control law is done in a fully distributed way inside the network. In
this approach, at each time-step, each node updates its internal
state to be a linear combination of the states of the nodes in
its neighborhood. This causes the entire network to behave as
a linear dynamical system, with sparsity constraints imposed
by the network topology. This eliminates the need for routing
between “sensor → channel → dedicated controller/estimator →
channel → actuator”, allows for simple transmission scheduling,
is operational on resource constrained low-power nodes and
allows for composition of additional control loops and plants. We
demonstrate the potential of such distributed controllers to be
robust to a high degree of link failures and to maintain stability
even in cases of node failures.

Index Terms—Networked control systems, decentralized con-
trol, wireless sensor networks, structured systems, in-network
control, network coding, cooperative control

I. INTRODUCTION

Time-critical and safety-critical automation systems are at

the heart of essential infrastructures such as oil refineries, au-

tomated factories, logistics and power generation systems. To

meet the reliability requirements, automation systems are tradi-

tionally severely constrained along three dimensions, namely,

operating resources, scalability of interconnected systems and

flexibility to mode changes. Oil refineries, for example, are

built to operate without interruption for over 25 years and can

never be shutdown for preventive maintenance or upgrades.

They are built with rigid ranges of operating throughput and

R. Mangharam and M. Pajic are with the Department of Electrical and
Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
19014. Email: {rahulm, pajic}@seas.upenn.edu.

This work has been partially supported by the NSF-CNS 0931239 and
NSF-MRI 0923518 grants.

require a significant re-haul to adapt to changes in crude oil

quality and market conditions. This rigidity has resulted in

systems with limited scope for re-appropriation of resources

during faults and retooling to match design changes on-

demand. For example, automotive assembly lines lose an

average of $22,000 per minute of downtime during system

faults [1]. This has created a culture where the operating

engineer is forced to patch a faulty unit in an ad hoc manner

which often necessitates masking certain sensor inputs to let

the operation proceed. This process of unsystematic alteration

to the system exacerbates the problem and makes the assembly

line difficult and expensive to operate, maintain and modify.

Embedded Wireless Sensor-Actuator-Controller (WSAC)

networks are emerging as a practical means to monitor and

operate automation systems with lower setup/maintenance

costs. While the physical benefits of wireless, in terms of cable

replacement, are apparent, plant owners have increasing inter-

est in the logical benefits. With multi-hop WSAC networks, it

is possible to build Wireless Plug-n-Play Automation Systems

which can be swapped in and efficiently reconnect hundreds of

I/O lines. Such modular systems can be dynamically assigned

to be primary or backup on the basis of available resources

or availability of the desired calibration. Modularity allows for

incremental expansion of the plant and is a major consideration

in emerging economies. WSAC networks allow for runtime

configuration where resources can be re-appropriated on-

demand, for example when throughput targets change due to

lower electricity price during off-peak hours or due to seasonal

changes in end-to-end demand.

The current generation of embedded wireless systems has

largely focused on open-loop sensing and monitoring appli-

cations. To address actuation in closed-loop wireless control

systems there is a strong need to re-think the communication

architectures and protocols for reliability, coordination and

control [2]. Wireless networked control systems, or Networked

Cyber-Physical Systems (Networked-CPS), fundamentally dif-

fer from standard distributed systems in that the dynamics

of the network (variable channel capacity, probabilistic con-

nectivity, topological changes, node and link failures) can

change the operating points and physical dynamics of the

closed-loop system [3], [4]. The most important objective

of control in Networked-CPS is to provide stability of the

closed-loop system. It is therefore necessary for the network

(along with its interfaces to sensors and actuators) to be able

to provide some form of guarantee of the control system’s

stability in the face of the non-idealities of the wireless links

and the communication constraints of the wireless swarm

network. A secondary goal in Networked-CPS is to allow

for composition of additional controllers and plants within the

same network without requiring reconfiguration of the entire

network operation.

2 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

s1

a1

a2

am

s2

s3

sp

...

Plant Controller

(a) Wired Network Control

��

��

�� ��

��

�� ��

��

��	

�

��

��

��

��

��

��

��

��

			

���

���
������

(b) Wireless Network Controlled System

v1

v6

v7 v8

v5

v4 v3

v9

v10

v2

v9

s1

a1

a2

am

s2

s3

sp

...

Plant

WCN

(c) Wireless Control Network

Fig. 1. Standard architectures for Networked Control Systems; (a) Wired system with a shared bus and dedicated controller; (b) Red links/nodes - routing
data from the plant’s sensors to the controller; Blue links/nodes - routing data from the controller to the plant’s actuators; (c) A multi-hop wireless control
network used as a distributed controller.

The most common approach to incorporating Networked-

CPS into the feedback loop is to use it primarily as a com-

munication medium: the nodes in the network simply route

information to and from one or more dedicated controllers,

which are usually specialized CPUs capable of performing

computationally expensive procedures (see Fig. 1(b)). The

use of dedicated controllers imposes a routing requirement

along one or more fixed paths through the network, which

must meet the stability constraints, encapsulated by end-to-

end delay requirements [5], [6]. However, this assignment

of routes is a static setup, which commonly requires global

reorganization for changes in the underlying topology, node

population and wireless link capacities.

Routing couples the communication, computation and con-

trol problems [7], [8], [9]. Therefore, when a new route is

required due to topological changes, the computation and

control configurations must also be recalculated. Merely in-

serting a WNCS into the standard network architecture “sensor

→ channel → controller/estimator → channel → actuator”

requires the addition of significant software support [10], [11],

as the overhead of completely recomputing the computation

and control configurations, due to topological changes or

packet drops, is too expensive and does not scale.

A. Wireless Control Design Challenge

Providing closed-loop stability and performance guarantees

for Networked CPS is a challenging problem. On one hand,

the control systems community typically abstracts away the

systems details and solves the problem for semi-idealized

networks with approximated noise distributions and link per-

turbations [3]. While this approach provides mathematical

certainty of the properties of the network, it fails to provide a

systematic path to real-world network design. On the other

hand, the network systems community uses hardware and

software approaches to address open-loop issues, but these fail

to provide any guarantees to maintaining stability and perfor-

mance of closed-loop control. We propose a control scheme

over wireless networks that provides closed-loop stability and

optimality, with respect to standard metrics, while maintaining

ease of implementation in real-world networks.

While there has been considerable research in the general

area of wireless sensor networks, a majority of the work

has been on open-loop and non-real time applications. As

we extend the existing programming paradigm to closed-

loop control applications with tight timeliness and safety

requirements, we identify four primary challenges with the

design, analysis and deployment of WSAC networks:

1. The current approaches of programming motes in the

event-triggered paradigm [12] are tedious for control net-

works. Time-triggered architectures are required as they nat-

urally integrate communication, computation, and physical

aspects of control networks [13], [14].

2. Programming of sensor networks is currently at the

physical node-level [15] and is the key reason responsible for

the lack of robustness for higher-level control applications.

3. Design of networked control systems with flexible topolo-

gies is hard with physical node-level programming, as the set

of tasks (or responsibility) is associated with the physical node

[16].

4. Fault diagnostics, repair and recovery are manual and

template-driven for a majority of networked control systems

[17], [18]. Runtime adaptation is necessary to maintain the

stability and performance of the higher-level control system.

5. Furthermore, the networks might be shared among control

loops (i.e., a node may be involved in several feedback loops),

and new feedback loops may be added at run-time. Adding

new communication loops in a standard wireless network

control system could affect the performance of the existing

loops, and the system must be analyzed as a whole. Although

techniques have been developed for compositional analysis of

such networks (e.g., [7]), their complexity limits their use.

Therefore, it is necessary to derive a composable control

scheme, where control loops can be easily added and a simple

compositional analysis can be performed at run-time, to ensure

that one loop does not affect the performance of other loops.

The applications of interest in this work are industrial

process control systems (such as natural gas refineries and

paper pulp manufacturing plants) and building automation

systems. In general, the plant time-constants are on the order

of several seconds to a few minutes and the control network

is expected to operate at rates of hundreds of milliseconds.

While such plants may have as many as 80,000 to 110,000

control loops, they are organized in a hierarchal manner such

that networks span 10-20 wireless nodes (per gateway) for

low-level control. Therefore, in this work we focus on the

networks with up to a few tens of nodes.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 3

Control
Algorithm

Processing
Units

Bandwidth
Utilization

Physical
Requirements

CA1 0.2MIPS 10% S1, S2, A1

CA2 0.4MIPS 5% S2, S3, A1, A2

CA3 0.1MIPS 20% S3, A2

C

C

C

C

C

A

S

A

A

S

S
S

S

a)

C1

C2

C3

S1

S2

S3

A1

A2 b)

C

C

C

C

C

A

S

A

A

S

S
S

S

Virtual Component

c)

VT1 ...VT2 VTn

N1 N2 N3 ... Nm

d)

Fig. 2. (a) A wireless sensor, actuator and controller network. (b) Algorithm assignment to a set of controllers, each mapped to the respective nodes. (c)
Three Virtual Components, each composed of several network elements. (d) Decoupled virtual tasks and physical nodes with runtime task mapping.

B. Contributions

While providing a review of classical and recent approaches

for control over wireless networks, we present two comple-

mentary approaches on maintaining stability in the presence

of environment and network disturbances. The first approach

adopts a “computer systems” perspective on the design of ro-

bust architectures for embedded wireless control and actuation.

We call this scheme Embedded Virtual Machines (see Fig. 2)

which provides software mechanisms to decouple controller

functionality from the physical node - thus providing resilience

to node, link and topology changes. The second approach

adopts a “control theoretic” perspective on distributed control

within the network (see Fig. 1(c)). This provides control mech-

anisms to remove controller functionality from a dedicated

node to all nodes in the network - thus eliminating the need

for routing and guaranteeing stability and optimal control in

the presence of link, node and topology changes.

1) Embedded Virtual Machines: Current approaches for

robust networked control [4] require the underlying network

to satisfy a minimal set of requirements (e.g. guaranteed packet

deliver rate, upper bound on network induced delay) and

reduce the network model to that of a single channel with

random delays. In addition, they do not address the spatial

aspects of the network, i.e., how changes in the network

topology affect the closed-loop system performance.

As the links, nodes and topology of wireless systems

are inherently unreliable, such time-critical and safety-critical

applications require programming abstractions where the tasks

are assigned to the sensors, actuators and controllers as a single

component, rather than statically mapping a set of tasks to a

specific physical node at design time (as shown in Fig. 2).

Such wireless controller grids are composed of many nodes

that share a common sense of the control application but

without regard to physical node boundaries. Our approach, is

to decouple the functionality (i.e., tasks) from the inherently

unreliable physical substrate (i.e., nodes) and allow tasks to

Node

1

Node

2

Current Task-set: T1, T2, T3 Current Task-set: T’1, T’2, …, T’7

Task_Migrate(T2)

Fig. 3. Task migration for real-time operation (instructions, stack, data &
timing/fault tolerance meta-data) on one physical node to another.

migrate/adapt (Fig. 3) to changes in the topology.

To this end, we introduced the Embedded Virtual Machine

(EVM), a powerful and flexible programming abstraction

where a Virtual Component (VC) and its properties are main-

tained across node boundaries [6], [19], as shown in Fig. 2(c).

EVMs differ from classical system virtual machines. In the

enterprise or on PCs, one (powerful) physical machine may

be partitioned to host multiple virtual machines for higher re-

source utilization. On the other hand, in the embedded domain,

an EVM is composed across multiple physical nodes with the

goal to maintain correct and high-fidelity operation even under

changes in the physical composition of the network. The goal

of the EVM is to maintain a set of functional invariants,

such as a control law and para-functional invariants such

as timeliness constraints, fault tolerance and safety standards

across a set of controllers given the spatio-temporal changes in

the physical network. Thus, the EVM introduces new degrees

of freedom, task migration and routing which facilitates, at

runtime, the network configuration (operating point, condi-

tions) to meet the requirements of the networked control

algorithms. However, the EVM does not provide explicit

guarantees but only finds the optimal operation configuration

in terms of routing and task assignment.

2) Distributed Control over Wireless Networks: We con-

sider the problem of stabilizing a plant with a multi-hop

network of resource constrained wireless nodes. We introduce

the concept of a Wireless Control Network (WCN) [20],

which is a paradigm change for distributed control over a

wireless network. In a WCN the entire network itself acts

as a controller, as the computation is spread over the whole

network, instead of assigning a particular node with the

execution of the control procedure. We devise a numerical

design procedure that produces the coefficients of the linear

combinations for each node and actuator to apply in order

to stabilize the plant. The radio connectivity between nodes

in the network induces topological constraints to the control

algorithm, and this topology determines whether it is even

possible to stabilize the system with the use of linear iterative

strategies. In addition, we describe the method that can be used

to synthesize an optimal WCN, with respect to the standard

cost functions.

Given the fundamental unreliability of wireless communica-

tion, the WCN method handles topological constraints while

maintaining mean square stability for packet drop rates up to

20% for a specific network topology and plant. This bridges

4 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

the gap between the basic WCN and the theoretical upper

bound of robustness to packet drops [21]. We also show a

method to synthesize a WCN robust to a certain level of node

failures, and then extend the synthesis procedures to allow for

the use of the WCN for control of continuous-time plants.

Finally, we illustrate the use of the WCN on a real-world

industrial case study, for control of a distillation column.

While in the past efforts, we consider scenarios where the

network topology is already set, in recent efforts [22], [23]

we have investigated a dual problem, “how to synthesize

the network so that a stable WCN configuration exists?”

The topological conditions from [22], along with the results

from [20] provide the essential building blocks for an inte-

grated decentralized wireless control network design frame-

work. Early experiments in an industrial process control case

study of a distillation column in a process-in-the-loop test-

bed demonstrate optimal control of continuous-time physical

processes which maintain system stability under the presence

of node and link failures.

Finally, in [24] we addressed security challenges for

the WCN and presented a method to design an Intrusion

Detection System (IDS) within the Wireless Control Network

(WCN) architecture. The IDS is responsible for observing

the transmissions of certain nodes in the network in

order to (a) recover the outputs of the plant (e.g., for

fault-diagnosis purposes), and (b) detect and identify data

modification attacks by nodes in the network. We showed

that the WCN scheme allows malicious behavior to be

identified by examining the transmissions of only a subset

of the network nodes, provided that the network topology

satisfies certain conditions (more details can be found in [24]).

Organization: The remainder of the paper is organized

in two parts covering EVM (Section ??) and WCN (starting

in Section IX), respectively. It is worth noting here that

these two approaches for control over wireless networks are

complementary, and thus they could be read in any order.

Section II presents an overview of the EVM and its automated

design flow from a control problem specification to binding

controller tasks to a group of nodes within a VC. Sections

III - V present the architecture of the EVM, task assignment

during network changes and runtime procedures to migrate

controller functionality while maintaining stability during

topological changes. We describe the implementation on real

hardware in Section VI and a case study in Section VII.

Sections IX describes the concept of the WCN followed

by Sec. X - XIII covering optimal control over WCN, robust

control over WCN and a case study to show how the WCN

can be used in an industrial, process control application.

II. PART I: EMBEDDED VIRTUAL MACHINES

While wireless system engineers optimize the physical, link

and network layers to provide an expected packet error rate,

this does not translate accurately to stability of the control

problem at the application layer. For example, planned and

unplanned changes in the network topology with node/link

failures are currently not easily captured or specifiable in the

metrics and requirements for control engineers. For a given

plant connected to its set of controllers via wireless links

(see Figure 1(a-b)) it is necessary that the controller process

the sensor inputs and perform actuation within a bounded

sampling interval. While one approach is to design specialized

wireless control algorithms that are robust to a specified range

of packet errors [4], [3], it is non-trivial to design the same

for frequent topological changes. Furthermore, it is difficult to

extend the current network infrastructure to add/remove nodes

and to redistribute control algorithms to suit environmental

changes such as battery drain for battery-operated nodes, in-

creased production during off-peak electricity pricing, seasonal

production throughput targets and operation mode changes.
The EVM approach is to allow control engineers to use

the same network control algorithms on the wireless network

without knowledge of the underlying network protocols, node-

specific operating systems or hardware platforms. The virtual

machine executing on each node (within the VC) instruments

the VC to adapt and reconfigure to changes while ensuring

the control algorithm is within its stability constraints. This

approach is complementary to the body of network control

algorithms as it provides a logical abstraction of the underlying

physical node topology.

