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Distributed Control of Battery Energy Storage
Systems for Improved Frequency Regulation
Tianqiao Zhao, Alessandra Parisio, Senior Member, IEEE, Jovica V. Milanović, Fellow, IEEE,

Abstract—In this paper a distributed control strategy for
coordinating multiple battery energy storage systems to support
frequency regulation in power systems with high penetration of
renewable generation is proposed. The approach is based on an
online convex optimisation framework that considers both the
operating costs of storage systems and the frequency regulation
requirements. The proposed framework uses a dynamic regret
based on the last available information up to the current point in
time of renewable generation and demand, which are uncertainty
sources. The approach provides more accurate control than
the currently employed prediction-based algorithms and it can
be implemented in a distributed manner using a multi-agent
system framework that facilitates plug-and-play functionality.
The effectiveness and scalability of the proposed strategy is
assessed through several case studies.

Index Terms—Distributed optimisation, frequency response,
online convex optimisation, battery energy storage systems,
frequency-related constraints, uncertain renewable generation

I. INTRODUCTION

The increasing penetration of renewable generation in power

systems resulted in a considerable part of conventional syn-

chronous generators (SGs) providing system inertial and pri-

mary frequency response (PFR) being replaced by renewable

energy sources (RES). However, these RES contribute less, if

at all, inertia and frequency regulation to a power system [1].

As a result, the total system inertia is reduced as well as

the frequency control ability of the system, which poses new

challenges to the frequency stability of power grids [2].
To mitigate the challenges caused by the high share of

RES, new technical solutions are explored by several system

operators worldwide [3], in particular faster-acting frequency

response services. National Grid (NG), the Great Britain trans-

mission system operator, has introduced an ancillary service

named Enhanced Frequency Response (EFR) to provide a fast

and dynamic frequency regulation service [4] and improve

the management of system frequency pre-fault to maintain

system frequency closer to 50Hz. It is a dynamic service

with high revenue requiring the asset providing it to change

its power output proportional to any frequency deviation

in real time on a second-by-second basis. Few assets are

suitable for providing this dynamic service. The emerging

fast-response battery energy storage systems (BESS) provide a

promising solution to provide dynamic fast frequency response

and improve the frequency response of the reduced inertial

power system, as they are able to compensate system power

imbalance instantly [5], [6]. Extensive efforts [7]–[9] have

been made to take advantage of the ability of fast-response

BESS to improve frequency response and some practical

applications [10]–[12] have demonstrated their feasibility and

flexibility to do so.
The majority of the existing methods, however, are central-

ized and they would require a central controller to collect, pro-

cess and distribute the information from/to all the computing

units and local controllers of the various BESS. Therefore, they

are not feasible to coordinate a large number of battery units

in real time to provide dynamic fast frequency response due

to high computational and communication requirements and

a high sensitivity to noise, communication delays and single

point failures [13].

Distributed algorithms relying on local and neighbouring

information, on the other hand, can not only reduce compu-

tation time, but also account for system topology changes by

taking advantage of local intelligent controllers [14], which

are able to communicate with other neighboring controllers

and execute simpler algorithms locally. The recent applications

of distributed algorithms in power systems [15]–[17] include,

among the other, real-time control of BESS to solve the

security-constrained DC optimal power flow [16] and to BESS

coordinated control to maintain the power balance at minimum

cost [17]. All of them rely on accurate predictions of renewable

generation output and/or load demand, which is very difficult

to accomplish considering their inherent variability, in order

to be effective. Due to the high penetration of renewable

generation, its unpredictable parts would have increasing af-

fects on the system stability. As a result, these uncertain

and unpredictable characteristics should be taken into account

when designing a more accurate control strategy for BESS.

The online convex optimisation (OCO) [18] has recently

gained attention in power system applications [19]–[21], par-

ticularly in demand-side management applications, since it is

computationally efficient and suitable for real-time implemen-

tation. In fact, OCO requires less information compared with

algorithms using both real-time and forecast information and

it is an optimisation method that learns from experience as

more aspects of the problem are observed.

