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ABSTRACT

Future large optical telescopes require adaptive optics (AO) systems whose deformable mirrors (DM) have ever
more degrees of freedom. This paper describes advances that are made in a project aimed to design a new AO
system that is extendible to meet tomorrow’s specifications. Advances on the mechanical design are reported in
a companion paper [6272-75], whereas this paper discusses the controller design aspects.
The numerical complexity of controller designs often used for AO scales with the fourth power in the diameter
of the telescope’s primary mirror. For future large telescopes this will undoubtedly become a critical aspect.
This paper demonstrates the feasibility of solving this issue with a distributed controller design. A distributed
framework will be introduced in which each actuator has a separate processor that can communicate with a few
direct neighbors. First, the DM will be modeled and shown to be compatible with the framework. Then, adaptive
turbulence models that fit the framework will be shown to adequately capture the spatio-temporal behavior of
the atmospheric disturbance, constituting a first step towards a distributed optimal control. Finally, the wave-
front reconstruction step is fitted into the distributed framework such that the computational complexity for
each processor increases only linearly with the telescope diameter.

1. INTRODUCTION

Over the years, adaptive optics (AO) has grown from wild ideas to a proven technology that is indispensable for
any large telescope. Inspired by its success, ideas have sprouted for larger and larger telescopes to look at even
more distant and fainter stellar objects. However, the performance of a large telescope depends greatly upon the
number of degrees of freedom in the deformable mirror (DM) of the AO system. This number should grow with
the area of the primary mirror and thus quadratic in the telescope diameter.
Standard control approaches for AO consist of operations that typically scale with the number of actuators
squared, which means that the total computational complexity of the controller increases with the telescope
diameter to the fourth power. However, as the temporal controller bandwidth should be related to the number
of actuators per area, which is more or less constant, this may not be decreased for larger telescopes. More
efficient implementations will therefore be required for the control algorithms themselves. Many results towards
realizing this are already available,1,2 but few methods implemented for AO fully exploit all available wavefront
information. Moreover, the computational load of a controller that does attempt this3 also scales with the
telescope diameter to the fourth power and no efficient implementations for such a controller exists yet.
This paper reports on work that has been done in a joint project aimed at designing a new AO system that
has an extendible design, which means that the same design should be applicable when the number of actuators
is increased. Advances in the design of the DM are discussed in,4 while this paper focusses on the controller
design, for which a fully distributed control approach will be introduced. The goal of this controller is to yield
optimal performance in terms of rms wavefront error while distributing calculations over a geometric grid of
locally connected processors that each control one actuator. Feasibility of such a design depends on the available
locality in the AO system itself, which will be investigated. Moreover, approaches for solving several arising
problems will be discussed.
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Controller design for AO systems is not a trivial task. Classically, controller design consists of an integrator
structure5 in which the measured gradient vector �Sk from the wavefront sensor (WFS) at time instant k is first
reconstructed to a wavefront error vector �ek. This reconstruction step can be written as a matrix product of the
reconstruction matrix G#, which is the pseudo-inverse of the geometry matrix and the slope vector �Sk (section
5):

�ek = G#�Sk. (1)

The resulting wavefront is then mapped back into an update vector �dk for the actuator commands �uk as

�dk = B−1�ek, (2)

where B is the mirror influence function matrix,5 which contains the influence of a unit actuator command for
each actuator to wavefront phase at all actuator locations in its columns. The update �dk is subsequently used
to update the command vector �uk as

�uk+1 = (1 − β)�uk + α�dk (3)

where α is the integrator gain and β the integrator leak factor that are tuned such that the closed loop is stable
and the mean square wavefront error �eT

k �ek is minimized.