A. Network CPS Related Work

There have been several variants of virtual machines, such

as Maté [25], Scylla [26] and SwissQM [27], and flexible op-

erating systems, such as TinyOS [12], SOS [28], Contiki [29],

Mantis [30], Pixie [31] and LiteOS [32], for wireless sensor

networks. The primary differences that set EVM apart from

prior work is that it is centered on real-time operation of

controllers and actuators. Within the design of the EVM’s

operating system, link protocol, programming abstractions and

operation, timeliness is a first-class citizen and all operations

are synchronized. The EVM does not have a single node-

perspective of mapping operations to one virtualized processor

on a particular node but rather maintains coordinated operation

across a set of controllers within a virtual component. The

Virtual Node Layer [33] provides a programming abstraction

where each virtual node is identified with a particular region

and it is emulated by one of the physical nodes in its region.

On the other hand, EVM uses several physical nodes and

allows the user to consider the virtual component as a single

logical entity.
In the last few years, several different systems for macro-

programming in WSN have been developed. [15] have defined

a set of abstractions representing local communication be-

tween nodes in order to expose control over resource consump-

tion along with providing feedback on its performance. An ex-

tension of these ideas is used to develop Regiment [34], a high-

level language based on the functional reactive programming.

Kairos [35] allows a programmer to describe code execution

for each of the nodes in a network using a centralized approach

where details about code generation, remote data access and

management along with node interactions are hidden from

the programmer. EVM is not a generic macroprogramming

system as it focuses on closed-loop control with native runtime

support for task assignment and migration.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 5

Control System

Specification

Platform Independent Domain-specific

EVM Description

Design Time

Platform Dependent EVM Design

Simulink Control System Description

Automatic Code Generation

(EVM Domain Specific Language)

Common EVM DSL

Runtime Tasks Assignment

Control EVM DSL

S
e
c
ti
o

n
 2

S
e

c
ti
o
n

 4
S

e
c
ti
o

n
 3

EVM Architecture
Runtime Tasks

Execution

S
e
c
ti
o

n
 5

Fig. 4. Embedded Virtual Machines (EVM) design flow

The development of control algorithms able to deal with

the unreliability of the wireless channel for Networked Control

Systems (NCSs) is an active area of research in the control sys-

tems community [4], [3], [36]. Few efforts consider networked

control over arbitrary topologies ([16], [37], [38]). In these

articles, the authors assume the existence of a single actuation

point and a single sensing point on the plant. They show that

the optimal position of the controller is at the actuation point,

while ignoring the wireless channel in the estimation of the

plant’s state. In general case, the problem of assigning the

best location of the controller node is very complex. Finally,

Etherware [11] presents challenges in software development

for NCSs along with abstractions and architectures used to im-

plement control algorithms for NCSs. The authors describe a

middleware for control systems but do not provide algorithms

which might be used to guarantee that designed middleware

satisfies requirements for the control algorithms.

B. EVM Design Flow

Our focus is on the design and implementation of wireless

controllers and in providing such controllers with runtime

mechanisms for robust operation in the face of spatio-temporal

topological changes. We focus exclusively on controllers and

not on sensors or actuators, as the latter are largely physical

devices with node-bound functionality. A three-layered design

process is presented to allow control engineers to design

wireless control systems in a manner that is both largely

platform/protocol/hardware/architecture independent and ex-

tensible to different domains of control systems (in process,

discrete, aviation, medical, etc.). This section describes the

design flow from a control problem formulation in Simulink,

automatic translation of control models from Simulink to the

platform-independent EVM interpreter-based code and finally

to platform-dependent binaries (see Fig. 4). These binaries are

assigned to physical nodes within a VC using assignment and

scheduling algorithms presented in Section IV. The binaries

are executed as Virtual Tasks within the platform dependent

architecture described in Section III.

At design time, control systems are usually designed using

software tools, such as Matlab/Simulink, that incorporate

both modeling and simulating capabilities. Therefore, to au-

tomatize the design flow the EVM is able to automatically

generate functional models from the Simulink control system

description. These functional models define the processes by

which input sampled data is manipulated into output data

for feedback and actuation. The models are represented by

generated code and meta data for platform and node inde-

pendent system description. This allows a system designer

to exclusively focus on the control problem design. Beside

the functional description in the platform-independent and

domain specific language (DSL), from the Simulink model

the EVM design flow automatically extracts additional para-

functional properties like timing and inter task dependencies.

These properties, along with the functional description are

used to define a platform optimized binary for each Virtual

Task (VT).

C. Platform Independent Domain Specific Language

To generate functional description of the designed system,

the EVM programming language is based on FORTH, a

structured, stack-based, extensible, interpreter-based program-

ming language [39]. Since the goal of the EVM design is to

allow flexibility and designing utilities independent of chosen

programming language, the intermediate programming lan-

guage is not constrained to the EVM programming language.

The interpreter used to execute modules described in the

EVM programming language can also execute precompiled

binaries. The EVM implementation, presented in Section VI,

executes binaries derived from embedded C code. This enables

execution of code binaries developed in other languages used

to describe control system implementation.

The use of the EVM intermediate programming language

enables domain-specific constructs, where basic programming

libraries are related to the type of application that is being de-

veloped. For example, for use in embedded wireless networks

for industrial control we developed two predefined libraries,

Common EVM and Control EVM (a full list of API’s is

provided in [40]). Common EVM (Fig. 5(b)) is based on the

standard FORTH library [39]. Beside the : word, used to define

new words, all other words can be separated into the following

categories: 1) arithmetic operations, 2) logical operations, 3)

memory manipulation, 4) sensor and actuator handling, and 5)

networking. Control EVM (Fig. 5(a)) contains functionalities

widely used to develop control applications. First three words

6 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

• Dictionary consists of predefined blocks/functions that

are usually used for control systems description

• PID (KP KI KD addr_in addr_out –)

• PI (KP KI addr_in addr_out –)

• TF (m n addr_alpha addr_beta addr_in addr_out –)

• LTI (p m n addr_A addr_B addr_C a_in a_x a_out -)

)(

)(
)(

zD

zN
zG =

,...)(2
2

1
10

m
m zzzzN −−− ++++= αααα

....)(2
2

1
10

n
n zzzzD −−− ++++= ββββ

npmnnn RCRBRAkCxky

kBukAxkx
××× ∈∈∈=

+=+
,,],[][

],[][]1[

(a) Control-EVM

• Arithmetic operations (on 16bit)

• Logical operations

• Comparison and testing

• Controlling programming flow

• Memory manipulation

• Sensor/Actuator handling

– RDSensG (sensID – n1)

– RDSensL (sensID – n1)

– WRActG (value actID –)

– WRActL (value actID –)

• Networking

– PktSendG (addr n nodeID -)

• Task handling

– TaskActivate (addrTCB actID –)

(b) Common-EVM
Fig. 5. EVM platform-independent and domain-specific language for expressing functional and timing description of Simulink models.

specified in Fig. 5(a) are used for Singe-Input-Single-Output

(SISO) systems. Although these words can be described using

the LTI word (describing Linear Time Invariant systems), their

wide use in control systems recommended their specific use.

The extensibility of the EVM allows definition of additional

domain-specific libraries such as Automotive EVM, Aviation

EVM or Medical EVM libraries, which will contain function-

alities specific to each of these application fields. Using EVM

libraries, the code generator creates a system description from

a predefined components, thus creating a task description file

for each of the Virtual Tasks.

D. Control Problem Synthesis: From Simulink to Platform

Independent Specification

We now describe the procedure to automatically extract

the functional description of a VT from a Simulink design.

Within Simulink, each block (and, thus, the model itself) is

represented as a hierarchical composition of other Simulink

blocks, either subsystems or library-defined blocks. This or-

ganization of Simulink models allows for a natural extraction

of a structured functional description using predefined words

from the platform-independent EVM DSL dictionary. When a

new Simulink block is defined as a composition of previously

defined blocks, a new word is defined for the EVM functional

description using previously defined words. The process is

repeated until a level is reached where all words belong to

the EVM dictionary.

A VT description is obtained by parsing the Simulink model

file. This is done by searching for new block definitions

along with the interconnections between blocks. In a Simulink

model file (i.e., mdl file) blocks are presented as shown in

Fig. 6(c) and Fig. 6(d) where BlockType parameter describes

whether the block is a part of the Simulink library or a

subsystem, consisting other Simulink blocks. To extract the

VT description we require that the task is implemented in

a singular, discrete-time Simulink subsystem, such as the

example shown in Fig. 7. The synthesis of the platform-

independent specification from the model is carried out in three

steps:

(1) Definition of intermediate words and variables: Each

block i is associated with a word Wi from the EVM DSL,

where the output of the block is assigned to a variable vari. To

illustrate this consider the extended PID controller from Fig. 7.

The outputs of all intermediate blocks are assigned to variables

as shown in Fig. 7. For example, the EVM description of block

“Sum1” is described with word W8 and its output with variable

var8. As the EVM DSL is stack-based with reversed Polish

notation the block is described as:

: W8 R2 out3 ? NEG sum var8 @ ;

where ? and @ are read and write operators respectively. In

general case, for a block presented in Fig. 6(a) the parser

defines the following word:

: Wi u1 ? u2 ? ...un ? coeffs BlockWord vari1}
@ vari2 @ ... varip @ ;

where BlockWord, depending on BlockType, corresponds to

either a predefined word (if a library block is used) or a new

word that needs to be defined using the same parser algorithm

(if the block is a subsystem). Variables presented as coeffs are

extracted from the ‘Block Specific’ data in cases when they are

contained in the block description (from Figure 5(c),(d)), along

with initial values for variables vari. For example, consider

definition of word W4. Since block PID controller1 contains

coefficients for Kp,Ki and Kd their values are included in the

definition. Finally, in the previous formulation variables u[1..n]
are replaced with appropriate system variables with respect

to connections between blocks. To illustrate this consider a

connection (i.e., line) between blocks from Fig. 6(b). Simulink

defines the Line as in Fig. 6(e). Thus, for Simulink Block i, in

the definition of word Wi each variable ui,j is replaced with

appropriate variable varl,k.

(2) Composing extracted words: The intermediate words

are composed to create functional description of the system

(e.g., VTctrl). The parser is recursively executed for all

subsystems till all words are part of the library. The description

for the example from Fig. 7 is presented in Step 2, Fig. 8. It is

worth noting that the intermediate words are executed in the

blocks’ execution order for the Simulink model. The order is

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 7

���������

	�
����

��

� ������

�

(a) General model of a block

Simulink

Block l

Simulink

Block i

varl,1

...

varl,2

varl,k ui,j

ui,1
ui,2

...

ui,n

...

(b) Interconnection between blocks

Block{

BlockType Gain

Name ”Integral Gain”

Position [120, 93, 160, 117]

Block specific data · · ·

}

(c) Simulink description of a library block

Block{

BlockType SubSystem

Name ”PID controller”

Ports [n, p]

Block specific data · · ·

}

(d) Simulink description of a subsystem

Line{

SrcBlock ”Simulink Block l”

SrcPort k

DstBlock ”Simulink Block i”

DstPort j

}

(e) Simulink description of a link between two
blocks

Fig. 6. General relations between Simulink blocks

either specified explicitly in the model or determined implicitly

based on block connectivity and sample time propagation [41].

(3) DSL code optimization: Intermediate blocks with

elementary functions can be pruned in a single word. For the

example from Fig. 7 the optimized description is shown in

Step 3, Fig. 8. Words W3,W4,W5 and W8,W9,W10

are combined into a single word (W3 and W8, respectively).

Also, instead of word W6 and variable var6, W1 and

var1 are used. The code optimization reduces the number of

defined words and used variables. Currently, the optimization

is restricted to a small set of control system configurations. A

more general approach is an avenue for future work.

As our intention is to map the control problem to a schedul-

ing problem, timing parameters (i.e., period and worst-case

execution time) are also extracted from the model. We consider

only discrete-time controllers as potential VTs. For these,

Simulink design rules force the designer to define a sampling

rate for each (discrete-time) block. Currently we cover cases

where the controller is designed in a single clock domain

(i.e., all blocks use the same sampling period). In general

case, when a controller contains several clock domains, each

sub-domain is represented with its respective virtual tasks.

Also, a set of dependencies between the tasks is extracted.

Finally, to extract the worst-case execution time, a simple static

analysis is performed using the execution time measurements

for library defined words with respect to the specific platform.

III. EVM ARCHITECTURE

We now describe the node-specific architecture which im-

plements the mechanisms for the virtual machine on each

node. The Common-EVM and Control-EVM description are

scoped within Virtual Tasks (VTs) that are mapped at runtime

by the Task Assignment procedure presented in the next sec-

tion. This description is interpreted by the Virtual Component

Interpreter running on each node. The EVM runtime system is

built as a supertask on top of the nano-RK real-time operating

system [42], allowing node-specific tasks to execute native and

virtual tasks (i.e., those that are dynamically coupled with a

node) to run within the EVM. The EVM block-level reference

architecture is presented in Fig. 9(a). This allows the EVM

to maintain node specific functionalities and be extensible to

runtime task evocation of existing or new virtual tasks.
The interface between nano-RK and all VTs is realized

using the Virtual Component Manager (VCM). The VCM

maintains local resource reservations (CPU, network slots,

memory, etc.) within nano-RK, the local state of the VTs

and global mapping of VTs within the VC. The VCM is

responsible for memory and network management for all VTs-

to-physical nodes and presents a mapping between local and

remote ports which is transparent to all local VTs. It includes

a FORTH-like interpreter for generic and domain-specific

runtime operations and a Fault/Failure Manager (FFM) for

runtime fault-tolerant operation. The VCM is implemented in

a modular form so the interpreter, FFM and other specialized

modules may be swapped with extensions over time and for

domain-specific applications.

A. EVM Extensions to the nano-RK RTOS

nano-RK is a fully preemptive RTOS with multi-hop net-

working support that runs on a variety of sensor network plat-

forms (8-bit Atmel-AVR, 16-bit TI-MSP430, Crossbow motes,

FireFly) [42]. nano-RK uses the RT-Link [43], a real-time

link protocol. It supports fixed-priority preemptive scheduling

to ensure that task deadlines are met, along with support

for enforcement of CPU and network bandwidth reservations.

nano-RK had been design as a fully static OS, configured

at design time. Thus, to allow parametric and programmatic

runtime code changes nano-RK was redesigned and extended

with several new features:

• Runtime Parametric Control: Support for dynamic change

of the sampling rates, runtime task and peripheral activa-

tion/deactivation and runtime modification of the task utiliza-

tion was added. These facilities are exposed and executed via

the Common-EVM programmer interface.

• Runtime Programmatic Control: As a part of the EVM

design a procedure for dynamic task migration was imple-

mented. This requires runtime schedulability analysis, capa-

bility checks to migrate a subset of the task data, instructions,

required libraries and task control block. Based on the proce-

dure presented in Sections IV and V, tasks may be activated or

migrated between primary and backup nodes. Such facilities

8 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

var1

var3 var4 var5=out2

var6 var7=out3
var8 var9 var10=out4

var2=out1

out4

4

out3

3

out2

2

out1

1

Sum3

Sum2

Sum1

Sum

Saturation1

Saturation
R2

R1
PID_controller1

in out

PID_controller

in out

Fcn1

f(u)

Fcn

f(u)

in3

3

in2

2

in1

1

Fig. 7. Simulink model of an extended PID controller.

Step 1: Intermediate words/variables

: W1 in1 ? f var1 @ ;

: W2 var1 ? in2 sum out1 @ ;

: W3 out1 ? NEG R1 sum var3 @ ;

: W4 var3 ? Kp1 Ki1 Kd1 PID var4 @ ;

: W5 var4 ? thr SAT out2 @ ;

: W6 in1 ? f var6 @ ;

: W7 var6 ? in3 ? sum out3 @ ;

: W8 R2 out3 ? NEG sum var8 @ ;

: W9 var8 ? Kp2 Ki2 Kd2 PID var8 @ ;

: W10 var9 ? thr SAT out4 @ ;

Step 2: Composition
: Vctrl W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 out1 ?

out2 ? out3 ? out4 ?

Step 3: Optimization

: W1 in1 ? f var1 @ ;

: W2 var1 ? in2 sum out1 @ ;

: W3 out1 ? NEG R1 sum Kp1 Ki1 Kd1 PID thr SAT out2 @ ;

: W7 var1 ? in3 ? sum out3 @ ;

: W8 R2 out3 ? NEG sum Kp2 Ki2 Kd2 PID thr SAT out4 @ ;

: Vctrl W1 W2 W3 W7 W8 out1 ? out2 ? out3 ? out4 ? ;

Fig. 8. EVM functional description extracted from Simulink model shown in Fig. 7

���

����������	�

������

����	�����	

��

�������	

����

��
			

���� ��	

��	

���
�
����
�

���
�
	
�

(a) EVM block-level reference architecture

����

�����	

�������

����

�����	

��������������

�	�����	��

���������������

�������	

���

(b) Structure of the VCM
Fig. 9. EVM architecture with the Virtual Component Manager running as a supertask alongside native nano-RK tasks.

are triggered by the primary-backup policy implemented on

top of the EVM architecture.