Statement of contribution: In this study two main research

questions are addressed: i) how to optimise and coordinate a

large and arbitrary number of BESS for the frequency control

in real-time; ii) how to take uncertainties in both network and

BESS operation into the control framework while accounting

for BESS degradation and revenue to BESS owners. Tradi-

tional frequency control methods (e.g., droop-based control)

are not suitable for addressing the above challenges and novel

control approaches are required.

The focus is on the dynamic fast frequency response pro-

vision to compensate for frequency drops, which is what

is currently required. This entails that the devised control

algorithm optimises and coordinates the BESS discharging

behaviour. We remark that the proposed framework can be

easily adapted to optimise the charging behaviour if the BESS

are required to contain the frequency rises.

A methodology combining consensus algorithms and online

convex optimisation is proposed for cost-effective and coor-

dinated control of distributed BESS to provide a frequency



2

regulation service in power systems with RES. Existing al-

gorithms only consider one of the aforementioned methods

individually, i.e., consensus algorithms [14], [17] and online

convex optimisation [19]–[21]. The proposed control frame-

work combines advantages of both algorithms, in particular

the little information requirement and the fully distributed and

computationally beneficial implementation.

A time-varying optimisation problem to maximise BESS

welfare is first formulated, which maximises the reward price

and minimises the operating costs of each battery device, while

satisfying frequency-related constraints to improve system

frequency response. An OCO and consensus-based distributed

algorithm is proposed to restore system frequency to the

nominal value optimally and timely by controlling the power

output from BESS. Using a multi-agent system framework,

each battery device is regarded as an agent. A distributed

consensus-based algorithm is adopted by each agent to es-

timate the system information (e.g., system active power

supply-demand mismatch) locally. Then each agent exchanges

information only with its neighbouring agents through a local

communication network and therefore, the communication and

computational burden is reduced. The proposed approach is

less sensitive to the single-point failure and enables a plug-and-

play functionality even during a frequency drop. Furthermore,

the proposed algorithm solves the time-varying optimisation

problem without prior knowledge about renewable generation

and load demand. The effectiveness and scalability of the

distributed approach are illustrated on case studies considering

the IEEE 14-bus and 33-bus test systems modified to incor-

porating RES. The results demonstrate the suitability of the

proposed algorithm for implementation in a large-scale power

system with RES. The simulation study was performed on a

laptop with 2.4 GHz Intel Core I5 CPU: i5 2557m @ 1.7

GHz, and the problem was formulated, coded and solved in

the MATLAB 2016b environment.

II. BACKGROUND

In this section the OCO framework is outlined and Table I

defines parameters and variables used in this paper.

A. Online Convex Optimisation

In the OCO framework, a player plays a repeated game

in a time horizon T [18]. Denoting t ∈ T as the per time

slot and T be the time slot set, a player selects an action xt

from a convex set X ∈ R
n and suffers a loss ft(xt), where

ft(·): Rn → R is the loss function. To account for uncertain

and time-varying renewable generation and load demand, the

traditional OCO setting is broadened from a fixed environment

to an unknown and time-varying environment. In this modified

optimisation problem, the player is the a battery with a time-

varying objective function in terms of the operating cost and

the frequency regulation reward. The decision to be made

is how to control the outputs of BESS to compensate the

active power imbalance cost-effectively. In order to account

for the uncertainties associated with RES and demand, a

time-varying environment is considered, i.e., there are time-

varying penalty functions gt(·): Rl → R and ht(·): Rm → R,

which leads to time-varying constraints. To make the OCO

scheme compatible with the considered dynamic and uncer-

tain environment, an improved performance index, a dynamic

regret, which compares the performance of the OCO scheme

to the sequence of optimal solutions, is applied [22], i.e.,

Rd
T :=

∑

t∈T ft(xt)−
∑

t∈T ft(x
∗
t ), where x∗

t is the sequence

of best dynamic decisions given as x∗
t ∈ argmaxx∈X ft(x),

s.t. gt(x) ≤ 0, ht(x) = 0, ∀t ∈ [0, T ],. In this case, the goal of

an OCO algorithm is to generate decisions with a sub-linear

regret as a function of T [22], where Rd
T = O(

√
T ) and

consequently, limT→∞
Rd

T

T
= 0. This effectively means that

the online algorithm asymptotically converges to the sequence

of best dynamic schedules.