This strategy only performs well if neither the DM, nor the wavefront sensor shows any detrimental dynamics
or delays. In practice this is never the case, as there is always the delay of the wavefront sensor that integrates
photons over time and the calculation time needed by a computer to calculate the command vector. By using
the classical integrator, one in fact assumes that the atmospheric disturbance can be well predicted by the last
measurement sample.6 The faster the behavior of the atmospheric disturbance w.r.t. the sampling frequency,
the less this holds.
Therefore, many different control schemes have been devised that try to tackle these shortcomings.6–8 Often, the
atmospheric disturbance is assumed to show a frozen flow characteristic, which makes it well predictable.8 On the
other hand, according to some this is only due to the low-pass filtering effect of the Shack-Hartmann wavefront
sensor9 (SHWFS). However, prediction models have scarcely been incorporated into a controller design. Some
problems are that these models are based on strong assumptions, such as Kolmogorov statistics and Brownian
motion,9 completely frozen flow10 or need external measurements such as wind speed and direction.11 On the
other hand, methods do exist that adapt their wavefront reconstruction step to measured wavefront statistics12

in closed loop.
In a recent paper,3 an optimal controller design is demonstrated which comprehends a turbulence model that
is based on open loop wavefront sensor data and doesn’t make any presumptions on its behavior. However,
the resulting controller matrices are fully dense and do not seem to possess structure that can be exploited for
distributed implementations. In order to overcome this, an attempt is made in this paper to fit each of the
controller’s components into a distributed control framework: the mapping of a desired DM shape into a set of
DM actuator command signals, the wavefront prediction and its reconstruction.

This distributed control framework will first be introduced in section 2, after which each of the components will
be discussed. In section 3 the DM will be modeled both statically and dynamically. In section 4 a distributed
turbulence model will be evaluated and finally in section 5 the distributed wavefront reconstruction problem will
be examined.

2. DISTRIBUTED CONTROL DESIGN FRAMEWORK

In this section, the concept of distributed control is formulated in more detail. The distributed controller
framework consists of a grid of processors called Distributed Processing Units (DPU) that each control one
actuator of the deformable mirror. These DPU’s have thus the same regular geometric grid layout as the
actuators. Here it is assumed that this is a hexagonal grid, but all of the following can easily be transformed
into a square grid layout. It is further assumed that the SHWFS measurement grid has the same structure as
the actuator grid and is aligned with this such that each spot lies in the geometric center of four neighboring
actuators (figure 1). This corresponds to the often used Fried geometry, with actuators on the phase point
locations. Wavefront slope information extracted from each spot is known only to the four surrounding DPU’s.
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Figure 1. The distributed framework in a hexagonal lay-
out. DPU’s are represented by rectangles containing their
geometric coordinates. They can communicate via the solid
communication lines. The grey filled circles represent the
SHWFS measurement spots.

Figure 2. General design of the deformable mirror as de-
scribed in detail in.4 The layered design consists of a de-
formable reflective surface, connection rods to the actuators
in the actuator plate and a stiff support structure from top
to bottom respectively.

Further, the controllers have the ability to communicate with four directly surrounding neighbors. The controller
located at coordinate (i, j) can communicate to (i − 1, j − 1),(i − 1, j + 1),(i + 1, j + 1) and (i + 1, j − 1). If
communication is required to other, more remote DPU’s, this requires multiple sequential steps that take time
and should be avoided as much as possible.

Locality. In this paper, the system property locality is used. Let this be defined as the relative accuracy
with which it is possible to describe the behavior of the system using only local information when compared to
using all information. Local information is information known to either a single DPU or to its direct neighbors.
Although the number of direct neighbors may be chosen arbitrarily by defining a maximum geometric inter-
actuator distance, it does not scale with the system dimensions. This links locality directly to scalability : if a
system has a high locality then its behavior can be well described using a limited set of local information that
does not grow with the dimensions of the system.

Calculations and notation. In the sequel, when computations are said to fit within the distributed framework,
this means that they can be performed either directly by a local DPU or by first receiving information from
neighbors to which it has a direct communication link, i.e. its connections. Let a vector of which each element
is only known to a single corresponding DPU be denoted by ṽ. For often used matrix-vector products w̃ = Mṽ,
this implies that M must have a specific sparse structure: the ith row of M may only contain non-zero elements
at positions that correspond to the connections of DPU i.
However, when a computation requires not only information from the DPU’s connections, but also from a limited
set (i.e. whose size is independent of the system dimensions) of other neighboring DPU’s, this can also be fit
into the distributed framework. This just yields a fixed number of sequential communication steps.

3. MIRROR MODELING

The DM for which the distributed controller is designed,4 is of the continuous face-sheet type. This section
comprehends the DM modeling that is relevant for controller design and will be used to answer the following
questions:

1. What is the locality of the mirror’s influence functions?
2. Will the dynamics of the DM be relevant for the controller design?
3. How much damping will be required in the actuators?