• Dynamic Memory Management: Both Best-fit and First-

fit memory allocation methods are supported. In addition, a

Garbage Collector (GC) has been designed to reclaim all

memory segments owned by tasks that had been terminated.

The GC is scheduled only when its execution does not

influence execution of other tasks.

B. Virtual Component Interpreter

The Virtual Component Interpreter provides an interface

to define and execute all VTs. Every VT is defined as a

word within the VCM library. When a new VT description

is received over the network, the VCM calls the interpreter

that defines a new word using the description file of the

task and existing VC libraries. After a VT is activated, each

execution of the VT is realized as a scheduled activation of

the interpreter with the VT’s word provided as an input. To

allow preemptivity of the tasks, each call of the interpreter

uses a VT-specific stack and dedicated memory segments. In

addition, during its execution, each VT is capable of dynami-

cally allocating new memory blocks of fixed size (currently

128B) using the EVM’s memory manager. Therefore, the

interpreter is designed to use logical addresses in the form

(block index, address in block).
Each node maintains a local copy of standard Common-

EVM and Control-EVM dictionaries. If a new word needs to

be included in the existing library, the interpreter first checks

the global word identifier and revision number to discard

obsolete versions.

C. Virtual Tasks

Each VT is described using the Virtual Task’s Description

Table (VTDT), comprised of global and local descriptions of

a VT. Copies of the table are stored on all members of the

VC. While this requirement for consistency currently results

in an issue of scalability, a large fraction of the higher-speed

control in SCADA systems require networks with less than 20

nodes and is hence within the practical limits of the current

approach. Each VT’s global description has information about

memory requirements, stack size and number of used fixed

size memory blocks (128B). In addition to the above meta

data, network requirements in terms of number of RT-Link

transmit and receive slots are specified at design time.
The above descriptors are specified within the VCM’s Task

Control Block (TCB) for each task, which is an extension to

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 9

the native nano-RK TCB (for details see [40]).

D. Virtual Component Manager

The fundamental difference between the native nano-RK

and the VCM is that the scope of nano-RK’s activities is local,

node-specific and defined completely at design time, while the

scope of the VCM is the VC that may span multiple physical

nodes. The VCM subcomponents are presented in Fig. 9(b).

The current set of supported runtime functionalities is:

4.4.1. Virtual Task handling (controlled by the VT Handler):

4.4.1.1 VC state includes the mapping of VTs to physical

nodes and quality of links between physical nodes. The VCM

in each controller node within the VC maintains the VC state

and periodically broadcasts it to keep consistency between

all members of the VC. Currently, a centralized consensus

protocol is used, while a distributed consensus protocol is

needed to scale operations.

4.4.1.2 VT migration and activation that can be triggered as

a result of a fault/failure procedure or by a request from

either the VT or the VCM. As a part of a task migration, the

task’s VTDT is sent along with all memory blocks utilized

by the task. If the VT is already defined on a Backup node

(checked by exchange of hash values), only task parameters

are exchanged. In addition, before migrating a VT to a

particular node the Schedulability Analyzer performs network

and CPU schedulability analysis for nodes that are potential

candidates (details are provided in the next section). If the

analysis shows that no node can execute the task correctly,

an error message is returned. Finally, after a VT is defined,

to activate the task the host node performs a local CPU and

network schedulability analysis to ensure that the task will not

adversely affect correct execution of previously defined VTs.

4.4.1.3 Control of tasks executed on other nodes: For all VTs

in the Backup mode, the VT Handler shadows execution of the

VT in the Primary mode. If a departure from the desired op-

eration is observed (e.g., low battery level, decreased received

packet signal strength), Backup nodes may be assigned to the

Primary mode based on the policy.

4.4.1.4 VT Assignment: VT Assignment procedure is activated

to assign execution of the VTs to specific nodes, when

incremental and local re-assignment (described in Section

V) fails. The procedure determines the best set of physical

controller nodes to execute VTs given a snapshot of the current

network conditions along with the initial communication and

computation schedules for the nodes.

4.4.2. Network Management (performed by the Network

Manager):

4.4.2.1 Transparent radio interface: Using the message header

which contains information about message type, the VCM

determines tasks that should be informed about the message

arrival. Messages containing tasks and their parameter def-

initions are first processed by the VCM, before the VCM

activates the interpreter.

4.4.2.2 Logical-to-physical address mapping: Communication

between VTs is done via the VCM. Since a VT does not have

information on which nodes other VTs are deployed, the VCM

performs logical-to-physical address mapping. In cases when

both tasks are on the same node, the VCM directly passes a

message to the receiving task’s buffer.

IV. VIRTUAL TASK ASSIGNMENT

With the knowledge of the underlying EVM architecture,

we now discuss the algorithm used for the VT Assignment

procedure. The procedure determines the initial assignment of

the VT’s executions along with the communication and com-

putation schedules. The criteria for triggering re-assignment

calculation is described in Section V. We derived a general

case problem formulation for the VT’s assignment as a binary

integer linear optimization problem which is then solved effi-

ciently using well-known techniques (branch and bound) [44].

In addition, since standard link protocols for wireless factory

automation, such as WirelessHART [45], recommend that only

one physical node may transmit in each time slot, we were able

to obtain an efficient reformulation of the relaxed assignment

problem. In this case, each control loop (operating across the

same physical set of controllers) can be considered separately,

which considerably simplifies tasks assignments, as it allows

a compositional system design.

A. General Formulation

To develop an assignment algorithm we considered a multi-

hop control network that corresponds to our model of a VC.

The network consists of p ≥ 1 processes (J = {1, ..., p}
denotes set of all processes) and a set of nodes (sensors,

actuators and controllers), where all nodes have a radio

transceiver along with memory and computing capabilities

(see Fig. 10(a)). The nodes communicate using a TDMA

based protocol (i.e., in a time-triggered manner) with frame

size FS . The network is described with a directed graph

G = (V,E) that represents radio connectivity in the network.

Set V = {v1, v2, ..., vm} denotes a set of physical nodes in

the network,1 while E = {(vi, vj)| vi and vj are connected}
is a set of all links. In addition, each link e is described with

its link quality LQ(e). To extract a problem formulation it is

necessary to enumerate all paths in the network which should

be used for communication between a node and a sensor

(or an actuator).2’3 Thus, the lth path between node vi and

sensor/actuator k is denoted as ψl
i,k.

The goal of the assignment procedure is to determine: (1)

An assignment of the Virtual Tasks (i.e., Control Algorithms -

CAs) to the set of nodes V , where each VT is assigned to one

node in the Primary mode and to R nodes in the Backup mode.

(2) A communication schedule that determines active links at

each time slot. (3) A computational schedule that determines

in which time slot each VT is executed. In addition, to

define the problem as an optimization problem, the following

assumptions were made:

1In the remainder of the paper, V will also denote the set that contains
nodes’ indexes {1, 2, ...,m}.

2A path is represented as a directed path connecting the sender with exactly
one receiver.

3Including all paths could significantly increase complexity of the optimiza-
tion problem. Therefore, the user might opt to enumerate only selected paths
with best characteristics (e.g., a small number of hops, high packet delivery
ratio).

10 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

��

��

�� ��

��

�� ��

��

��	

�

��

��

��������

�������	

�������

�

�

�

�

�

T

τ

T

�

���
������

��	�����

Fig. 10. (a) Reference model of a multi-hop wireless network used for control p physical plants (i.e., processes). The network consists of multiple sensors
(S), actuators (A) and controllers (vi’s). The VC includes multiple physical controller nodes; (b) An example stability region for such a network. T is a
controller sampling period, while τ is the network induced delay.

A.1 For each process j, the Primary and all Backup nodes

assigned with the jth virtual task are scheduled in the

same time slot(s).

A.2 Virtual Tasks are mutually independent.

A.3 A process i (for all i) will remain stable if its sampling

period is less than some predefined value Ti. Therefore,

we require FS ≤ min(T1, T2, ..., Tp).

The first assumption simplifies the problem formulation and al-

lows for an easier schedulability analysis scheme. The second

assumption is reasonable since a significant class of process

controllers execute a large number of simple and independent

control loops. As an avenue of future work, this assumption

will be relaxed to consider dependencies between tasks. To

justify the last assumption we use the approach described

in [3]. For example, consider a closed-loop control of a plant

modeled with continuous-time Linear-Time Invariant (LTI)

dynamics:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

The controller employs a discrete-time state feedback control

with u(kT) = −Kx(kT), where T denotes the plant’s

sampling period. If network induced delay τk is less than one

sampling period,4 the control feedback has the following form:

u(t+) = −Kx(kT), t ∈ [kT + τk, (k + 1)T + τk+1).

Thus, u(t) is a piecewise continuous function that changes

values only at time instances kT +τk. The EVM utilizes fully

synchronous networks, which allows scheduling the actuators

to apply new input values at the same time, after the messages

were delivered to all of them. This guarantees the same delay

for all plant’s inputs at each sampling period (τk = τ, ∀k).

Using the methods based on simulation, as in [3], the stability

region can be determined with respect to sampling period

T and the induced delay τ . The region is used to establish

the maximal sampling period for which the system maintains

stability if a network delay is less than the period (τ
T ≤ 1, an

example is shown in Fig. 10(b)).

To formulate the problem, the following decision variables

are used:

4A similar approach can be used even if the delay is longer than the
sampling period.

• 2mp binary assignment variables, xsti,j ∈ {0, 1}, where

i ∈ V, j ∈ J, st ∈ {a, b} and

xai,j =

{
1, vi is the Primary for jth VT

0, otherwise
,

xbi,j =

{
1, vi is a Backup for jth VT

0, otherwise

• Routing binary variables yli,k ∈ {0, 1}, where:

yli,k =







1, lth path between node vi
and sensor/actuator kth is used

0, otherwise
• Communication schedule binary variables

ηl,ni,k ∈ {0, 1}, where n ∈ {1, ...Fs} and:

ηl,ni,k =







1, lth path between node vi
and sensor/actuator k is active in nth slot

0, otherwise
• Computation schedule binary variables µn

i ∈
{0, 1}, where n ∈ {1, ...Fs} and: µn

j =
{

1, jth VT is scheduled for execution in nth time slot

0, otherwise

Our goal is to describe the assignment problem in the form:

min f(x,y, η, µ), subject to x,y, η, µ ∈ SC

where vectors x, y, η, µ contain the aforementioned decision

variables and SC describes a set that satisfies all constraints,

ensuring desired system’s behavior. The constraints take into

account the requirements for control problem along with

dependencies between communication and computation sched-

ules. In the remaining of this section the imposed set of

constraints is described.

1) Assignment of the Control Algorithms: Each VT has

to be assigned to exactly one node in the Primary mode and

R additional Backup nodes (different from the Primary node

for the CA). These constraints are described as:

m∑

i=1

xai,j = 1,

m∑

i=1

xbi,j = R, and

xai,j + xbi,j ≤ 1, ∀j ∈ J, ∀i ∈ V.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 11

2) Requirements for robust design: Additional sets of

constraints are introduced to improve performance of the

closed-loop system. Link reliability constraints require that

only links with quality above a given threshold are considered,

which reduces complexity of the problem formulation. Logical

pruning of graph G results in a graph GT = (V,ET), where

ET = {(vi, vj) ∈ E|LQ(vi, vj) ≥ THR)}.

The Routing constraints describe a means to increase system

robustness to the link failures with the use of different paths for

data routing. For example, WirelessHART recommends that

each node can use at least two separate paths to route data [14].

Thus, we require that the Primary node for each VT uses two

different paths to deliver information to all actuators related to

the process’ control. In addition, the Primary and all Backup

nodes have to be connected with all sensors related to the

VT.5 Denoting as Aj and Sj the sets of actuators and sensors

respectively, related to the jth process, these constraints are

described as:
∑

∀l

yli,ka
= 2xai,j ,

∑

∀l

yli,ks
= xai,j+x

b
i,j , ∀j ∈ J, ka ∈ Aj , ks ∈ Sj , ∀i ∈ V.

Finally, a set of Monitoring constraints is imposed, where

all Backup nodes monitor the execution of a VT on the

Primary node. Thus, to alleviate the system design and VT

migration when the Primary node fails, constraints are en-

forced that all R Backup nodes have to be 1-hop neighbors

of the Primary node. Denoting as Ni set of all neighbors of

node vi, these constraints are described as:
∑

k∈Ni
xbk,j ≥

R · xai,j , ∀j ∈ J, ∀i ∈ V.

3) Computation schedule constraints: From assumptions

A.3 and A.1, we require that computations of each VT on the

Primary and Backup nodes have to be scheduled exactly once

in a frame. This implies that all VTs have the same sampling

rate and could result in a more frequent computation of a

VT. In most automation systems the increase of the sampling

rate can not endanger the closed-loop system stability. On the

contrary, it can increase the performance of the implemented

controller if the optimal discrete-time controller is used [46].6

Thus, the constraints are expressed as:
∑FS

n=1 µ
n
j = 1, ∀j ∈

J.7

4) Communication schedule constraints: From assump-

tion A.3, closed-loop system stability is guaranteed if the

end-to-end communication delay (i.e., delay from the sensors

to the assigned controller and from the controller to the

actuators) along with the time needed for the controllers’

computation is less than FS . Thus, the first requirements

for the communication schedule is that only used paths are

5It is worth noting here that a different routing policy could be used.
However, even if that is the case these constraints could be expressed in
a similar way.

6Future extensions of this work will allow CAs to have different sampling
periods.

7In the constraint formulation we assume that each VT can be executed in
one time slot. In general this might not be the case. However, it would just
require a formulation change where instead of 1, execution time necessary for
execution of the jth VT (i.e., ej) is placed. Even more general, if the network
contains nodes with different computational power, the previous term should
be expressed as maxmi=1(x

a
i,j · e

a
j + xb

i,j · e
b
j). To simplify the notation, we

decided to use the aforementioned assumption.

scheduled and that the number of slots assigned to the used

path is exactly equal to the path’s length (i.e., number of hops

on the path):

ηl,ni,k ≤ yli,k, ∀n, 1 ≤ n ≤ FS ,

FS∑

n=1

ηl,ni,k = yli,k · d(ψl
i,k), ∀i, k ∈ V, ∀l. (1)

Additionally, the schedule has to be collision free (i.e., two

interfering nodes cannot transmit in the same time slot). To

express these constraints, for each path ψl
i,k where k is a

sensor, all links are enumerated in increasing order starting

from the link with origin at sensor k and ending with the link

with the destination at node i. Similarly, for each path ψl
i,k

where k is an actuator, enumeration starts at node i and ends

at actuator k. This is used to create the interference links table

for each pair of paths (ψl1
i1,k1

, ψl2
i2,k2

). An element (n1, n2)

is a member of the (ψl1
i1,k1

, ψl2
i2,k2

) interference table (IT) if

transmissions over the n1
st link of the path ψl1

i1,k1
interferes

with transmissions over the n2
nd link of the path ψl2

i2,k2
.

Constraints for interference-free schedule can be described as:

For all n, 1 ≤ n ≤ Fs, ∀i1, i2 ∈ V,

|
n∑

n0=1

ηl1,n0

i1,k1
− n1|+

|

n∑

n0=1

η
l2,n0

i2,k2
− n2| ≥ 1, ∀k1, k2 ∈ S ∪A, (n1, n2) ∈ IT (ψl1

i1,k1
, ψ

l2
i2,k2

)

(2)

5) Dependencies between the schedules: Communication

and computation schedules must be aligned, meaning that

measured data (i.e., data from sensors) is routed to the con-

troller prior to the VT’s activation. Also, data designated to

the actuators are forwarded after the computation of the VT:

For all n, 1 ≤ n ≤ Fs

ηl,ni,ks
≤ (1−

n∑

n0=1

µn0

j),

ηl,ni,ka
≤ (

n−1∑

n0=1

µn0

j), ∀j ∈ J, ∀i ∈ V, ∀l, ks ∈ Sj , ka ∈ Aj ,

(3)

6) Objective function: The goal of the assignment proce-

dure is to minimize the aggregate number of used links while

maximizing the aggregate link quality. In addition, we want to

maximize the use of disjoint routing. Thus, a cost for sharing

links is introduced, both in paths from sensors to controllers

and from the Primary controller to the actuators. As can be

seen, the objective function (i.e., cost) does not depend on

utilized scheduling. Therefore, it is defined as a weighted sum

f(x, y) = w1fLN + w2fLQ + w3fSL, where weights w1, w2

and w3 are used to emphasize impacts of the following cost

functions:

1) Aggregate number of used links: fLN (x, y) =
∑p

j=1(
∑

l,k,i y
l
i,k ·d(ψl

i,k))j , where d(ψl
i,k) is a distance

(i.e., length, number of hops) of path ψl
i,k.