B. Model of the communication network

In the test network, NB distributed BESS are included

as controllable agents. The communication among BESS

is governed by a strong connected and weighted digraph

G = (V, E , W), where V = {ν1,. . . , νNB
} denotes the

agent set and E is the edge set. There exists a direct path

(i, j) ∈ E ⊆ V × V if and only if the ith battery agent can

receive information from the jth battery agent. We assume

that the weight matrix of G, i.e., W ∈ R
NB×NB , is doubly

stochastic, and the weight of an edge from the ith agent to

the jth agent is wij > 0 if and only if (i, j) ∈ E and

wij = 0 otherwise. In this network, each agent receives

information from its in-neighbours N+

i and sends information

to its out-neighbours N−
i , and the in-degree and out-degree

of the ith agent are defined by d+i =
∣

∣

∣
N+

i

∣

∣

∣
and d−i =

∣

∣

∣
N−

i

∣

∣

∣

respectively, where |·| is the cardinality of a set. As indicated

in [23], the designed communication network is independent

of the power network, and hence it can be constructed in a

cost-effective way based on practical requirements. While the

communication network can be theoretically assumed to be

independent of the power network, this is not necessarily true

in practice as many power lines are used as information carries,

i.e., the topology is very similar at basic level.

Remark 2.1: Note that the communication delay is a non-

negligible factor when implementing a distributed algorithm.

Efficient approaches have been proposed to handle the com-

munication delays through optimising the communication net-

work, augmenting the communication graph and design a

learning parameter for the largest delay [24], [25]. Thus,

the effects of the communication delay on the distributed

algorithms would be reduced or even eliminated when the

communication delay is bounded. Analysing into detail the

impact of the communication network design on the proposed

control framework and exploring the most suitable design

approach for the communication network were note within

the scope of this study and will be addressed in the future.

III. BESS OPTIMAL MANAGEMENT

As remarked in Section I, the overall system inertia is reduc-

ing due to the increasing penetration of RES and the dynamics

of the system frequency response change. SGs may not be

able to respond to power imbalances immediately due to the

ramping rate limit and large inertia, which could be assumed to

be unchanged for a short-term frequency excursion [7], [16].

Therefore, to ensure an appropriate frequency response and
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TABLE I
VARIABLES AND PARAMETERS

P i
B,t nonnegative power output of ith battery unit

at time t
∆PM (t) total active power mismatch at time t

SoCi
B,t State of Charge of ith battery unit at time t

f(t) system frequency at time t
ρc marginal cost of degradation
R replacement cost of a battery cell ($/Wh)
LN total number of operational cycles
p(t) reward price at time t

ηi discharging efficiency of ith battery unit
ξi,t inner energy rate (IER) of ith battery unit at

time t

Cai ith BESS capacity

P
i,min
B /P ,imax

B minimum/maximum active power constraint
of ith battery unit

Emax/Emin minimum/maximum energy level of a battery
unit over the battery cycle life

SoC
i,min
B /SoCi,max

B minimum/maximum SoC of ith battery unit

κ, ǫ positive stepsizes
∆tc time-slot duration
B set of BESS constraints
T set of service time horizon
F feasible set of the optimisation problem

ultimately the frequency stability, fast controllable devices,

such as power electronic-based BESS, have been installed

in modern power grids to provide frequency support. The

response time of BESS could be neglected since they have

fast electronic control and they are able to ramp up to full

capacity within ten to one hundred milliseconds [11], [26].

To facilitate a cost-effective frequency support, a battery

storage system should meet the following requirements: i)

to deliver/absorb power quickly in response to observed

frequency deviations; ii) to be operated considering specific

constraints, including power output limits, State-of-Charge

(SoC) limits, to avoid over-charging/discharging; iii) to have

a response designed considering the operating costs (inner

energy rate and degradation cost). The optimisation problem

therefore needs to be formulated to take into account all the

above requirements.