The general mirror design is depicted in figure 2 and consists of a thin deformable reflective face-sheet that is
supported by electromagnetic push-pull actuators. They are connected to the reflective face-sheet with thin rods,
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Figure 3. Influence functions in [m/N] for the central ac-
tuator in a mirror with a hexagonal actuator grid with 61
actuators with a stiffness of 100, 500, 1000 and 2000 [N/m]
from left to right and top to bottom respectively.

Figure 4. Lines: normalized influence function maximum
magnitude versus actuator spacing unit distances. Marks:
normalized magnitude of the corresponding inverse matrix.

thus fixing only the out of plane deformation and are attached to a stiff support structure that gives the mirror
a flat reference.
The following subsections comprehend the modeling and identification of a single actuator which is subsequently
used to create both static as well as dynamic models of the complete DM. The implications of the result for a
distributed controller design will be evaluated.

3.1. Actuator modeling and identification

The actuators consist of a closed magnetic circuit in which a permanent magnet provides a static magnetic
force on a ferromagnetic core which is suspended in a membrane. By applying a current through the coil
which is situated around the magnet, this force is influenced, providing movement of the ferromagnetic core.
This movement is transferred via a rod imposing the out-of plane displacements in the reflective deformable
membrane. In the actuator design a match is made between the negative stiffness of the magnet and the positive
stiffness of the membrane suspension. Although this is non-linear w.r.t. the membrane deflection, the eventual
operating range of the actuator is small enough to justify a linear model.
The actuator can be straightforwardly modeled as a linear mass-spring-damper system. The moving mass consists
of the actuator membrane and the rod, the spring is the net mechanical actuator stiffness and the damping can
be either due to air flow inside the housing or due to electronics (e.g. back-EMF of the coil being dissipated in a
resistor). The actuator has been built and a set of input-output data was obtained by measuring the membrane
deflection while feeding the coil a white noise current signal. From this data, the following mass ma, stiffness ka

and damping ba values were estimated via frequency domain identification:

ma = 9.9 · 10−3[g], ba = 1.4 · 10−3[Ns/m], ka = 330[N/m]. (4)

3.2. Modeling the deformable face-sheet

Although the face-sheet has only a slight thickness, it still has a considerable out-of-plane stiffness when and
should be modeled as a thin plate.13 The thin rods connecting the actuators to the plate will be assumed to
exert point-forces, which allows the use of the analytical solution to the biharmonic equation.14 For a circular
plate of radius rplate with clamped edge conditions (no deflection or out-of-plane rotation at the edge) the plate
deformation can be calculated as:

h(F, z, ζ) =
F

16πR

{

(1 − r2)(1 − ρ2) +
[

r2 + ρ2 − 2rρ cos(φ − ψ)
]

ln
r2 + ρ2 − 2rρ cos(φ − ψ)

1 + r2ρ2 − 2rρ cos(φ − ψ)

}

, (5)
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where h(F, z, ζ) expresses the plate deflection at position z due to a perpendicular point-force F at position ζ.
Positions z and ζ are defined in the complex plane as z = r ejφ and ζ = ρ ejψ respectively, where r and ρ are
normalized w.r.t rplate. Further, R is the flexural rigidity of the plate, which is defined as:

R =
Et3

12(1 − µ2)r2
plate

, (6)

where E is the Young’s modulus of the plate material, µ its Poisson ratio and t its thickness. The equation is
linear in the force F and because of the small deflections (O(µm)) it is sufficiently accurate to use superposition
of deflections due to individual forces in case of multiple simultaneous point-forces.
Let the deflection of the plate be given as a vector �h, defined on a limited set of discrete points D. This set
comprehends all points at which a force acts on the plate. These forces are both the supporting actuator forces
as well as lumped inertia forces of the thin plate itself, that are spread over a fine grid. The forces are contained
in the vector �F , which can be related to the deflection �h via a stiffness matrix K with elements Ki,j :

K �F = �h, Ki,j =
∂h(F, zi, ζj)

∂F
, (7)

where both i and j enumerate all points in D. A force equilibrium is now sought that satisfies

(Mp + Ma)�̈h + (Bp + Ba)�̇h + �F + Ca
�h = �Fa (8)

where Ca,Mp,Ma, Bp and Ba are all diagonal matrices containing the actuator stiffness, plate inertia, actuator

inertia, plate air-damping and actuator damping terms respectively. �Fa is a vector containing the actuator forces.
Using (7), a standard dynamical system form is obtained with mass, damping and stiffness matrices Ma + Mp,
Ba + Bp and K−1 + Ca respectively. Note that if a certain grid point does not have an external force, mass,
stiffness or damping, the entry in the corresponding matrix or vector is zero.