2) Negative aggregate link quality: fLQ(x, y) =
−∑p

j=1(
∑

l,k,i y
l
i,k · LQ(ψl

i,k))j
3) Cost of the shared links:

12 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

fSL(x, y) =

p
∑

j=1

∑

1≤i≤t≤m
li,lt, k∈Sj∪Aj

ylii,k ·yltt,k ·SH(ψli
i,k, ψ

lt
t,k),

where SH(ψli
i,k, ψ

lt
t,k) is a number of links shared between

paths ψli
i,k and ψlt

t,k.

Therefore, the assignment problem can be formulated as

a binary integer programming optimization problem and

solved using some of the well-known techniques (branch

and bound) [44]. One caveat is in order. Since the problem

formulation has a large number of decision variables, even

for a small network it can be computationally expensive to

solve the problem. Thus, we translated the problem into the

satisfiability problem, by transforming each constraint into

conjunctive normal form (CNF) (for details see [40]). The

satisfiability problem is then solved using zChaff [47], a

very efficient satisfiability solver. This allows us to solve the

previous problem in real-time even for large scale networks.

B. Problem Relaxation

When only one node in the VC can transmit in each time

slot, the number of slots needed to send a message from node

v1 to node v2 is equal to the distance between the nodes. This

is used for the relaxed problem formulation, as it eliminates

the need to include communication and computation decision

variables used in the general formulation and, therefore, sig-

nificantly reduces complexity of the optimization problem. In

addition, the collision-free communication requirement, which

is the most complex set of constraints from the general for-

mulation, becomes redundant. The requirement is inherently

fulfilled with the policy that allows a single transmission per

time slot for the whole VC.

As the first step for the problem formulation, two maximum

node-disjoint paths r1i,ac
r2i,ac

are determined for each node

vi and each actuator ac. The existence of two node disjoint

paths from a node to all sensors and actuators can be checked

using Menger’s theorem [48] (for details see [40]). When two

node-disjoint paths exist for the node, using a polynomial time

algorithm (MIN-SUM 2-paths [49]) paths r1i,ac
r2i,ac

with the

minimal total length can be determined. Otherwise, path r1i,ac

is computed in polynomial time as the shortest path to the

actuator. Path r2i,ac
is calculated as the shortest path to the ac-

tuator after removing nodes from path r1i,ac
, while preserving

connectivity. Using a similar approach, for each node vi and

all its neighbors vi1 , ..., vini
(ni is a degree of node vi), a set

of ni+1 paths is created between each sensor s and the nodes.

We denote these distances as (di,s, di1,s, ..., dini
,s).

To extract the relaxed problem’s formulation we used only

2mp binary assignment variables xai,j and xbi,j defined as in

the general problem formulation. This allows us to formulate

the problem as follows:

minw1 · fLN (x) + w2 · fLQ(x),

with the respect to x ∈ {0, 1}2mp
, which contains the afore-

mentioned decision variables. The feasible set is described

with the following set of constrains:
m∑

i=1

xai,j = 1,
m∑

i=1

xbi,j = R, xai,j + xbi,j ≤ 1,

∑

k∈Ni

xbk,j ≥ R · xai,j , ∀j ∈ J, ∀i ∈ V,

∑

i∈V
j∈{1,...,p}

{
∑

s∈Sj

(xai,j · di,s +
∑

k∈Ni

xbk,j · xai,jdik,s)+

∑

a∈Aj

xai,j ·
(
d(r1i,a) + d(r2i,a)

)
}+ 1 ≤ Fs

The last constraint requires that all communication is done

within one frame and therefore, meets the timing requirements

necessary for the system’s stability. This constraint is the

only one that depends on the number of VTs and utilized

data routing. Thus, a suboptimal, yet feasible solution can

be obtained (if and only if a feasible solution exists) using

compositional analysis. In this case each control loop, oper-

ating across the same physical set of controllers is considered

separately. Optimizing only for the cost function fLN and for

each loop separately provides an optimal assignment for each

loop that uses the minimal number of communication slots

(details see in [40]). Note that if w1/w2 >> 1, the approach

provides the optimal solution for the relaxed assignment

problem in general. Also, for a sufficiently high link quality

threshold (while deriving graph GT) the impact of function

fLQ is reduced. This enables use of the compositional design,

which significantly simplifies the system analysis and schedule

extraction. Since the EVM is focused on networks with less

than 20 nodes, we are able to run the optimization algorithm

on all nodes in a VC, as the VT Assignment Procedure.

V. EVM RUNTIME OPERATION: VIRTUAL TASK

EXECUTION

Given the task migration mechanisms and the algorithms to

(re)assign tasks, we now describe the relationship between pri-

mary and backup nodes for planned and unplanned scenarios.

More specifically, we consider the criterion for triggering task

migration and the node and network schedulability analysis

that must be conducted prior to migration. To completely

address the issues in wireless networked control systems, we

must consider (a) the mechanisms for runtime adaptation, (b)

the algorithms for runtime task (re)assignment to physical

nodes and (c) the fault tolerance policy. In this paper we focus

on the first two aspects and apply them to simple network

models with non-Byzantine single node and link failures.

As the fault tolerance policy is dependent on the control

application and fault/failure model is a function of the specific

environment, we do not consider specific policies here. We aim

to address Byzantine errors such as software errors in future

work.

A. Adaptation to Planned and Unplanned Network Changes

Planned adjustments occur in situations when a Primary

node is informed of changes in VC state (e.g., when a node

detects that its battery level is below some threshold). To

determine a Backup node to migrate its task, the Primary node

has to execute computation and communication schedulability

analyses in k = 1-hop neighborhood and select a Backup

node that maximizes the communication slack value while

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 13

maintaining computation schedulability.

For unplanned changes caused by potential failures we con-

sider the following cases:

• The Primary nodes dies: Computation and communica-

tion schedulability analysis in k = 1-hop neighborhood

is initiated. Since state data of the Primary node is main-

tained at Backup nodes, a new Primary node continues

VT execution.

• A Backup node dies: The Primary node detects the

Backup has died and selects a new Backup from one of

its neighbors.

• A forwarding node dies or a link’s quality goes below

some criterion: The detection of a forwarding node failure

is performed by its predecessor/successor on the routing

path. Again, a communication schedulability analysis is

performed (only for the affected sensor and actuator) to

determine a new routing scheme.

To decrease response time for the schedulability analyses,

each node uses its idle computation time to calculate in

advance the optimal reaction to a set of potential failures.

Besides decreasing the response time, this approach enables

triggering the execution of the Assignment Procedure if it is

determined that for some failures there is no adjustments that

can meet all of the constraints. Also, if the procedure can

not derive a feasible assignment, an alarm is raised notifying

system operators to add more nodes in the network to prevent

a potential failure.

B. Communication Schedulability Analysis

The goal of communication schedulability is to determine

whether we can incrementally reassign the available communi-

cation slots due to the change in the task assignment, without

executing a global reassignment of communication slots. To

accomplish this we determine the current communication

slack and evaluate if it is sufficient for the incremental slot

reassignment. When a VT is to be migrated from a node vi
to a node vj , we define sets SV T and AV T of all sensors

and actuators respectively, related to the VT. Also, for each

s ∈ SV T we denote as vki,s a node that is k-hops away from

node vi on the route from sensor s to node vi. Similarly, for

each a ∈ AV T , vki,a denotes a node that is k-hops away from

node vi on the route to the actuator a. In addition, we denote

as N i
u the number of unused time slots in the time interval

between the first slot in which all nodes vki,s were suppose

to receive values from sensors in SV T and a first slot in the

frame in which at least one node vki,a was scheduled to receive

information from the node vi. The parameter k determines

the set of candidate backup nodes to which the task may be

reassigned.

More specifically, the goal of communication schedulability

is to determine whether we can reassign (with the respect to the

current communication schedule) the available communication

slots and slots used to send data in the k-hop neighborhood

of a node vi. The re-assignment should re-route all sensor and

actuator data from these nodes to node vj . A new feasible

communication schedule can be generated if ∆ ≥ 0, where ∆
denotes communication slack value defined as:

∆ =
∑

s∈SV T

d(vi, v
k
i,s) +

∑

a∈AV T

d(vi, v
k
i,a) +N i

u−

∑

s∈SV T

d(vj , v
k
j,s)−

∑

a∈AV T

d(vj , v
k
j,a),

where d(vp, vq) is the distance between nodes vp and vq . If

more than one task is migrated from a node, similar analysis is

performed with the previous equation adjusted to contain sums

of all sensors and actuators related to the tasks. In addition, if

tasks should be migrated from node vi to separate nodes, the

schedulability test is performed on a pairwise basis.

C. Computation Schedulability Analysis

For the computation schedulability analysis we use stan-

dard real-time response analysis [50] and the mode-change

protocol, presented in [51] and [52], adapted for the

EVM. Consider a node vi that executes a task set T =
{Ti1 , ..., Tim , V Ti1 , ..., V Tin}, where tasks Tij are local, node

specific tasks, while tasks V Tij are VTs assigned to the node

(in descending order of priority). We define a set HP V T (T)
as a set of all VTs with higher priority than local task T and,

similarly, a set HP T (V T) as a set of all node-specific tasks,

with higher priority than task V T . To allow an assignment of

a new VT, a schedulability analysis is performed where both

active and inactive tasks are considered as active. Although this

approach is conservative, it eliminates the need for repeated

schedulability analysis prior to tasks activation. Each node-

specific task is denoted as Tj = (pTj
, eTj

) and each VT

as V Tj = (pV Tj
, eV Tj

, φV Tj
, dV Tj

) (period, execution time,

offset and deadline respectively). Schedulability of a new task

set is performed by checking only the schedulability of each

task with a lower priority than the new virtual task V Tk, using

its time-demand function w(t) [50].

As mentioned in Section IV, we currently consider the case

where all VTs have the same execution period. Since execution

of a VT is triggered by the reception of sensed signals

and must be finished before its scheduled communication to

actuators, its deadline is significantly lower than its period.

Thus, from a VT’s activation till its deadline, all other VTs

can be active at most once, so for a task V Ti, i ≥ k:

wV Ti
(t) = eV Ti

+
∑

j∈HP T (V Ti)

⌈
t

tTj

⌉

· eTj
+

i−1∑

j=1

eV Tj

The equation is too conservative as it assumes that all VTs

can be activated at the same time. However, VTs are acti-

vated when a last radio message containing necessary data

is received. In addition, since all VT’s periods are multiples

of TDMA slot duration, when a communication schedule is

known, all possible offset combinations of a task activation

can be easily calculated. Therefore, for a task V Ti, released

at time ti, for all possible combinations of release times tj of

VTs with higher priority, the time-demand function for t ≥ ti
is defined as:

w
(t0,t1,...,ti−1)
V Ti

(t) = eV Ti
+

∑

k∈HP T (V Ti)

⌈
t

tTk

⌉

· eTk

14 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

+

i−1∑

j=1,
tj≤t≤ti+di

min(eV Tj
, t−tj)+

i−1∑

j=1,
ti∈[tj ,tj+dj]

min(eV Tj
, tj+dj−ti)

Here the second term corresponds to the execution of all

higher-priority native tasks; the third term corresponds to the

demand from higher-priority VTs which are activated after the

ith task’s activation, but before its deadline. Finally, the last

term describes the demand of the higher priority VTs when

the ith task is activated between the higher priority tasks’

activation and deadline. For schedulability we are interested

in time instances where w
(t0,t1,...,ti−1)
V Ti

(t) = t. These points

can be obtained using efficient recurrence procedure described

in [50]. The task is schedulable, if for all combinations of

activation times, the solution of recurrence procedure is less

than the task’s deadline (dV Ti
).

Although the previous equation seems complicated, in the

case when all VTs are executed once per frame there is only

one combination of release times (t0, t1, ..., ti−1) (i.e., only

one set of task offsets as the TDMA schedule is fixed). Even

in general case there is no need to cover a large number of

possible combinations since for most control systems, all loops

usually have the same sampling period or all sampling periods

are integer multiples of one of the periods.

A similar approach is used for schedulability analysis of a

node-specific task Ti.

VI. EVM IMPLEMENTATION

To evaluate the EVM’s performance in a real setting with

multiple coordinated controller operations, we used a factory

simulation module shown in Fig. 11(a). The FischerTechnik

model factory consists of 22 sensors and actuators (Fig. 11(b))

that are to be controlled in a coordinated and timely manner.

A block of wood is passed through a conveyor, pushed by a

rammer onto a turn table and operated upon by up to three

milling/cutting/pneumatic machines. The factory module was

initially controlled by wired programmable logic controllers

(PLCs). We converted it to use wireless control with FireFly

embedded wireless nodes [53] controlling all sensors and

actuators via a set of electrical relays. FireFly is a low-power

platform based on Atmel ATmega1281 8-bit microcontroller

with 8KB of RAM and 128KB of ROM along with a Chipcon

CC2420 IEEE 802.15.4 standard-compliant radio transceiver.

FireFly nodes support tight global hardware-based time syn-

chronization for real-time TDMA-based communication with

the RT-Link protocol [43]. The EVM also works on TI

MSP430 architectures.

In our experiments we demonstrate:

1. On-line capacity expansion when a node joins the VC.

2. Redistribution of VTs when adding/removing nodes.

3. Planned VT migration triggered by the user.

4. Unplanned VT migration due to a node or a commu-

nication link failure.

5. Multiple coordinated work-flows.

We tested the setup with a batch of 10 input blocks con-

sisting of 3 different types which require different processing

procedure. This is an example of the logical benefits of the

EVM as it enables a more agile form of manufacturing. Details

about the experiments, along with the videos can be seen in

[54].

VII. EVM CASE STUDY

As this is an early effort to describe the main functionalities

of the EVM, we limit our case study to a simple simulated

control network. We simulated the performance of the EVM

for the case when a wireless networks is used for control in

the Shell Problem, a well-known problem from process control

theory concerning control of a heavy oil fractionator [55], [56].

The controlled variables (outputs) are differences of the top

product end point (Y 1) and the bottom reflux temperature

(Y 2) from predefined (reference) values. Fig. 12(a) presents a

Simulink framework used for the simulation, where Controller

(shown in Fig. 7) and Plant are similar to models from [55].

The major difference is that Plant’s dynamics was sped up to

be able to test system’s performance.

The functional description of the VT, shown in Fig. 8,

is derived as described in Section II. Since all continuous

outputs of the Plant have to be sampled before processed

with a discrete-time controller, the sampling period defined

in SampleAndHold blocks in the Simulink model is used to

extract the period of each VT.

Fig. 12(b) presents the initial topology of the VC along

with the Primary and the Backup node. To be able to address

the effects of message drops, we assigned each link in the

network a Packet Delivery Ratio (PDR) that is less than 1

(i.e., 100%). A TDMA protocol with 32 slots per frame is

used for communication between nodes, where 24 slots were

used for transfer of data related to the control problem, while

8 remaining slots per frame were used to exchange messages

about VC’s status. The system response to a series of different

step inputs (a new one was set to arrive every 60s) for the

initial topology is presented in Fig. 12(d). Also, a scenario

was simulated where the initial topology changes after some

of the links fail (as shown in Fig. 12(c)). Fig. 12(e) presents

the response of the system without the EVM, where only re-

routing algorithms are used without changing positions of the

Primary and Backup nodes. This results in a system response

that rapidly deteriorates. The system becomes unstable, due to

increase in end-to-end communication time from all sensors

to the Primary node to all actuators.

Fig. 12(f) shows how the EVM’s adaptation to unplanned

changes in link quality keeps the system’s response similar to

that in the initial topology. For the case presented in Fig. 12(f),

we simulated the system when at time t = 60s the network

topology changes to that presented in Fig. 12(c). Due to the

task re-assignment, one execution of the control algorithm is

omitted, but as it can be seen, without significant influence

to the overall system performance. This was expected since,

from the perspective of the Plant, this case is equivalent to

packet drops, which already occurs due to the fact that PDR

is less than 100%.