A. Cost Function

To control BESS economically, the following operational

costs should be considered in their management.

1) Inner energy rate: when using a battery system for

frequency regulation, the power loss is a non-negligible factor

that would have effects on its charging/discharging behaviour

and output response. In order to account for the loss factor,

a coefficient ξi, i.e., ξi = ∆EB,i/P
i
B , has been introduced,

where ∆EB,i is the inner consumption energy of battery i
at P i

B [27]. Experiments in [27] have shown that IER can

be represented by a piecewise linear function by applying an

approximation method to linearise the IER function within

a given SoC range. However, in the practical application of

frequency control, the characteristics of IER could be different

from the estimated/linearised ones under different operational

conditions. Thus, a time-varying function is adopted in this

study to indicate the IER characteristics, i.e.,

ξi,t := ai,tP
i
B,t + bi,t, (1)

where ai,t and bi,t are coefficients estimated based on the SoC

and output power at t [27]. The maximisation of the efficiency

is achieved by minimising the following function

C IER
i,t := ξi,tP

i
B,t := ai,t(P

i
B,t)

2 + bi,tP
i
B,t. (2)

2) Degradation cost: the degradation cost of battery cells

during repeated charging/discharging cycles plays an impor-

tant role in the BESS operation. Different methods have been

proposed in the past to investigate battery degradation be-

haviour [28], [29]. In this work a linearised battery degradation

model is adopted, which has been widely used in the past in the

optimal power control of BESS [28], [29]. It was shown in [29]

that, assuming a limited operational region, the marginal cost

of cycle ageing can be approximated by a constant value.

In order to formulate ρc the battery cycle life is normal-

ized into amounts of energy drawn from/to the battery per

charging/discharging cycle, assuming the battery cell works

before end-of-life (EOL). Then, the battery degradation cost

is expressed as

CDegradation
i,t := ρc × P i

B,t. (3)

where ρc = R/
(

2LN × (Emax−Emin

Erated
)
)

∗ ∆tc. The term in the

cost function accounting for BESS degradation can be re-

formulated in order to focus on different aspects, e.g., the

actual number of performed cycles, as long as the degradation

cost function is expressed as a convex function. This would

lead to a different interpretation of the battery degradation but

would not have any impact on the effectiveness of the proposed

approach.

B. Problem formulation

The use of BESS to provide fast frequency regulation is

drawing an increasing interest [28]. NG launched the EFR

service to encourage service providers, in particular BESS, to

participate in the fast frequency regulation market [4]. Within

EFR, service providers will be rewarded when meeting specific

technical criteria designed by NG, which are: i) the response

has to take place within 1s of frequency deviations incurring;

ii) the service providers have to be able to deliver a minimal

response of 1 MW. The proposed control framework aims at

controlling BESS in order to provide EFR while consider-

ing their operating costs and balancing a real-time supply-

demand mismatch. The payment received from the system

operator following EFR market information is calculated by

p(t)P i
B,t. However the particularly challenging EFR technical

requirements are considered in this study, the proposed control

framework can be easily adapted to handle different fre-

quency services. Denoting PB(t) = [P 1
B,t, ..., P

NB

B,t ]
T for i =

[1, . . . , NB ], and Ci,t(P
i
B,t) = CDegradation

i,t + C IER
i,t − p(t)P i

B,t,

the operational problem, ∀i ∈ B, ∀t ∈ T , is formulated as
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min
PB,t

T
∑

t=1

Ct(PB,t) =

T
∑

t=1

∑

i∈B

Ci,t(P
i
B,t) (4a)

s.t. P
i,min
B ≤ P

i
B,t ≤ P

i,max
B (4b)

SoC
i,min
B,t ≤ SoC

i
B,t = SoC

i
B,t−1 − η

iP
i
B,t

Cai
≤ SoC

i,max
B,t (4c)

∑

i∈B

P
i
B,t = ̺∆PM,t (4d)

P
i,max
B

(

−
1

α

f(t)− f(t− 1)

∆t
− β

)

< P
i
B,t − P

i
B,t−1

< P
i,max
B

(

−
1

α

f(t)− f(t− 1)

∆t
+ β

)

, (4e)

where 0 < ̺ ≤ 1 is a weighting factor to scale the current

power mismatch to the contracted BESS power capacity.