The static case: influence functions. For the static case, all time-derivative terms in (8) are zero and

the deflection �h can be directly expressed in terms of the forces �Fa, from which the mirror influence matrix B
containing the DM influence functions in its columns can be derived:

B = (K−1 + Ca)−1. (9)

The influence function of a mirror’s central actuator has been plotted for four values of ka in figure 3. It can
be observed that this stiffness significantly affects the width of the influence function. This can be seen even
more clearly from figure 4, in which the lines represent the normalized maximum absolute DM deflection on
a circle with certain radius around the poked actuator. For ka = 1000 [N/m], that will be aimed for in the
mechanical design, the deflection of the 4th neighboring actuator already remains below one thousandth of the
central deflection. For an actuator range in the order of [µm], this is a deformation in the order of [nm], which
can be disregarded without affecting the optical quality.
However, calculation of the actuator commands corresponding to a desired DM shape involves the inverse of the
influence matrix B. The question relevant for distributed controller design is thus whether the locality is retained
in the inverse mapping B−1φ̃. This can be observed to be the case from the markers in figure 4, which show
the normalized magnitude of the elements of the ith row of B−1 that correspond to phase points at a certain
distance – in unit actuator spacings – from actuator i. This magnitude decreases also very fast with the distance
and is only slightly influenced by ka. Moreover, the same decrease over the distance holds for larger grids, which
means that the number of neighbors needed to calculate the actuator commands stays constant for increasing
system dimensions, confirming that also the inverse mapping has a high locality.

The dynamic case: eigenmodes and damping. A system property that is also very important for controller
design is the location of its eigenfrequencies. As for any system, the DM will be much easier to control below
its first eigenfrequency, which is even more true for this system because many eigenfrequencies will be clustered
together in a small range. The eigenfrequencies can be straightforwardly calculated using the dynamical model
and are significantly affected by ka, as shown for the lowest eigenfrequency by the thin line in figure 5. For
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ka = 1000 [N/m] this eigenfrequency lies around 1400 [Hz], which should be enough to achieve the desired
temporal control bandwidth of approximately 200 [Hz].
Further, since both plate mass as well as actuator stiffness are added, the lowest eigenfrequency should not
decrease much when the DM design is extended to larger sizes. The value of the lowest eigenfrequency is plotted
against the DM size in number of unit actuator spacings for ka = 1000 [N/m] as the thick line in figure 5. As
can be seen, the frequency decreases slightly, but this is only the decaying effect of the clamped plate boundary.
It can be safely concluded that the eigenfrequencies of the DM will not affect the control system performance as
long as they are damped sufficiently.

Since the DM is to be controlled over a slow SHWFS for feedback, high-frequent oscillations can never be
suppressed. Therefore, the system should have a suitable amount of electromagnetic or air damping to have a
fast, but well damped step-response. The step response of a single actuator in a hexagonal 61 actuator DM
has been plotted in figure 6 for the undamped and for several damped cases. The undamped system has a
highly oscillating step response, requiring over 100 times more actuator damping than that estimated in section
3.1 to suppress. On the other hand, with this amount of damping, the rise and settling times are very good:
approximately 0.15 [ms] and 0.5 [ms] respectively. Dynamics of the DM will then not pose any trouble for a
distributed control framework.