VIII. LIMITATIONS OF THE EVM APPROACH

• Complexity of Consensus: The complexity of reaching

consensus forces our current implementation to maintain a

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 15

(a) Work-cell module

Sensors Actuators
Component Proximity

Home
Proximity

Out
IR

Position
Non-reversing

Motor
Reversing

Motor
Conveyor belt X
Ram X X X X
Horizontal slotting mill
• Horizontal direction
• Vertical direction

X
X

X
X

 X X

Vertical Gluing Machine X X X X

Table Rotation X X
Vertical boring machine X X X

(b) Module components
Fig. 11. FischerTechnik factory module with 22 sensors and actuators

substantial amount of state information with a relatively high

update frequency. This limits the scalability of the current

EVM approach to small networks with ≤20 nodes. While

this is ‘good enough’ for a large number of small embedded

wireless control applications such as natural gas processing

with slowly varying operating parameters, it is essential to

explore distributed algorithms to maintain state across the

virtual component.

• Centralized Approach: The centralized algorithm has been

used to solve the assignment problem. This limitation mo-

tivated us to explore a distributed solution for incremental

strategies for control-loop implementation. Using the entire

node population within a virtual component as a distributed

controller would remove the need for the virtual task’s assign-

ment procedure.

So far, we presented an initial stab at a problem that

unravels series of difficulties at the heart of networked Cyber-

Physical Systems. We have investigated several fundamen-

tal challenges with the use of wireless networks for time-

critical closed-loop control problems. Our approach was to

build the networking infrastructure to maintain state across

physical node boundaries, allowing tasks to be decoupled

from the underlying unreliable physical substrate. We present

a modular architecture used for control applications in wire-

less sensor/actuator/controller networks that allows component

integration and system reconfiguration at runtime, without

any negative effects on the execution of already assigned

functionalities. The EVM enables a simple transition from the

controller design in widely used simulation tools to the actual,

physical ‘plug-and-play’ deployment for wireless networks.

To overcome the shortcomings of EVM, we now present the

Wireless Control Network (WCN) approach for distributed in-

network control.

IX. PART II: WIRELESS CONTROL NETWORKS

We consider the problem of stabilizing a plant with a

multi-hop network of resource constrained wireless nodes. We

present a distributed scheme used for control over a network

of wireless nodes. As opposed to traditional networked control

schemes where the nodes simply route information to and from

a dedicated controller (perhaps performing some encoding

along the way), our approach, Wireless Control Network

(WCN), treats the network itself as the controller. In other

words, the computation of the control law is done in a fully

distributed way inside the network. In the WCN approach,

at each time-step, each node updates its internal state to

be a linear combination of the states of the nodes in its

neighborhood. This causes the entire network to behave as a

linear dynamical system, with sparsity constraints imposed by

the network topology. We demonstrate that with observer style

updates, the WCN’s robustness to link failures is substantially

improved. Furthermore, we show how to design a WCN that

can maintain stability even in cases of node failures. We

also address the problem of WCN synthesis with guaranteed

optimal performance of the plant, with respect to standard

cost functions. We extend the synthesis procedure to deal with

continuous-time plants and demonstrate how the WCN can be

used on a practical, industrial application, using a process-in-

the-loop setup with real hardware.

Given the fundamental unreliability of wireless communica-

tion, the WCN method handles topological constraints while

maintaining mean square stability for packet drop rates up to

20% for a specific network topology and plant. This bridges

the gap between the basic WCN and the theoretical upper

bound of robustness to packet drops [21]. We also present a

method to synthesize a WCN robust to a certain level of node

failures, before we extended the synthesis procedures to allow

for the use of the WCN for control of continuous-time plants.

Finally, we illustrate the use of the WCN on a real-world

industrial case study, for control of a distillation column.

While in the past efforts, we consider scenarios where the

network topology is already set, in recent efforts [23] we have

investigated a dual problem, “how to synthesize the network

so that a stable WCN configuration exists?” The topological

conditions from [23], along with the results from [20] provide

the essential building blocks for an integrated decentralized

wireless control network design framework. Early experiments

in an industrial process control case study of a distillation col-

umn in a process-in-the-loop test-bed to demonstrate optimal

control of continuous-time physical processes which maintain

system stability under the presence of node and link failures.

A. An Intuitive Overview of the WCN

The role of feedback control is to apply inputs to the plant

(based on observed outputs) in order to elicit the desired

behavior. The exact mapping between observed behavior and

applied inputs depends on a mathematical model of the plant,

describing how inputs affect the system (over time). Here, we

start with a common discrete-time, linear time-invariant model

16 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

Y4

4

Y3

3

Y2

2

Y1

1

Zero-Order

Hold3

Zero-Order

Hold2

Zero-Order

Hold1

VT_Controller

in1

in2

in3

out1

out2

out3

out4

VC

In1

In2

In3

In4

Sensor1

Sensor3

Sensor2

Actuator1

Actuator2

Actuator3

Actuator4

Out5

Out6

Out7

Scope

Plant

in1

in2

in3

in4

Y3

Y4

out1

out2

out3

(a) Simulink model for Shell problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 0.85

 0.85

 0.9

 0.98

 0.9

 0.96

 0.96

 0.85

 0.85

 0.98

 0.85

 0.87

 0.85

 0.87

 0.9

 0.89

 0.87

 0.87
 0.85

 0.85

 0.9

 0.87

 0.87

 0.9

 0.9

 0.9

 0.87

 1

 0.9

 0.85

 0.9

 0.96

 0.9

 0.98

(b) Initial network topology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 0.85

 0.85

 0.9

 0.98

 0.9

 0.96

 0.96

 0.85

 0.85

 0.98

 0.87

 0.85

 0.87

 0.9

 0.87

 0.85

 0.85

 0.87

 0.87

 0.9

 0.9

 0.9

 0.87

 1

 0.9

 0.85

 0.9

 0.96

 0.9

 0.98

(c) Topology after link failures

0 100 200 300 400 500 600 700 800
-2

-1

0

1

2

Time [s]

0 100 200 300 400 500 600 700 800
-4

-2

0

2

4

Time [s]

(d) System response for initial configuration, showing
outputs Y1 (top) and Y2 (bottom)

0 100 200 300 400 500 600 700 800
-2

-1

0

1

2

Time [s]

0 100 200 300 400 500 600 700 800
-4

-2

0

2

4

Time [s]

(e) System response when EVM is not used (when
only re-routing is used), Y1 (top) and Y2 (bottom)

0 100 200 300 400 500 600 700 800
-2

-1

0

1

2

Time [s]

0 100 200 300 400 500 600 700 800
-4

-2

0

2

4

Time [s]

(f) System response when EVM adapts to changes in
network conditions, Y1 (top) and Y2 (bottom)

Fig. 12. Simulation of EVM behavior when used for ’Shell problem’ control; Nodes: green - actuators, red - sensors, blue circle - the Primary node, orange
circle - the Backup node.

of the form:8

x[k + 1] = Ax[k] +Bu[k] +Bwuw[k]

y[k] = Cx[k],
(4)

where x ∈ Rn and y ∈ Rp denote the plant’s state and output,

u ∈ Rm is the plant’s (controllable) input, and uw ∈ Rmw is

the disturbance input.9 Accordingly, the matrices A,B,Bw,C

8In Section XIII we will show how continuous-time plants can be cast in
this framework using discretization.

9We do not have any control over the disturbances.

have suitable dimensions.

Standard dynamical feedback controllers collect the ob-

served plant outputs y[k] and generate the control input u[k]
as the output of a linear system of the form:

xc[k + 1] = Acxc[k] +Bcy[k]

u[k] = Ccxc[k] +Dcy[k].
(5)

The vector xc[k] denotes the state of the controller, and the

matrices Ac,Bc,Cc and Dc are designed using standard tools

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 17

from control theory, to ensure that the control inputs are

stabilizing. Depending on the control method used, the state of

the controller can often be as large as the state of the system

itself.

In the above traditional approach to controller design, a

wireless network would simply be placed between the con-

troller and the plant to carry information back and forth. The

goal of our work is to derive a truly networked and fully

distributed control scheme, where the collective computation

and communication capabilities of the wireless nodes are fully

leveraged to compute the control inputs in-network. Intuitively,

we propose a simple scheme for each node in the network to

follow (using only information from its nearest neighbors at

each time-step) that results in the desired network behavior.

Essentially, we would like each wireless node to act as a small

dynamical controller, with two main differences: (i) the state

of the controller at each node will be constrained to be rather

small (in order to account for resource and computational

constraints), and (ii) in its updates, each node only uses

the states of its nearest neighbors (which could include the

plant’s outputs, if the node is within transmission range of the

outputs). Note that the latter condition precludes the need to

route information from the plant to each controller in order

for it to perform its update. In the rest of this section, we will

make these conditions more mathematically precise.

B. Model of the Wireless Control Network

To model the WCN we consider the basic WCN setup from

Fig. 1(c), where the plant is to be controlled using a multi-

hop, fully synchronized wireless network with N nodes. In

this paper, we extend the proposed scheme to allow for the

design of a WCN that applies inputs in an ‘optimal’ manner

(according to a cost function that we will define later). The

plant model is given by (4), where the output vector y[k]
contains the plant’s output measurements provided by the

sensors s1, . . . , sp, while the input vector u[k] corresponds to

the signals applied to the plant by actuators a1, . . . , am. The

wireless network is described by a graph G = {V, E}, where

V = {v1, v2, . . . , vN} is the set of N nodes and E ⊆ V × V
represents the radio connectivity (communication topology) in

the network (i.e., edge (vj , vi) ∈ E , if node vi can receive

information directly from node vj).

As mentioned earlier, our scheme views each node vi as

a (small) linear dynamical controller, with (possibly vector)

state zi. Each node updates the state of its controller as a

linear combination of the states of its neighbors and its own

state. The state update for node vi can also include a linear

combination of the plant outputs from all plant sensors in vi’s
neighborhood.

For example, consider the network presented in Fig. 13,

where at the beginning of a time frame each node has an initial

state value denoted by zi (Fig. 13(a)). If each node maintains

a scalar state, the size of the state is just 2 bytes.10 In the

first time slot of a frame (Fig. 13(b)) node v4 transmits its

state, and in the second slot node v5 transmits the state, etc.

10Given that standard analog-to-digital converters have a precision of 12-16
bits, two bytes suffice for scalar values.

Finally, in the 6th slot node v3 is the last node in the frame to

transmit its state (Fig. 13(g)). This results in a communication

schedule as depicted in Fig. 13(h). After slot 6, node v4 is

informed about all its neighbors’ states, which enables it to

update its state by activating the WCN task. The task has to

compute the updated state value before the node is scheduled

for transmission in the next frame.
In the general case, if zi[k] denotes the ith node’s state at

time step (i.e., communication frame) k, the runtime update

procedure is:

zi[k+1] = wiizi[k] +
∑

vj∈Nvi

wijzj [k] +
∑

sj∈Nvi

hijyj [k], (6)

where the neighborhood of a vertex v is represented as Nv

and yj [k] is the measurement provided by sensor sj . We will

model the resource constraints of each node in the network

by limiting the size of the state vector that can be maintained

by each node.11 Note the similarity of the update (6) to the

state update equation for traditional dynamical controllers of

the form (5); the state zi[k] plays the role of xc[k], the weights

wii and wij play the role of Ac and the columns of Bc,

respectively.
To enable interaction between the network and the plant,

each actuator ai applies input ui[k], which is computed as a

linear combination of states from the nodes in the neighbor-

hood of the actuator:

ui[k] =
∑

j∈Nai

gijzj [k]. (7)

Once again, note the resemblance of this applied input to the

input applied by a standard controller of the form (5). There-

fore, the behavior of each node in the network is determined

by values wij , hij and gij . Aggregating the state values of all

nodes at time step k into the value vector z[k], we see that the

above individual controllers at each node collectively cause the

entire network to act as a dynamical controller of the form:

z[k + 1] =








w11 w12 · · · w1N

w21 w22 · · · w2N

.

.

.
.
.
.

. . .
.
.
.

wN1 wN2 · · · wNN








︸ ︷︷ ︸

W

z[k]+

+








h11 h12 · · · h1p

h21 h22 · · · h2p

.

.

.
.
.
.

. . .
.
.
.

hN1 hN2 · · · hNp








︸ ︷︷ ︸

H

y[k]

= Wz[k] +Hy[k] ,

u[k] =








g11 g12 · · · g1N
g21 g22 · · · g2N

.

.

.
.
.
.

. . .
.
.
.

gm1 gm2 · · · gmN








︸ ︷︷ ︸

G

z[k] = Gz[k]

for all k ∈ N. Since for all i ∈ {1, . . . , N}, wij = 0 if

vj /∈ Nvi , hij = 0 if sj /∈ Nvi , and gij = 0 if vj /∈ Nai

11To present our results, we will focus on the case where each node’s state
is a scalar. The general case, where each heterogeneous node can maintain a
vector state with possibly different dimensions, can be treated with a natural
extension of our approach (e.g., see [20]).

18 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

��

��

��

�� ��

��

�����

�����

������

�������

��������

����	��

ABC�DEF�FB����B���

��

��

��

�� ��

������

�

�����

������

�������

��������

����	��

A�C����������� ��BE��F��

��

��

��

�� ��

��

�����
�����

������

�������

��������

����	��

A�C����������� ��BE��F��

��

��

��

�� ��

��

�����
�����

������

�������

��������

����	��

A�C����������� ��BE��F��

��

��

��

�� ��

��

�����
�����

������

�������

��������

����	��

A�C����������� ��BE��F��

��

��

��

�� ��

��

�����
�����

������

�������

��������

����	��

A�C����������� ��BE��F��

��

��

��

�� ��

��

�����
�����

������

�������

��������

����	��

A�C����������� ��BE��F�� A C�!���"EF�B�F�E��� ��"��

� � ��� �

v
4

informed about

its neighbors states

v
4

updates its state

��	ABCDEFB��EB

Fig. 13. An illustration of the WCN scheme for a simple network.

the matrices W,H and G are structured, with sparsity con-

straints determined by the network topology at design time.

Throughout the rest of the paper, we will define Ψ to be

the set of all tuples (W,H,G) ∈ RN×N × RN×p × Rm×N

satisfying the aforementioned sparsity constraints. Denoting

the overall system state (plant’s state and states of all nodes

in the network) by x̂[k] =
[
x[k]T z[k]T

]T
, the closed-loop

system evolves as:

x̂[k + 1] =

[
A BG

HC W

]

︸ ︷︷ ︸

Â

[
x[k]
z[k]

]

︸ ︷︷ ︸

x̂[k]

+

[
Bw

0

]

︸ ︷︷ ︸

B̂

uw

= Âx̂[k] + B̂uw[k].

(8)

To use the WCN runtime scheme it is essential to determine

an appropriate set of link weights (wij , hij and gij) at design-

time, so that the closed loop system is asymptotically stable.12

When there are no disturbances (i.e., uw[k] ≡ 0), an initial

procedure was proposed for the basic WCN that guarantees

that the closed-loop system is stable, or Mean Square Stable

(MSS) if the communication links are unreliable.13

1) Advantages of the WCN: The WCN introduces very low

communication and computation overhead. The linear iterative

runtime procedure (6) is computationally very inexpensive

as each node only computes a linear combination of its

value and values of its neighbors. This makes it suitable for

resource constrained, low-power wireless nodes (e.g., Tmote).

Furthermore, the communication overhead is also very small,

as each node needs to transmit only its own state once per

frame. In the case when a node maintains a scalar state it

transmits only 2 bytes in each message, making it suitable to

12A linear system x[k + 1] = Ax[k] is asymptotically stable if for any
x[0], limk→∞ x[k] = 0. This is equivalent to saying that all eigenvalues of
A have magnitude less than 1.

13A switched system described as x[k+1] = Aθ(k)x[k], where subscript
θ(k) describes time-variations caused by (probabilistic) drops of commu-
nication packets, is mean-square stable if for any initial state (x[0], θ(0)),
limk→∞ E

[
‖x[k]‖2

]
= 0, where the expectation is with respect to the

probability distribution of the packet drop sequence θ(k) [57], [58].

combine this scheme with periodic message transmissions in

existing wireless systems.