To avoid over-discharging and over-charging, equation (4c)

limits the operation of the ith battery between SoCi,min
B and

SoCi,max
B,i . To regulate the frequency to the nominal value,

the constraints (4d) - (4e) are formulated, where (4d) is

formulated to maintain the system balance under abnormal

conditions. As required by the EFR service, in order to avert

stability problems caused by sudden and quick BESS re-

sponses, a ramp-rate limitation proportional to Rate of Change

of Frequency (RoCoF) is to be included in the optimisation

problem, i.e., (4e), where f(t) and f(t− 1) are the measure-

ments of the system frequency at t and t − 1, respectively.

The ramp-rate can be tuned through the parameters α and β
according to performance requirements [30].

Remark 3.1: Since the introduced fast frequency services

are mainly designed for compensating for frequency drops

[31], this paper focuses on the discharging mode. However, the

proposed control algorithm can be easily adopted to support

the grid in response to frequency rise events by replacing the

discharging efficiency in (4c) with the charging efficiency and

considering a positive instead of a negative sign. Furthermore,

time-varying limits on the BESS power and capacity can be

easily integrated in the proposed framework.

Remark 3.2: A power system with wind turbines would

have a modified swing equation as indicated by several studies

in the literature [32], [33]. However, the proposed control

framework is still fully applicable and its performance does

not depend on the system frequency modelling. The system

frequency modelling is adopted to facilitate the formulation

of (4e) and so the change in the swing equation would only

affect the selection of the tuning parameters α and β, which

depends on changes in the system frequency [34]. Therefore,

a power system with high penetration of renewable generation

would have a different setting of α and β [30].
Remark 3.3: Fast frequency response services commonly

require the assets delivering the service for a minimum period

of time (e.g., 15 minutes for EFR [4]). Delivery beyond this

time period is not a requirement and the assets will not be

penalised for ceasing the service delivery if needed. A dead-

band is designed to enable BESS’ SoC recovery (±0.05 Hz

or ±0.015 for EFR [4]). Within the specified deadband the

battery assets can manage their state of charge so as to ensure

they are prepared to provide a continuous service in the future.

BESS only deliver active power to the grid in response to a

change in system frequency outside the deadband. The pro-

posed algorithm is designed to optimally coordinate a large

number of battery assets during the delivery period.

System operators typically re-dispatch outputs of individual

battery systems based on forecasts/real-time information of

load demand and renewable generation. This could result in

an ineffective dispatching because: i) forecasts may not be

accurate enough; ii) real-time measurements might be imper-

fect. In addition, the efficiency of BESS could vary during

their operation. To deal with these issues, the regret mini-

mization framework is adopted. Each battery unit is assumed

to be a player and the decision to be made is on the BESS

power outputs. Each battery agent is equipped locally with a

global information estimator and a power scheduling controller

(PSC). The estimator adopts a consensus-based distributed

algorithm based on information received by neighbouring

agents to estimate the system active power mismatch. A PSC

is embedded to execute locally the proposed algorithm and

generate an optimal power reference. At the beginning of each

time slot t, only the last information about renewable genera-

tion, load demand and frequency measurement is available to

each battery system. Each PSC receives the current frequency

measurement, state of charge, and the real-time price set by the

system operator at each time t. The embedded PSC solves the

optimisation problem (4) based on the available information.

At the end of the time slot t, the actual information is recorded

and used by each PSC for dispatching the corresponding

battery unit in the next time slot t+ 1 ∈ T .