4. TURBULENCE MODELING

In this section, the locality of the atmospheric disturbance will be studied by means of a local turbulence
model. Characterization and modeling of atmospheric turbulence has a long history, e.g. Fried15 in 1965. Many
approaches towards realistic simulation models have since then been recorded. Models based on Kolmogorov
statistics such as16,17 work well, but apart from pure frozen flow behavior it appears difficult to model the
evolution of the disturbance over time. Models exploiting the fractal nature of turbulence11 seem better at this,
and even speculate on the existence of good linear predictor models.
For controller design it is common to model only the static or slowly time-varying statistical properties of the
disturbance12 in the sense of a covariance matrix. Recently, results of an optimal H2 controller for AO were
shown6 to yield a much improved performance. This design included a turbulence model based only on open
loop SHWFS measurement data. Alas, this turbulence model is not easily fitted into the distributed framework
as the obtained matrices of the turbulence model are dense and seem to have little structure. On the other
hand, continuing on results by11,18 the remainder of this section discusses a moving average predictor filter that
is designed to fit within the distributed framework and can in the same framework be made adaptive.
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4.1. A distributed moving average filter

Let a prediction of the wavefront at time k + 1 be given by an nth
b order FIR filter

ˆ̃
φk+1 = B1φ̃k + B2φ̃k−1 + . . . + Bnb

φ̃k−nb+1, (10)

where matrices Bi with i = 1, 2 . . . nb are the filter coefficient matrices and φ̃j previous wavefront measure-

ments. Further, all matrices Bi are equally parameterized such that the products Biφ̃j fit within the distributed
framework (section 2). This can be rewritten to a more standard form where the unknown filter parameters are
contained in one vector θ̃ via the following steps. First note that a sparse matrix Bi can be written as the series
product

Bi = LBBiRB , (11)

where LB and RB are selection matrices containing only ones and zeros and Bi is a diagonal matrix containing
all possibly non-zero elements of Bi. Subsequently, use the Khatri-Rao matrix identity19 to rewrite

vec(LBBiRBφ̃j) = (φ̃T
j RT

B ⊙ LB)b̃i = LBdiag(RBφ̃j)b̃i, (12)

where b̃i = vecd(Bi) and dvec is an operator that stacks all diagonal matrix elements into a vector.19 The filter
equation thus becomes

ˆ̃
φk+1 = LBdiag(RBφ̃k)b̃i + . . . + LBdiag(RBφ̃k−nb+1)b̃nb

= Φkθ̃, (13)

where
Φk =

[

LBdiag(RBφ̃k) . . . LBdiag(RBφ̃k−nb+1)
]

, θ̃ =
[

b̃T
1 . . . b̃T

nb

]T
. (14)

Identification. Let the optimal value for θ̃ be defined to minimize the expected squared prediction error

ǫ = 〈ẽT
k ẽk〉, where 〈·〉 denotes the expected value operator and ẽk =

ˆ̃
φk−φ̃k the prediction error. The optimization

problem thus becomes:

θ̃ = arg min
θ̃

〈

(θ̃T ΦT
k − φ̃T

k )(Φkθ̃ − φ̃k)
〉

. (15)

Let the expected value be approximated with a finite sum over n samples s.t.

θ̃ = arg min
θ̃

n
∑

k=1

(θ̃T ΦT
k − φ̃T

k )(Φkθ̃ − φ̃k) = arg min
θ̃

n
∑

k=1

θ̃T ΦT
k Φkθ̃ − 2φ̃T

k Φkθ̃ + φ̃T
k φ̃k, (16)
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which yields a linear system of equations that can be straightforwardly solved for θ̃:

Rθ̃ = ṽ, where R =

n
∑

k=1

ΦT
k Φk, ṽ =

n
∑

k=1

ΦT
k φ̃k. (17)

Calculation of the solution now involves the inverse of R, which exists if the measured signal φ̃k is sufficiently
exciting. In practice this will be the case if the number of samples n is chosen large enough.
This FIR filtering approach has been applied to measurements from an AO breadboard which contains a plan
parallel circular plate turbulence simulator resembling a spatial Kolmogorov distribution with a D/r0 = 5. In
open loop, 10000 samples were collected using a 127-spot hexagonal SHWFS. The filter order was varied over
the range nb = 1 . . . 25 and the filter coefficient matrices Bi were parameterized such that the product Biφ̃j

can be evaluated using information from only the six phase points surrounding phase point (x, y), indexed as
(x − 1, y), (x − 1, y + 1), (x, y + 1), (x + 1, y), (x + 1, y − 1), (x, y − 1). The first half of the data-set was used for
identification, the second for validation of the identified model.