Another key benefit is that the WCN can easily handle

plants with multiple geographically distributed sensors and

actuators, a case that is not easily handled by the “sensor →
channel → controller/estimator → channel → actuator” setup

commonly adopted in networked control design. The existence

of a centralized controller might impose a requirement that the

sampling time of the plant is greater than or equal to the sum of

communication delays, from sensors to the controller and from

the controller to the actuator, along with the time required for

the computation of the control algorithm. The WCN does not

rely on the existence of centralized controllers, and inherently

captures the case of nodes exchanging values with the plant

at various points in the network. Therefore, when the WCN is

used, the network diameter does not affect the sampling period

of the plant.

Finally, the WCN utilizes a simple transmission schedule

where each node is active only once during a TDMA cy-

cle and the control-loop does not impose end-to-end delay

requirements. This allows the network operator to decouple

the computation schedule from the communication schedule,

which significantly simplifies closed-loop system design and

enables compositional design and analysis. As long as each

node can send additional states in a single transmission packet,

and schedule computation of additional linear procedures,

adding a new control loop will not affect the performance

of the existing control loops. For example, consider IEEE

802.14.5 networks that have the maximal packet size of 128

bytes. If each plant is controlled using the WCN scheme where

all nodes maintain a scalar 16 bit state value, then up to 64

plants can be controlled in parallel.

In this paper, we provide an enhanced WCN scheme that

maintains all of these desirable properties, and further incorpo-

rates optimality and robustness metrics into the basic scheme.

2) Synchronization Requirements: For the network sizes

considered here, it is necessary to use either hardware-

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 19

based out-of-band synchronization or some of the built-in

synchronization protocols that guarantee low synchronization

error between neighboring nodes (e.g., the approach described

in [59] guarantees that the maximal synchronization error

between neighboring nodes is less than 1 µs). Even for 10 µs
synchronization error between neighboring nodes, for large

scale networks with the network diameter less than 100 nodes,

maximal synchronization error between nodes is less than 1ms,

which is significantly smaller than standard sampling rates of

the plant when WCN is used. For example, if communication

frames that consist of 16 slots are used, where each slot

is 10 ms wide, the sampling period of the plant equals to

160 ms. In this case, synchronization errors would take less

than 1% of the sampling period. We employ a synchronized

network and use the RT-Link [43] time synchronized protocol

in our evaluation. Time synchronized network protocols are

the norm in the control automation industry, and two recent

standards, WirelessHART[60] and ISA 100.11a [61] utilize a

time division multiplexing link protocol.

X. SYNTHESIS OF AN OPTIMAL WCN

In this section we present a design-time method to determine

a WCN configuration (i.e., link weights for a network with

predefined topology) that minimizes effects of the disturbances

acting on the system. More specifically, consider the model of

the closed-loop system from (8), and assume that we want

to minimize the influence of the disturbance input uw on

the vector ŷ = Ĉx̂[k], for some matrix Ĉ. For example,

if we would like to focus on minimizing the effects on the

plant’s state x, we would define Ĉ =
[
I 0

]
. Thus, we can

consider the vector ŷ as the ‘output’ of the system:

x̂[k + 1] = Âx̂[k] + B̂uw[k]

ŷ = Ĉx̂[k].
(9)

To determine the effect of the disturbance on the system’s

outputs, it is necessary to define a unit of measure to capture

the ‘size’ of discrete-time signals. We will use the norms:

‖v‖ℓ2 ,
(∑∞

k=0 ‖v[k]‖2
)1/2

and ‖v‖ℓ∞ , supk≥0 ‖v[k]‖.

Furthermore, the notion of a system gain is introduced to

classify the worst-case system response to limited energy input

disturbances.

Definition 1 ([62]): System gains for the discrete-time sys-

tem (9) are defined as:

• Energy-to-Peak Gain: γep = sup‖uw‖ℓ2
≤1 ‖ŷ‖ℓ∞

• Energy-to-Energy Gain: γee = sup‖uw‖ℓ2
≤1 ‖ŷ‖ℓ2

We will require the following result from [63].

Theorem 1: Suppose that the system (9) is asymptotically

stable and consider any nonnegative γ ∈ R.

(a) γep < γ if and only if there exist matrices X ≻ 0,Υ � 0
and Z such that Υ ≺ γI and

R(X ,Z,Υ,X−1) =







X Z Â B̂

ZT Υ Ĉ 0

ÂT ĈT X−1 0

B̂T 0 0 I






≻ 0 (10)

(b) γee < γ if and only if there exist matrices X ≻ 0,Υ � 0
such that Υ ≺ γ2I and (10) holds for Z = 0.

Only the matrix Â contains the WCN parameters, aggre-

gated in the structured matrices W,G,H (from (8)). Our goal

is to determine matrices W,G,H that satisfy the imposed

structural constraints, along with matrices X ,Z,Υ, for which

the value γ is minimized.

The constraint (10) is linear with respect to all variables,

except the matrix X (due to the presence of the term X−1).

This term causes the problem of solving the matrix inequality

to be non-convex. To ameliorate this issue and efficiently solve

the optimization problem, we linearize the X−1 term. As

shown in [63], the Taylor series expansion of X−1 ‘around’

any matrix Xk is

LIN(X−1,Xk) = X−1
k −X−1

k (X − Xk)X−1
k . (11)

With the above linearization we obtain a linear matrix

inequality (LMI) for the constraint 10. As in [63], [64], we

can now define an iterative algorithm to minimize γ, while

ensuring that the constraint from (10) is satisfied. This is

achieved by replacing the term X−1 with LIN(X−1,Xk) in

each iteration, which results in Algorithm 1. Note that Â(W,

H, G) denotes the matrix Â obtained from matrices W, H,

G as defined in (8). Finally, for γ obtained from Algorithm 1,√
γ should be used if we had optimized for γee.

Consider the sequence {γk}k≥0 obtained from Algorithm 1.

As shown in [63], the linearization from (11) guarantees that

for each k ≥ 0, in step k+1 there exists a feasible matrix in an

open neighborhood of the point Xk for which there exists γ,

such that γ ≤ γk. Since γk+1 is the minimum in that iteration,

it follows that γk+1 ≤ γ. Thus, the sequence {γk}k≥0 is non-

increasing and bounded (γk ≥ 0), meaning that it will always

converge. Since we are optimizing a convex function over a

non-convex set, by linearizing the constraints we might obtain

a sub-optimal WCN configuration. The final result and the

convergence rate depend on the initial point (from Step 1. of

the algorithm). Finally, the smallest ǫ for which we can find

an optimal controller can be obtained using bisection on the

parameter ǫ.

XI. WCN: ROBUSTNESS TO LINK FAILURES

We now describe the main limitation of the basic WCN,

and extend the WCN scheme to improve its robustness to link

failures.

The unreliability of wireless communication links is one

of the main drawbacks when wireless networks are used for

control. When communication links in the feedback loop fail

according to a given probability distribution, the notion of

asymptotic stability is typically relaxed to settle for mean

square stability (MSS), where the expected value of the norm

of the state stays bounded. For the basic WCN, we proposed

a design-time procedure that can be used to extract a stabi-

lizing configuration that guarantees MSS despite unreliable

communication links [20]. For example, consider the system

from Fig. 14 with a scalar plant, where α = 2 (the plant is

unstable), and assume that the link between node v2 and the

actuator is reliable (i.e., never drops packets). The basic WCN

20 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

Algorithm 1 Design-time procedure used to extract optimal

WCN configuration

1. Set ǫ > 0, k = 0. Find a feasible point X0,Y0,Υ0 ≻ 0,

Â(W0, H0, G0), such that R(X0,Z,Υ0,Y0) ≻ 0, X0 �
Y−1
0 and (W0,H0,G0) ∈ Ψ. If a feasible point does not

exist, it is not possible to stabilize the system with this

network topology.

2. At iteration k (k ≥ 0), from Xk obtain the matrix Xk+1

and scalar γk+1 by solving the LMI problem

Xk+1 = arg min
X ,Z,Υ,W,H,G,γk+1

γk+1 (12)

R(X ,Z,Υ, LIN(X−1,Xk)) ≻ 0, (13)

Υ ≺ γk+1I, (14)

(W,H,G) ∈ Ψ, X ≻ 0,Υ � 0 (15)

if γee is being optimized, add the constraint Z = 0.

3. If γk+1 < ǫ stop the algorithm. Otherwise, set k = k+1
and go to the step 2.

scheme, where each node maintains a scalar state, guarantees

that the closed-loop system is MSS for probabilities of packet

drops ≤ 1.18%.

To place this result in context, it is worth comparing it

with the theoretical limit of robustness in lossy networks

from [21]. The work in [21] considers a system with a plant

controlled by a centralized controller, which is connected to

the plant using a single wireless link between a sensor and

the controller. In addition, the controller is connected to the

actuators with a set of wired connections. It was shown that

for this setup, the system can not be stabilized with a linear

controller for probability of message drops p greater than
1

|λmax|2
, where |λmax| denotes the maximal norm of the plant’s

eigenvalues (i.e., eigenvalues of A from (4)). For the plant

from Fig. 14, this would mean that a centralized controller in

the aforementioned setup cannot provide MSS of the plant if

the probability of message drops is higher than 25% (since

α = 2). This value is significantly larger than the 1.18% value

obtained when the basic WCN scheme is used. We now show

how the basic WCN formulation presented in (6), (7) can be

modified to significantly improve tolerance to packet drops.

A. WCN with Observer Style Updates

To improve WCN robustness to independent link failures,

we now allow each node in the network to use different

weights in each time step, depending on which neighbors’

transmissions were successfully received. Thus, we define the

���

v�

x�k����αx�k��u�k��

y�k��x�k�

v�

y�k�u�k�

���

� �

Fig. 14. An example of the WCN: A plant with a scalar state controlled by
a WCN.

update procedure as:

zj [k + 1] = w̃jjzj [k] +
∑

i∈Nvj

w̃jizi[k],
14 (16)

where w̃ji = 0 if the message from the node vi was not

received, or wji otherwise.15 More importantly, w̃jj depends

on a newly introduced set of link weights (qji): w̃jj = wjj −∑

i∈Nvj
q̃ji. Here, q̃ji = 0 if the message from the node vi was

not received, and qji (a free parameter that will be carefully

designed) otherwise.

To model the WCN that employs the above scheme, we need

to model the links in the network. We utilize the approach

proposed in [58], where each unreliable link ξji = (vi, vj)
(i.e., vi → vj) can be modeled as a memoryless, discrete,

independent and identically distributed (IID) random process

ξji. Here, IID implies that the random variables {ξji[k]}k≥0

are IID.16 For each link, these random processes map each

transmitted value tji into a received value ξji[k]tji (see

Fig. 15).

With this link model, (16) can be described as:

zj [k + 1] = (wjj −
∑

i∈Nvj

ξjiqji)zj [k] +
∑

i∈Nvj

ξjiwjizi[k],

Remark 1: If we consider the case with reliable commu-

nication links, the update procedure for each node vj in the

network can be described as:

zj [k + 1] = wjjzj [k] +
∑

i∈Nvj

(wjizi[k]− qjizj [k]), (17)

Since the above equation has the standard observer struc-

ture [65], we refer to this scheme as the WCN with observer

style updates (as in [37]).

Following the approach from [58], each link described with

a random process ξji can be specified with a fixed gain,

corresponding to the mean value of the random variable, and

the zero-mean random part: ξji = µji +∆ji. For example, if

each link (i.e., random process ξji) is described as a Bernoulli

process with probability pji ≤ 1 (i.e., the link delivers the

transmitted message with probability pji), then µji = pji and

∆ji can have values −pji and 1−pji, with probabilities 1−pji
and pji, respectively. Therefore, the above procedure becomes:

zj [k + 1] = (wjj −
∑

i∈Nvj

µjiqji)zj [k] +
∑

i∈Nvj

µjiwjizi[k]

+
∑

i∈Nvj

∆ji(wjizi[k]− qjizj [k]).

We define rt[k] := (wjizi[k]− qjizj [k]), for each link t =
(vi, vj). Also, for each link t = (si, vj) we denote rt[k] :=
(hjiyi[k]− qjizj [k]). After aggregating all of the rt[k]’s in a

vector r[k] of length Nl (where Nl is the number of links),

we obtain:

14A similar update is introduced for nodes that receive sensor values. This
part has been omitted for ease of exposition.

15Although these weights are technically time varying (i.e., they depend on
k), we use this notation for simplicity.

16We will address these assumptions later in this section.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 21

zi
ξji

ξjizivi vj�

wji vjvi
zi �jiwji

�jiwjizi

�ji
�jiriri

�

wji

Fig. 15. Communication over a non-deterministic channel; (a) A link between
nodes vi and vj ; (b) Link transformation into a robust control form.

r[k] = Jor

[
y[k]
z[k]

]

= Jor

[
C 0

0 IN

]

︸ ︷︷ ︸

Ĵor

x̂[k]. (18)

Each row of the matrix Jor ∈ RNl×(N+p) contains up to two

nonzero elements, equal to a gain wt, ht, gt or −qt.
This allows us to model the behavior of the closed-loop

system with unreliable communication. Specifically, the up-

date equation for each node vj is:

zj [k + 1] = (wjj −
∑

i∈Nvj

µjiqji)zj [k] +
∑

t=(vi,vj)

µtwtzi[k]

+
∑

t=(si,vj)

µthtyi[k] +
∑

t=(vi,vj)

∆t[k]rt[k] +
∑

t=(si,vj)

∆t[k]rt[k]

Similarly, the input value applied by each actuator at time k
is:

uj [k] =
∑

t=(vi,aj)

µtgtzi[k] +
∑

t=(vi,aj)

∆t[k]rt[k].

Finally, denoting ∆[k] = diag({∆t[k]}Nl

t=1), the above

expressions can be written in vector form as:

z[k + 1] = Wµz[k] +Hµy[k] + Jdst
v ∆[k]r[k], (19)

u[k] = Gµz[k] + Jdst
u ∆[k]r[k], (20)

where all elements of matrices Wµ,Hµ and Gµ (except the

diagonal entries of Wµ) are of the form µjiwji, µjihji and

µjigji, respectively. The diagonal entries of Wµ are of the

form wjj−
∑

i∈Nvj
µjiqji. The binary matrices Jdst

v and Jdst
u

are designed in a way that each row of the matrices selects

elements of the vector ∆[k]r[k] that are added to the linear

combinations calculated by the nodes and the actuators. If we

denote Jdst =
[
J
dst
u

J
dst
v

]

the overall system with unreliable links

can be modeled as:

x̂[k+1] =

[
A BGµ

HµC Wµ

]

︸ ︷︷ ︸

Âµ

x̂[k]+

[
B 0

0 IN

]

Jdst

︸ ︷︷ ︸

Ĵdst

∆[k]r[k],

(21)

with r[k] given by (18). Now, using the same approach as

in [58], [20], the following theorem can be proven.

Theorem 2: The system from (21) is MSS if and only if

there exist matrices X ,Y ≻ 0 and scalars α1, ..., αNl
such

that
[

X − Ĵdstdiag{α}(Ĵdst)T Âµ

ÂT
µ Y

]

≻ 0 (22)

Y = X−1 (23)

αi ≥ σ2
i (Ĵ

or)iY−1(Ĵor)Ti , ∀i ∈ {1, . . . , Nl} (24)

where (Ĵor)i denotes the ith row of the matrix Ĵor.

A procedure based on LMIs, with the same structure as

Algorithm 1, can be used in this case to compute a WCN

configuration that guarantees MSS of the closed-loop system

with error-prone links. The difference from Algorithm 1 is that

in Step 2, the following problem should be solved:

Xk+1 = arg min
X ,Y,Υ,W,H,G

tr(Υ)

Y − LIN(X−1,Xk) ≺ Υ, X � Y−1

such that the constraints from (22),(24),(15) are valid,

where tr(A) denotes the trace of the matrix A. Note that the

above algorithm adds only one additional LMI constraint for

each link in the network.

1) Validity of the Assumptions: While developing the model

of the WCN from (19), we have assumed that all links in

the network are memoryless and independent. Memoryless

channels can be obtained if channel hopping is used at

the network layer [66]. However, the physical placement of

the nodes might introduce correlation between some of the

network links.

If these IID assumptions are not valid (or too simplistic),

we must model correlation between links along with more

complex link failures (such as those induced by a Markov

process). In these cases, an approach similar to [57] can

be used, which would result in an exponential number of

additional constraints introduced to deal with link failures

(compared to the linear number of additional constraints

introduced under the IID assumption of independent and

memoryless channels). Except for very large scale systems, the

observer style update procedure is practical as the computation

of WCN configurations (W,H,G) is only required at design

time.

2) Evaluation: We evaluated the performance of the pro-

posed scheme by modeling all links as independent Bernoulli

processes. To analyze robustness of the WCN with observer

style updates, we first analyzed the performance of WCNs

with N ≥ 2 nodes that create a complete graph. The WCN

is used for control of a single-state plant shown in Fig. 14

(with α > 1). Node v1 receives the plant output y[k] = x[k]
at each time-step k, and the input to the plant is derived

as a scaled version of the transmission of the node v2 (i.e.,

u[k] = gz2[k] for a scalar g). Using the bisection method

from [57], we extracted the maximal probabilities of message

drops (pm) for which there exists a stabilizing configuration

that ensures MSS.

We considered two scenarios: In the first scenario, we have

compared the performance of the basic WCN with that of

the WCN with observer style updates (denoted oWCN). We

analyzed networks where all the links are unreliable, described

with the same probability of packet drops p (including the

links between the plant and the network nodes). The results

are presented in Fig. 16(a). In addition, we have investigated

the case where the link between node v2 and the plant’s

actuator is reliable (without any packet drops). The results are

shown in Fig. 16(b). As can be observed, the proposed scheme

significantly improves system robustness to link failures. For

22 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

WCN WCN oWCN oWCN

(scalar state) (R2 state) (scalar state) (R2 state)

N = 2 pm = 0.69% pm = 0.72% pm = 1.64% pm = 1.82%
N = 3 pm = 0.74% pm = 0.77% pm = 1.66% pm = 1.88%
N = 4 pm = 0.77% pm = 0.79% pm = 1.66% pm = 1.88%

(a) With all links being unreliable

WCN WCN oWCN oWCN

(scalar state) (R2 state) (scalar state) (R2 state)

N = 2 pm = 1.18% pm = 1.30% pm = 10.46% pm = 17.82%
N = 3 pm = 1.32% pm = 1.46% pm = 11.24% pm = 17.88%
N = 4 pm = 1.41% pm = 1.54% pm = 11.46% pm = 17.88%

oWCN oWCN oWCN

(R3 state) (R4 state) (R5 state)

N = 2 pm = 20.40% pm = 20.48% pm = 20.64%

(b) With a reliable link between the node v2 and actuator

Fig. 16. Maximal probabilities of link failures for which the closed-loop
system from Fig. 14 (α = 2) is MSS, when controlled without (WCN) and
with observer style updates (oWCN).

example, the WCN with observer style updates guarantees

MSS for the system from Fig. 14 even when the probability

of link failures is more than 20% (compared to 1.5% for the

basic WCN). Similarly, going back to the discussion from

the beginning of the section, we have shown in this simple

example that the WCN performance is much closer to that

of the optimal centralized controllers used for control over

wireless links (guaranteeing MSS with up to 25% packet

drops).

Using the observer style updates, similar significantly im-

proved results were obtained for the more complex examples

from [20], including larger plants with multiple inputs and

outputs, controlled by a mesh network with 9 nodes.

XII. WCN: ROBUSTNESS TO NODE FAILURES

The stability of the closed-loop system, described by (8),

can be affected by node crash failures (i.e., nodes that stop

working and drop out of the network). Currently, we have

considered two approaches to deal with the node failures.

One obvious method to deal with up to k node failures is

to precompute at the design-time a set of Nk =
∑k

j=0

(
N
j

)

different stabilizing configurations (W,H,G) that correspond

to all possible choices of k or fewer failed nodes. In this

case, each node would need to maintain Nk different sets

of link weights for all its incoming links. For example, if

each node in the WCN maintains a scalar state, a node

with d neighbors would have to maintain on the order of

d · Nk different scalar weights. The switching between the

precomputed stabilizing configurations could be done either by

implementing the detection algorithm from [24], or by having

the neighbors of failed nodes broadcast the news of the failures

throughout the network, which will prompt all nodes to switch

to the appropriate choice of (W,H,G).
A more sophisticated method for dealing with the node

failures would be to design the WCN in a way that even if

some of the nodes fail, the closed-loop system remains stable.

For simplicity, consider a WCN that can deal with a single

node failure. Let us denote with Âi the matrix Â from (8) in

the case when node i dies. This is equivalent to setting to zero

the ith row of matrices W and H, along with the ith column

of W and G:

Âi ,

[
A BGIiN

IiNHC IiNWIiN

]

, i = 1, . . . , N, (25)

Here, IiN denotes N × N diagonal matrix, with all ones on

the diagonal except at the ith position. A sufficient condition

for system stability in this case is that there exists a positive

definite matrix X (and, thus, a common Lyapunov function

V (x̂) = x̂TX x̂) such that X − ÂTX Â ≻ 0 and

X − ÂT
i X Âi ≻ 0, i = 1, 2, . . . N. (26)

Therefore, the procedure from the previous section with addi-

tional N LMI constraints, can be used to extract a stabilizing

configuration that can deal with a single node failure. However,

in this case it is necessary to design the network in a way that

guarantees that such a stabilizing configuration exists. Initial

results on these topological conditions have been presented

in [23].

XIII. WCN: CONTROL OF CONTINUOUS-TIME

PLANTS

Optimal and stabilizing WCN configurations can be ob-

tained using algorithms developed from the closed-loop system

model (8) that contains a discrete-time model of the plant (4).

However, a similar framework can be used for control of

continuous-time plants by discretizing the controlled plant,

while taking into account a subtle delay introduced by the

communication schedule. To illustrate this, consider a standard

continuous-time plant model:

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t),
(27)

with input x(t) ∈ Rn, output y(t) ∈ Rp, u(t) ∈ Rm

and matrices Ac,Bc,Cc of the appropriate dimensions.17 We

denote the sampling period of the plant by T , and we assume

that all sensors sample the plant outputs at the beginning of the

zero-th slot (as shown in Fig. 17(a)). We also assume that all

actuators are scheduled to apply their newly calculated inputs

at the beginning of the hth time slot. Note that h > 0, because

from (7) each actuator has to first receive state values from

all of its neighbors, before calculating its next plant input.

Similarly, from (7) h ≥ max(dai
), where dai

denotes the

number of neighbors of the actuator ai.
Therefore, the new inputs will be applied to the plant with

the delay τ = hTsl, where Tsl is the size of communication

slots. This results in the input signal with the form shown

in Fig. 17(b). Denoting the number of slots in a communication

frame by F , we can write T = FTsl. Using the approach from

[4], [3], we describe the system:

ẋ(t) = Acx(t) +Bcu(t),

y(t) = Ccx(t), t ∈ [kT + τ, (k + 1)T + τ),

u(t+) = Gz[k], t ∈ {kT + τ, k = 0, 1, 2, . . .}
(28)

where u(t+) is a piecewise continuous function and only

changes values at time instances kT + τ, k = 0, 1, From

17For simplicity we do not model disturbance inputs to the plant. However,
the approach presented in this section can readily handle that scenario.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 23

�
��
��
� ������

�
��
��
�

�
��
��
�

�
��
��
�

�

�
��
��
�

������ ������

�
��
��
�

τ

��	
�	�

τ

��	
�	�

����
�
���� ������

����
������

��

�	��

�

�

��

�� ���τ ���
��

�

��

�	��

���
��

Fig. 17. (a) Scheduling sampling/actuation at the start of the slots; (b) Timing
diagram for the first type of plant inputs; (c) Plant inputs when actuators reset
the inputs at the beginning of the frames.

the above equation, the discretized model of the system with

the sampling period T can be represented as [65]:

x[k + 1] = Ax[k] +BGz[k] +B−Gz[k − 1]

y[k] = Cx[k],
(29)

where x[k] = x(kT), k ≥ 0 and

A = eAcT , B =

∫ T−τ

0

eAcδBcdδ, B− =

∫ T

T−τ

eAcδBcdδ.

(30)

When the communication schedule is extracted and the net-

work is configured, the matrices A,B and B− obtain fixed-

values that depend on the continuous-time plant dynamics,

communication frame size T (i.e., the sampling period of

the plant) and the utilized communication schedule (as it

determines the value for h).

If each actuator applies its current input only until the

end of the corresponding frame and then forces its input to

zero until the next actuation slot (i.e., hth slot), the input

signals would have the form shown in Fig. 17(c) (instead

of the form from Fig. 17(b)). In this case, the discretized

system could be specified as in (29), (30), with the difference

that B− = 0. Therefore, the discrete-time system takes the

form from (4), and stabilizing and optimal configurations can

be obtained using the procedures described in the previous

sections. However, due to the delay τ , the resulting discrete-

time system could be uncontrollable, which in the general case

would mean that there is no stabilizing configuration for the

closed-loop system.

In situations where (A,B) is not controllable it is necessary

for all actuators to apply their ‘old’ inputs until new inputs are

available (as shown in Fig. 17(b)). This results in a discrete-

time plant that does not have the form from (4), and the

previous algorithms cannot be directly employed. However,

by defining a new vector x̃[k] ,
[
x[k]T u[k − 1]T

]T
the

Fig. 18. (a) Structure of the distillation column [67]; (b) The network
topology of the WCN corresponding to the sensor and actuator positions.

discrete-time system can be described as:

x̃[k + 1] =

[
A B−

0 0

]

︸ ︷︷ ︸

Ã

x̃[k] +

[
B

I

]

︸︷︷︸

B̃

u[k] = Ãx̃[k] + B̃u[k],

y[k] =
[
C 0

]

︸ ︷︷ ︸

C̃

x̃[k] = C̃x̃[k]

The above system has the same form as (4) and, therefore,

we can use the aforementioned algorithms to obtain a stabi-

lizing or optimal configurations of the WCN.

XIV. WCN: PROCESS CONTROL APPLICATION

The WCN has been deployed on a process-in-the-loop test-

bed with a plant running in Simulink and the plant’s sensors

and actuators connected to analog interfaces (see Fig. 19(a)).

We first describe the plant’s model, then the closed-loop

wireless control test-bed and finally demonstrate the WCN

use for control of the plant.

A. Case Study Description

To illustrate the use of the WCN, we consider the distillation

column control (Fig. 18(a)), a well-known process control

problem described in [67]. Four input flows (in [mols/s])
are available for the column control: reflux (L), boilup (V),

distillate (D) and bottom flow (B). The goal is to control four

outputs: xD - top composition, xB - bottom composition, MD

- liquid levels in condenser, and MB - liquid levels in the

reboiler (in [mol]). Finally, the column has two disturbances,

feed flow-rate F and feed composition zF . The columns are

described using the continuous-time Linear Time Invariant

(LTI) model from [67], where the state-space contains 8 states.

B. WCN Experimental Platform

We have implemented the WCN scheme on FireFly embed-

ded wireless nodes [53] and TI’s MSP430F5438 Experimenter

Boards, both equipped with IEEE 802.15.4 standard-compliant

radio transceivers. FireFly is a low-cost, low-power platform

based on Atmel ATmega1281 8-bit microcontroller, while the

experimenters board uses a 16-bit MSP430 microcontroller.

24 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

network

Interface between

Simulink and WCN

Sensors &

actuators

Fig. 19. Process-in-the-loop simulation of the distillation column control; (a) The plant model is simulated in Simulink, while the WCN is implemented on
FireFly nodes; (b) Experimental setup used for the WCN validation.

Both platforms can be used for TDMA-based communication

with the RT-Link protocol [43], and support in-band synchro-

nization provided as a part of the protocol.
The WCN procedure on each wireless node was imple-

mented as a simple task executed on top of the nano-RK,

a Real-Time Operating System (RTOS) [42]. The WCN task

had a 140.64ms period, equal to the RT-Link frame size (RT-

Link was configured to use 16 slots of size 8.79 ms). Since the

WCN requires a TTA, nano-RK has been modified to enable

scheduling of sensing and actuation at the start of the desired

slots. This guarantees synchronized actions at all sensors and

all actuators.
The column, modeled as a continuous-time LTI system

along with disturbances and measurement noise was run in

Simulink in real-time using Real-Time Windows Target [68].

The interface between the model and the real hardware were

two National Instruments PCI-6229 boards which provided

analog outputs that correspond to the Simulink model’s outputs

(see Fig. 19(a)). The output signals were saturated between -

4V and 4V, due to NI boards limitations. Also, to provide

inputs to the Simulink model, the boards sampled the analog

input signals within range [-4V, 4V], at a 1 kHz rate. Finally,

Simulink’s input and output signals were monitored and con-

trolled with 4 sensors and 4 actuators positioned according

to the distillation column structure (Fig. 18(a)). In addition, 4

real wireless controller nodes (v1 − v4) were added, resulting

in the topology shown in Fig. 18(b).

C. WCN Results

From the communication and computation schedules, we

obtained the discrete-time plant model using the discretization

procedure from Section XIII (Eqs. (29),(30)), with sampling

rate T = 140.64 ms (RT-Link frame size).
We first investigated the problem of providing MSS of

the closed-loop system with uncorrelated random link failures

and single node failures. Assigning each node to maintain a

scalar state, using the procedures from Sections XI and XII

we derived a stabilizing WCN configuration for the topology

presented in Fig. 18(b) and the discretized LTI plant model.

To solve the convex optimization problems we used the CVX,

a package for specifying and solving convex programs [69].
We were able to obtain only WCN configurations that

maintain stability if one of the nodes v1-v3 fails, meaning

that the constraint from (26) for the node v4 was violated

(without v4 the topology violates the conditions from [23],

for existence of a stabilizing configuration). Fig. 20 shows

obtained measurements where the disturbance inputs F, zF
were set to zero, while we provided periodical pulses to the

input L. Although the output of the plant degrades when the

node v1 is turned off, the WCN maintains system stability.

However, if the node v4 is turned off, the system becomes

0 1000 2000 3000 4000 5000 6000
−4

−2

0

2

4

6

8

t [s]

O
u
tp

u
ts

 [
V

]

Distillation column outputs

x
D

x
B

M
D

M
B

Fig. 20. Plant outputs for a stabilizing WCN configuration. Node v1 has
been turned off at time t = 1680 s and turned back on at t = 4560 s.

0 1000 2000 3000 4000 5000 6000 7000 8000
−2000

0

2000

4000

6000

Distillation column output M
B
 − Simulink

t [s]

O
u

tp
u

ts
 [

V
]

0 1000 2000 3000 4000 5000 6000 7000
−5

0

5

Distillation column output M
B
 − Analog signal

t [s]

O
u

tp
u

ts
 [

V
]

Fig. 21. Distillation column output MB . Node v4 has been turned off at
t = 2140 s and back on at t = 2860 s. Top - Simulink signal; bottom -
analog signal, saturated at 4V.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 25

unstable (shown in Fig. 21 - after the node is turned back

on, the system slowly, due to the output saturation, returns

to stability). Finally, we showed that if a node was added,

connected to actuator a2, sensor s4 and nodes v2, v4, we could

maintain stability if one of the node fails.

We also considered optimal WCN design that minimizes

effects of disturbance inputs F, zF . Using Algorithm 1 we

computed an optimal WCN configuration for energy to peak

minimization. The obtained measurements for a setup with

periodical F impulses are shown in Fig. 22. Fig. 22(b) and

Fig. 22(a) present the plant outputs for the optimal and stable

WCN configurations. As shown in Fig. 22(c), the norm of the

output controlled with the optimal configuration is almost 5

times smaller than the norm with the stabilizing WCN.

XV. CONCLUSION

This paper presents an initial stab at a problem that unravels

series of difficulties at the heart of networked Cyber-Physical

Systems. We have investigated several fundamental challenges

with the use of wireless networks for time-critical closed-

loop control problems. Wireless Networked Cyber-Physical

Systems are fundamentally constrained by the tight coupling

and closed-loop control of physical processes.

Unlike standard control approaches that statically map a

set of tasks to a specific physical node at design time, to

deal with the inherit unreliability of wireless nodes and links,

for time-critical and safety-critical applications we proposed

programming abstractions where control functionalities are

assigned to a group of wireless nodes as a single component.

Furthermore, by providing composable distributed control

schemes and architectures, we have been able to harness the

benefits of the use of wireless networks and to design modular,

’plug-n-play’ control systems.

Our first approach, Embedded Virtual Machine (EVM), was

to build the networking infrastructure to maintain state across

physical node boundaries, allowing tasks to be decoupled from

the underlying unreliable physical substrate. We presented a

modular architecture used for control applications in wire-

less sensor/actuator/controller networks that allows component

integration and system reconfiguration at runtime, without

any negative effects on the execution of already assigned

functionalities. The EVM enables a simple transition from the

controller design in widely used simulation tools to the actual,

physical ‘plug-and-play’ deployment for wireless networks.