Validation. Results will be analyzed using the criteria J1, J2 and S1:

J1 =

n
∑

k=1

ẽT
k ẽk

n
∑

k=1

φ̃T
k φ̃k

, J2 = n
ẽT
k ẽk

n
∑

k=1

φ̃T
k φ̃k

, S1(f) =
1

np

np
∑

p=1

Ep(f), (18)

where np is the number of phase points and Ep is the temporal spectrum of the value of the phase point with
index p at frequency f . Results for J1 are shown against the filter order in figure 7, where the value of this
criterion is also shown for the random walk predictor, for which nb = 1 and B1 = I. Several observations can be
made from this figure. Firstly, note that the local FIR predictor can better the random walk predictor more than
a factor 4. Further, observe that J1 is only slightly improved by increasing the filter order above 5. This is also
clear in figure 8, which shows that the average temporal power-spectrum S1(f) obtained using a fifth order local
FIR filter is already almost white. As the FIR filter is both local in time and in space, this suggests that the
atmospheric disturbance has a high locality. However, calculation of the static predictor filter requires inversion
of a full matrix, which is both computationally intensive and can only be done after a large set of measurement
data has been collected. Therefore, the next subsection discusses possibilities for making this filter adaptive.

4.2. Adaptive distributed predictor

Adaptive linear filters have been around for a long time and their properties thoroughly studied.20 The filter
coefficients of an adaptive filter are not fixed, but are updated each sample to either converge to their globally
optimal values or to track changes in the statistical properties of the input signal. This section discusses two
distributed adaptive filters that are of the first kind: steepest descent and LMS. Note that all calculations of the
filter update equations can be performed within the distributed framework.

Steepest descent. As will be shown in more detail in the next section, the method of steepest descent actually
constitutes a method for solving systems of linear equations.21 For the case of adaptive filtering, it is applied to
the system of equations in (17). For each sample, the filter coefficient vector is updated as20

θ̃(k+1) = (I − αRk)θ̃(k) + αṽk (19)

where
Rk = Rk−1 + ΦT

k Φk, ṽk = ṽk−1 + ΦT
k φ̃k. (20)

As both Rk and ṽk converge to the best estimates for the covariance matrix R and correlation vector ṽ respectively
for k → ∞, the adaptive filter should converge to the static solution as long as the step size α is chosen properly.20

LMS. The LMS or Least Mean Squares algorithm is also a popular adaptive algorithm that knows many
applications because of its low computational complexity. It has the same update law as the method of steepest
descent, but here the estimates of R and ṽ are simply taken as the most recent set of measurement values:

Rk = ΦT
k Φk, ṽk = ΦT

k φ̃k. (21)
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Figure 9. Performance criterion J2 from (18) of the two
adaptive filters, together with the results obtained using the
random walk predictor and the optimal static predictor. All
filters are of 15th order and results have been smoothed to
make them more clear.
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eraged over 20 wavefronts artificially generated using the
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Results for both algorithms are shown in terms of J2 in figure 9 together with the corresponding results from the
optimal static predictor and the random walk predictor. Although the LMS filter shows a lot of variance and
the steepest descent algorithm converges slowly, both adaptive algorithms eventually better the performance of
the random walk predictor. Further improvement of the adaptive filtering performance is a subject for further
research.

5. WAVEFRONT RECONSTRUCTION

The last, but probably most important component of the controller is the wavefront reconstructor that recon-
structs the wavefront phase from the gradients measured by a SHWFS. Let the phase vector be denoted �φ and
the measured slope vector �S = [�ST

x
�ST

y ]T which consists of the gradients �Sx and �Sy corresponding to the x and

y directions respectively. The relation between �S and �φ can be expressed using a matrix G as

�S = G�φ. (22)

The geometry matrix G can be chosen in numerous ways, but here the Fried geometry5 will be used that can
be easily adapted to a hexagonal grid.3 Thus, the wavefront reconstruction consists of solving a set of linear
equations that arise from the least squares fitting problem of �φ:

GT G�φ = GT �S. (23)

Note here that the matrix GT G is singular due to the two unobservable modes of the SHWFS,5 which means
that a pseudo-inverse21 must be employed to solve the system directly. However, calculation of the solution for
�φ would require O(n2

p) calculations even when the matrix (GT G)−1GT is known, because this matrix is dense,
whereas G is sparse. This also requires a lot of memory when large scale AO systems are considered and has led
to iterative1 and hierarchic2 approaches that are not only computationally more efficient (O(np)), but also lack
the need to store the dense matrix.
However, although these methods yield efficient solutions that may even be partially parallelized, they do not
fit within the distributed framework. Thus, two options can now be considered: do the reconstruction by a
dedicated external processor or find a reconstruction procedure that does fit into the framework. Because of the
structure of the matrices G and GT G, the second option seems interesting to explore using well known iterative
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solver methods such as Jacobi iteration and successive overrelaxation.21

Let the reconstruction problem of (23) be written more succinctly as

A�φ = �b. (24)

Iterative solvers in general use the notion that the solution to this problem is also the minimum of the quadratic
function

f(�φ) =
1

2
�φT A�φ + bT �φ + c, (25)

which can – in the case that this is a convex function – be found by gradient searches. Two basic iterative
methods that work in a very straightforward way are the method of steepest descent and Jacobi iteration, which
have the following update law:

�φ(k+1) = (I − QA)�φ(k) + Qb, (26)

where Q is a diagonal matrix that for Jacobi iteration equals the inverse of the diagonal of A and for steepest
descent Q = αI with α the step size. Details of these procedures are beyond the scope of this paper, but note
that in both cases the sparse structure of A and thus GT G is left intact. Due to the definition of the Fried
geometry, the structure of GT G is such that the product w̃ = (GT G)ṽ is always a two-step procedure within the
distributed framework. Furthermore, calculation of b̃ = GT S̃ also fits the framework: calculation of each element
of b̃ requires information from only the four measurement spots surrounding the corresponding phase point.
On the other hand, the convergence of both algorithms is very slow. This can be observed in figure 10, where
the convergence in terms of residual rms of both methods has been plotted together with that of Gauss-Seidel,
successive overrelaxation and conjugate gradient.21 Although the conjugate gradient method has the fastest
convergence, it does not fit within the distributed framework, which proves to be not entirely the case for the
second-fastest algorithm: successive over-relaxation (SOR). SOR is a variant on the Gauss-Seidel algorithm that
converges fast for the reconstruction problem and can be partly parallelized.23 Its update rule can be expressed
as

(

I + ωD
−1

L
)

�φ(k+1) =
(

(1 − ω)I − ωD
−1

U
)

�φ(k) + ωD
−1�b, (27)

where the matrix A has been split into three parts s.t. A = L + D + U with D its diagonal and L and U its
lower and upper triangular parts respectively. The scalar over-relaxation parameter ω can be tuned to optimize
the convergence speed,21 which is beyond the scope if this paper. The update can be observed to involve two
sequential steps: calculation of the right-hand side and solving for �φ:

�xk =
(

(1 − ω)I − ωD
−1

U
)

�φ(k) + ωD
−1�b (28)

(

I + ωD
−1

L
)

�φ(k+1) = �xk (29)

Due to the structure of A, the first step fits exactly within the distributed framework, whereas the second step
constitutes a forward substitution problem for which this does not hold. But again due to the structure of A
when the points in the phase grid are suitably ordered, this forward substitution problem can be written as a
series of nf ≈ nw/2 elimination steps – where nw is the number of phase points over the diagonal of the grid.

When the vectors �φ(k+1) and �b are stacked, the update law can be written as

[

�φ(k+1)

�b

]

=

[

Mnf
0

0 I

]

. . .

[

M1 0
0 I

] [

F ωD
−1

0 I

]

[

�φ(k)

�b

]

, F = (1 − ω)I − ωD
−1

U. (30)

where each elimination matrix Mk requires exactly two steps in the distributed framework. This means that one
iteration of SOR can be performed with O(nw) sequential steps. As the number of SOR iterations required to
obtain acceptable reconstruction accuracy scales also with O(nw), the total number of sequential steps required
is of order O(n2

w). However, this procedure yields a lot of idle time for the DPU’s which – as will be shown –
can be significantly reduced by means of simple scheduling rules.
The scheduling rules can be best understood by regarding individual off-diagonal elements in the matrices as
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operations that involve inter-DPU communication. These operations cannot be performed until the required
information is available at the other DPU. When looking closely at the full sequence corresponding to nw

iterations of SOR, it shows that not all operations are performed as soon as they could be. By applying the
following scheduling rules over and over again, diagonal matrices are formed at the end of the sequence that can
be directly combined with any previous step and subsequently removed. An operation can be advanced from
step i to i − 1 whenever

1. the value needed by DPU d from DPU s is not modified at step i − 1
2. and the old value at DPU d is not needed by any other DPU in step i.