Our second approach was the Wireless Control Network

(WCN), where the network itself acts as a fully distributed

controller. We have first addressed the WCN synthesis prob-

lem to guarantee optimal performance of the plant with respect

to standard cost functions. Second, by including the observer

style updates in the simple, linear iterative procedure, we

have been able to significantly increase robustness of the

closed-loop system to link failures. We have also proposed

a method to extract a stabilizing configuration for the WCN

that can deal with node failures. Finally, we have extended the

synthesis procedure to deal with continuous-time plants, and

demonstrated how the WCN can be used on an industrial appli-

cation, using a process-in-the-loop setup with real hardware. In

future, we aim to introduce complex control operations (e.g.,

Kalman filtering, model predictive control) and investigate

heterogeneous nodes with varied computation/communication

capabilities. Distributed control over networked CPS is a

challenging problem with widespread application.

XVI. ACKNOWLEDGEMENTS

We wish to thank George Pappas and Shreyas Sundaram for

fruitful discussions. The authors would also like to thank Paul

McLaughlin and Alex Chernoguzov from Honeywell Process

Solutions for their support and feedback. We are grateful to

the reviewers for very valuable comments that were essential

in improving the paper. This work builds on our efforts in [6],

[19], [20], [22], [23], [24], [70], [71], [72] and [73].

REFERENCES

[1] Nielsen Research, Downtime Costs Auto Industry, 2006.
[2] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in industrial

networks,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1130–1151, 2005.
[3] W. Zhang and M. Branicky, “Stability of networked control systems

with time-varying transmission period,” in Allerton Conference on

Communication, Control, and Computing, 2001.
[4] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results

in networked control systems,” Proceedings of the IEEE, Special Issue

on Technology of Networked Control Systems, vol. 95, no. 1, pp. 138–
162, 2007.

[5] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for
WirelessHART Networks,” in 31st IEEE Real-Time Systems Symposium,
2010, pp. 150 –159.

[6] M. Pajic and R. Mangharam, “Embedded virtual machines for robust
wireless control and actuation,” in RTAS ’10: Proceedings of the 16th

IEEE Real-Time and Embedded Technology and Applications Sympo-

sium, 2010, pp. 79–88.
[7] R. Alur, A.D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss,

“Compositional modeling and analysis of multi-hop control networks,”
IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 2345–
2357, 2011.

[8] G. Fiore, V. Ercoli, A. Isaksson, K. Landernäs, and M. D. Di Benedetto,
“Multi-hop Multi-channel Scheduling for Wireless Control in Wire-
lessHART Networks,” in IEEE Conference on Emerging Technology &

Factory Automation, 2009, pp. 1 – 8.
[9] A. D’Innocenzo, G. Weiss, R. Alur, A. Isaksson, K. Johansson, and

G. Pappas, “Scalable scheduling algorithms for wireless networked
control systems,” in CASE’09: IEEE International Conference on Au-

tomation Science and Engineering, 2009, pp. 409–414.
[10] M. Pajic and R. Mangharam, “Embedded virtual machines for robust

wireless control and actuation,” in RTAS’10: 16th IEEE Real-Time and

Embedded Technology and Applications Symposium, 2010, pp. 79–88.
[11] S. Graham, G. Baliga, and P. Kumar, “Abstractions, architecture, mech-

anisms, and a middleware for networked control,” IEEE Transactions

on Automatic Control, vol. 54, no. 7, pp. 1490–1503, 2009.
[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “Sys-

tem architecture directions for networked sensors,” SIGPLAN Notices,
vol. 35, no. 11, pp. 93–104, 2000.

[13] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceed-

ings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.
[14] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss,

“Modeling and analysis of multi-hop control networks,” in RTAS ’09:

Proceedings of the 2009 15th IEEE Symposium on Real-Time and

Embedded Technology and Applications, 2009, pp. 223–232.
[15] M. Welsh and G. Mainland, “Programming sensor networks using

abstract regions,” in NSDI’04: Proceedings of the 1st conference on

Symposium on Networked Systems Design and Implementation, 2004.
[16] C. Robinson and P. Kumar, “Optimizing controller location in networked

control systems with packet drops,” IEEE Journal on Selected Areas in

Communications, vol. 26, no. 4, pp. 661–671, 2008.
[17] P. Jalote, Fault tolerance in distributed systems. Prentice-Hall, Inc.,

1994.
[18] P. A. Lee and T. Anderson, Fault Tolerance - Principles and Practice,

J. C. Laprie, A. Avizienis, and H. Kopetz, Eds. Springer Verlag, 1990.

26 JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, VOL. ?, NO. ?, AUGUST 2013

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

Distillation column output x
D

y
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0

5
Distillation column output x

B

y
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.05

0

0.05
Distillation column output M

D

y
3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2
Distillation column output M

B

t [s]

y
4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

Distillation column output x
D

y
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5
Distillation column output x

B

y
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.05

0

0.05
Distillation column output M

D

y
3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2
Distillation column output M

B

t [s]

y
4

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

Norm of the plant outputs

t [s]

||
y
||

2

optimal

stable

Fig. 22. Distillation column outputs; (a) For a stable WCN configuration; (b) For an optimal WCN configuration (note the axes scales); (c) Comparison of
the output vector norms for the stable and the optimal WCN configurations.

[19] M. Pajic, A. Chernoguzov, and R. Mangharam, “Robust Architectures
for Embedded Wireless Network Control and Actuation,” ACM Transac-

tions on Embedded Computing Systems, vol. 11, no. 4, pp. 82:1–82:24,
2012.

[20] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The Wireless
Control Network: A New Approach for Control over Networks,” IEEE

Transactions on Automatic Control, vol. 56, no. 10, pp. 2305–2318,
2011.

[21] C. N. Hadjicostis and R. Touri, “Feedback control utilizing packet
dropping network links,” in Proceedings of the 41st IEEE Conference

on Decision and Control, 2002, pp. 1205–1210.
[22] M. Pajic, R. Mangharam, G. J. Pappas, and S. Sundaram, “Topological

Conditions for In-Network Stabilization of Dynamical Systems,” IEEE

Journal on Selected Areas in Communications, vol. 31, no. 4, pp. 794–
807, 2013.

[23] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “Topological
Conditions for Wireless Control Networks,” in Proceedings of the 50th

IEEE Conference on Decision and Control, 2011, pp. 2353–2360.
[24] S. Sundaram, M. Pajic, C. Hadjicostis, R. Mangharam, and G. Pappas,

“The Wireless Control Network: Monitoring for malicious behavior,”
in Proceedings of the 49th IEEE Conference on Decision and Control,
2010, pp. 5979–5984.

[25] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” SIGARCH Computer Architecture News, vol. 30, no. 5, pp.
85–95, 2002.

[26] P. Stanley-Marbell and L. Iftode, “Scylla: A smart virtual machine for
mobile embedded systems,” in WMCSA ’00: Proceedings of the 3rd

IEEE Workshop on Mobile Computing Systems and Applications, 2000,
pp. 41–50.

[27] R. Müller, G. Alonso, and D. Kossmann, “A virtual machine for
sensor networks,” in EuroSys ’07: Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems, 2007, pp.
145–158.

[28] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in MobiSys ’05: Proceedings of

the 3rd international conference on Mobile systems, applications, and

services. ACM, 2005, pp. 163–176.
[29] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and

flexible operating system for tiny networked sensors,” in LCN ’04:

Proceedings of the 29th Annual IEEE International Conference on Local

Computer Networks, 2004, pp. 455–462.
[30] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,

C. Gruenwald, A. Torgerson, and R. Han, “MANTIS OS: An embedded
multithreaded operating system for wireless micro sensor platforms,”
Mobile Networks and Applications, vol. 10, no. 4, pp. 563–579, 2005.

[31] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh,
“Resource aware programming in the Pixie OS,” in SenSys ’08: Proceed-

ings of the 6th ACM conference on Embedded network sensor systems.
ACM, 2008, pp. 211–224.

[32] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS Operating
System: Towards Unix-Like Abstractions for Wireless Sensor Net-
works,” in Proceedings of the 7th ACM/IEEE International Conference

on Information Processing in Sensor Networks, ser. IPSN’08, 2008, pp.
233–244.

[33] M. Brown, S. Gilbert, N. Lynch, C. Newport, T. Nolte, and M. Spindel,
“The Virtual Node Layer: A programming abstraction for wireless sensor
networks,” SIGBED Review, vol. 4, no. 3, pp. 7–12, 2007.

[34] R. Newton, G. Morrisett, and M. Welsh, “The regiment macroprogram-
ming system,” in Proceedings of the 6th ACM/IEEE International Con-

ference on Information Processing in Sensor Networks, ser. IPSN’07,
2007, pp. 489–498.

[35] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using Kairos,” in Distributed Computing in

Sensor Systems. Springer Berlin, 2005, pp. 126–140.

[36] K. Gatsis, M. Pajic, A. Ribeiro, and G. J. Pappas, “Power-aware
communication for wireless sensor-actuator systems,” in Proceedings

of the 52th IEEE Conference on Decision and Control, 2013.

[37] V. Gupta, A. F. Dana, J. Hespanha, R. M. Murray, and B. Hassibi,
“Data transmission over networks for estimation and control,” IEEE

Transactions on Automatic Control, vol. 54, no. 8, pp. 1807–1819, 2009.

[38] M. Pajic, S. Sundaram, and G. J. Pappas, “Stabilizability over Deter-
ministic Relay Networks,” in Proceedings of the 52th IEEE Conference

on Decision and Control, 2013.

[39] E. K. Conklin and E. D. Rather, FORTH Programmer’s Handbook.
FORTH Inc, 2007.

[40] M. Pajic and R. Mangharam, “Embedded virtual machines,” University
of Pennsylvania, Tech. Rep., Sept. 2009.

[41] “Simulink documentation, MathWorks,” 2012.

[42] nanoRK, “Sensor RTOS - http://www.nanork.org,” 2010.

[43] A. Rowe, R. Mangharam, and R. Rajkumar, “RT-Link: A global time-
synchronized link protocol for sensor networks,” Ad Hoc Networks,
vol. 6, no. 8, pp. 1201–1220, 2008.

[44] A. Schrijver, “ Theory of Linear and Integer Programming,” John Wiley

& sons, 1998.

[45] “ HART Field Communication Protocol Specification, Rev 7,” 2007.

[46] A. Cervin, J. Eker, B. Bernhardsson, and K. E. Arzen, “Feedback
feedforward scheduling of control tasks,” Real-Time System Journal,
vol. 23, no. 1-2, pp. 25–53, 2002.

[47] Z. Fu, Y. Mahajan, and S. Malik, “New Features of SAT’04 version of
zChaff,” in The International Conference on Theory and Applications

of Satisfiability Testing, 2004.

[48] T. Bhme, F. Gring, and J. Harant, “Menger’s Theorem,” Journal of

Graph Theory, vol. 37, vol. 31, no. 1, pp. 35–36, 2001.

[49] B. Yang, S. Zheng, and E. Lu, “Finding two disjoint paths in a network
with α+-min-sum objective function,” Algorithms and Computation,

Lecture Notes in Computer Science, pp. 954–963, 2005.

[50] J. Liu, Real-Time Systems. Prentice Hall, Inc., 2000.

[51] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode change
protocols for priority-driven preemptive scheduling,” Real-Time Systems

Journal, vol. 1, no. 3, pp. 126–140, 1989.

[52] J. Real and A. Crespo, “Mode change protocols for real-time systems: a
survey and a new proposal,” Real-Time Systems Journal, vol. 26, no. 2,
pp. 161–197, 2004.

[53] R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: A Cross-layer
Platform for Real-time Embedded Wireless Networks,” Real-Time Sys-

tem Journal, vol. 37, no. 3, pp. 183–231, 2007.

[54] “EVM website - http://mlab.seas.upenn.edu/evm,” 2009.

[55] D. R. Lewin, Using Process Simulators in Chemical Engineering: A

Multimedia guide for the Core Curriculum. Wiley, 2009.

[56] D. Prett and M. Morari, “The shell process control workshop,” Butter-

worths, 1986.

[57] P. Seiler and R. Sengupta, “Analysis of communication losses in vehicle
control problems,” in Proceedings of the American Control Conference,
2001, pp. 1491–1496.

[58] N. Elia, “Remote stabilization over fading channels,” Systems & Control

Letters, vol. 54, no. 3, pp. 237–249, 2005.

MANGHARAM et al.: DISTRIBUTED CONTROL NETWORKS FOR CYBER-PHYSICAL SYSTEMS 27

[59] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” in Proceedings of the

9th ACM/IEEE International Conference on Information Processing in

Sensor Networks, ser. IPSN’10, 2010, pp. 151–161.
[60] “Why WirelessHART? HART communication foundation,” White Paper,

2007.
[61] “ISA100.11a: Wireless systems for industrial automation, process con-

trol and related applications,” Standard, 2009.
[62] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A unified algebraic

approach to linear control design. CRC Press, 1998.
[63] J. Han and R. Skelton, “An LMI optimization approach for structured

linear controllers,” in Proceedings of the 42nd IEEE Conference on

Decision and Control, 2003, pp. 5143–5148.
[64] L. El Ghaoui, F. Oustry, and M. Ait Rami, “A cone complementarity

linearization algorithm for static output-feedback and related problems,”
IEEE Transactions on Automatic Control, vol. 42, no. 8, pp. 1171–1176,
1997.

[65] P. Antsaklis and A. Michel, Linear Systems. McGraw Hill, 1997.
[66] K. S. Pister and L. Doherty, “Tsmp: Time synchronized mesh protocol,”

in International Symposium on Distributed Sensor Networks (DSN),
2008, pp. 391–398.

[67] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:

Analysis and Design. Wiley, 1996.
[68] “Real-Time Windows Target - Run Simulink models on a PC in real

time. http://www.mathworks.com/products/rtwt. MathWorks.”
[69] “CVX: Matlab Software for Disciplined Convex Programming, version

2.0, http://cvxr.com/cvx. CVX Research, Inc.” 2012.
[70] M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam, “The

Wireless Control Network: Synthesis and Robustness,” in Proceedings

of the 49th IEEE Conference on Decision and Control, 2010, pp. 7576–
7581.

[71] M. Pajic, S. Sundaram, G. Pappas, and R. Mangharam, “Network syn-
thesis for dynamical system stabilization,” in 2011 Conference Record of

the Forty Fifth Asilomar Conference on Signals, Systems and Computers

(ASILOMAR), 2011, pp. 821–825.
[72] M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam,

“Closing the loop: A simple distributed method for control over wireless
networks,” in Proceedings of the 11th ACM/IEEE International Confer-

ence on Information Processing in Sensor Networks, ser. IPSN’12, 2012,
pp. 25–36.

[73] F. Miao, M. Pajic, R. Mangharam, and G. J. Pappas, “Mapping Discrete-
Time Controllers into Structured Computational Substrate,” in American

Control Conference, 2013, pp. 3002–3007.

Rahul Mangharam (M’02) received the B.S., M.S.,
and Ph.D. degrees in electrical and computer en-
gineering from Carnegie Mellon University, Pitts-
burgh, PA, in 2000, 2002, and 2008 respectively.

He is the Stephen J Angello Chair and Assistant
Professor in the Dept. of Electrical & Systems
Engineering and Dept. of Computer & Information
Science at the University of Pennsylvania. He is the
Director of the Real-Time and Embedded Systems
Lab. His current interests are in real-time scheduling
and control algorithms for networked embedded

systems with applications in automotive systems, medical devices, energy-
efficient buildings and wireless control networks.

Dr. Mangharam received the 2013 NSF CAREER Award, 2012 Intel
Early Faculty Career Award and was selected by the National Academy of
Engineering for the 2012 US Frontiers of Engineering.

Miroslav Pajic (S’06) received the Dipl. Ing. and
M.S. degrees in electrical engineering from the Uni-
versity of Belgrade, Serbia, in 2003 and 2007, re-
spectively, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of Pennsylvania,
Philadelphia, in 2010 and 2012, respectively.

He is a Postdoctoral Fellow in the Department
of Electrical & Systems Engineering at the Uni-
versity of Pennsylvania. His research interests in-
clude cyber-physical systems, embedded and dis-
tributed/networked control systems, real-time and

embedded systems, and high-confidence medical device systems.
Dr. Pajic received several awards including 2011 ACM SIGBED Frank

Anger Memorial Award, and the Best Student Paper award at the 2012 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS).
He was awarded the University of Pennsylvania, Joseph and Rosaline Wolf
Award for the Best Dissertation in 2013.

	Distributed Control for Cyber-Physical Systems
	Recommended Citation

	Distributed Control for Cyber-Physical Systems
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1387406967.pdf.iX77c