The length of the remaining series so reduces to O(nw), making it linear in the telescope diameter. This is
then also the case for the required processing speed of the DPU’s and the inter-DPU communication bandwidth.
This seems acceptable, as the reconstruction process is fundamentally a spatial integration procedure. When
information from geometrically remote gradients is discarded, the proper phase value will not be obtained. Only
after at least nw sequential communication steps can gradient information have propagated completely from one
side of the grid to the other.
On the other hand, it seems probably that the reconstruction procedure will require significantly fewer iterations
when starting from a good initial guess supplied by a predictor filter (section 4). But as this will introduce the two
unobservable modes into the solution – which are neither generated nor damped by the iterative reconstruction
procedure – this remains a subject for further research.

6. CONCLUSIONS AND FUTURE WORK

It can be concluded that distributed control is a very interesting and feasible approach for controlling large scale
AO systems. It has been shown that important components in the control loop can be very well described using
only the information that is available locally. In section 3 this has been shown for the DM and the mapping of
a desired wavefront shape into a set of DM actuator signals. Moreover, it was shown that it can be considered
a static element on the condition that sufficient damping is present. Further, a distributed predictor filter was
described in section 4. Application on measurement data showed the promising result that using only the local
wavefront history a very good prediction can be obtained. Moreover, a simple modification to make the filter
adaptive was shown to give respectable performance and to fit within the distributed framework.
Finally, in section 5 a distributed approach to the wavefront reconstruction problem was discussed. Although
the complexity of this problem does scale with the dimensions of the system, it has been shown to grow linearly
in the telescope diameter. For practical implementations this implies that the single DPU processing power as
well as the local communication bandwidth have to increase linearly with the telescope diameter. It is a subject
for further research to further attenuate this scaling.

Next steps will be the closing of the control loop in simulations, design of the driving electronics for the DM and
experimental validation on a breadboard.

Acknowledgements

The DM is designed in a joint cooperation between the Delft University of Technology, TNO Science and Industry
and the Technische Universiteit Eindhoven. The work done is supported by Senter Novem, the Dutch Innovative
Research Project (IOP) Precision Technology.

REFERENCES

1. L. Gilles, “Order-n sparse minimum-variance open-loop reconstructor for extreme adaptive optics,” Optics
Letters 28, pp. 1927–1929, October 2003.

2. D. G. MacMartin, “Local, hierarchic, and iterative reconstructors for adaptive optics,” Journal of the Optical
Society of America 20, pp. 1084–1093, June 2003.

3. K. Hinnen, M. Verhaegen, and N. Doelman, “Adaptive optics h2-optimal control design applied on an
experimental setup,” in Proceedings of the SPIE conference on astronomical telescopes and instrumentation
- advances in adaptive optics, SPIE, May 2006.

Proc. of SPIE Vol. 6272  62723K-11

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms



4. R.F.M.M.Hamelinck, N. Rosielle, and N. Doelman, “Large adaptive deformable mirror: design and first
prototypes,” in Proceedings of the 5th annual SPIE conference on Optics and Photonics, SPIE, (San Diego),
August 2005.

5. J. Hardy, Adaptive optics for Astronomical Telescopes, Oxford University Press, New York, 1998.

6. K. Hinnen, M. Verhaegen, and N. Doelman, “H2-optimal control of an adaptive optics system: part ii, closed-
loop controller design,” in Proceedings of SPIE, M. L.-H. Robert K. Tyson, ed., 5903, SPIE, August 2005.

7. A. A. Abdullah and P. A. Ioannou, “Decentralized reconfigurable control for large-scale systems with appli-
cation to a segmented telescope test-bed,” in Proc. of the 42nd IEEE Conference on Decision and Control,
(Maui, Hawaii, USA), December 2003.

8. Y.-T. Liu and S. Gibson, “Adaptive optics with adaptive filtering and control,” in Proceedings of the Amer-
ican Control Conference (ACC), pp. 3176–3179, (Boston, Massachusetts, USA), June 30 – July 2 2004.
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