IV. DISTRIBUTED ONLINE OPTIMAL MANAGEMENT OF

BESS

A. OCO Algorithm

A distributed optimisation algorithm is proposed for (4)

using the OCO framework. To facilitate the proposed design,

let ht(PB,t) := (4d) =
∑

i∈B P i
B,t − ̺∆PM,t = 0. The

focus is mainly on providing a solution when the system

suddenly suffers active power imbalance. Letting λt ∈ R
NB be

the Lagrange multipliers associated with ht(PB,t), therefore

the Lagrange function of (4) is given by Lt(PB,t, λt) :=
Ct(PB,t)+λT

t ht(PB,t), where PB,t ∈ FB , with FB being the

feasible set of the optimisation problem defined by (4b), (4c),

and (4e). Well-known methods to solve the centralised OCO

are the Arrow-Hurwicz-Uzawa saddle point or primal-dual

algorithms [35]. However, they require a central controller to

access the system global information. To solve the problem in

a distributed manner, a modified OCO algorithm is illustrated

below. In a distributed optimisation scenario there is no cen-

tralised agent that can access global information and such have

the full knowledge of the global constraint ht(PB,t) at each

time step t. A consensus framework is therefore embedded into

the proposed distributed optimisation algorithm, so that each

battery unit locally estimates the global constraint reflecting

the change in its nearby environment and therefore sharing and

receiving information only with neighbouring battery units.

By doing so, the global constraint at each point in time is

decomposed into a sum of local estimates. At the time slot t,
the ith battery agent makes a decision P i

B,t, which is obtained



5

as follows

P i
B,t =

argmin
P i

B
∈FB,i

▽Ci,t−1(P
i
B,t−1)(P

i
B − P i

B,t−1) +
1

2κ

∥

∥

∥
P i
B − P i

B,t−1

∥

∥

∥

2

+▽hi,t−1(P
i
B,t−1)(P

i
B − P i

B,t−1)

NB
∑

j=1

wijλj,t−1, (5)

where κ is the stepsize, ▽(·) is the gradient of (·) w.r.t

PB at PB = P i
B,t−1, hi,t−1(P

i
B,t−1) is the local estima-

tion of the global constraint ht−1(PB,t−1) and λi,t−1 is the

corresponding Lagrangian muliplier. Let Θ = [θ1, . . . , θNB
],

with 1
T
NB

Θ = 1 and Θ ∈ R
NB , where θi �= 0 if the ith

BESS is able to estimate the total supply-demand mismatch,

θi = 0 otherwise. Define si,t−1 = ∂Ci,t−1(P
i
B,t−1) +

∂hi,t−1(P
i
B,t−1)

∑

j∈B wijλj,t−1. The distributed solution for

the ith battery agent at time step t is calculated as follows

P i
B,t = PFB

(

P i
B,t−1 − κsi,t−1

)

, (6a)

λi,t =
∑

j∈B

wijλj,t−1 + ε
∑

i∈B

wijyj,t−1, (6b)

yi,t =
∑

j∈B

wijyj,t−1 +∆hi,t−1, (6c)

where ∆hi,t−1 = θi(hi,t−1(P
i
B,t) − hi,t−1(P

i
B,t−1)); ε is

a positive stepsize and (6a) has a same solution of the

minimization (5), as shown in Appendix A. An auxiliary

variable is introduced for each battery unit i = 1, . . . , N and

for each time step t, i.e., yi,t in (6c). This auxiliary variable

represents a consensus-based local estimator to track the

function sum
∑NB

i=1
hi,t(P

i
B,t)/N [36], which estimates the

active power mismatch over N BESS (note that N is the

number of available batteries, depending on the current system

configuration). The weighted averaging of the iterates from

each neighbour of the battery agent i, i.e., ỹi,t−1 as described

in Step 1 of the OCO algorithm in Algorithm 1, is used to keep

local estimates of any global information. Then, equation (6c)

provides an update of the local estimator yi,t at time t, ∀i.
The proposed framework can be used by aggregators (for

example, a Virtual Storage Plant operator) to optimally manage

the battery assets and participate into the real-time mar-

ket/balancing mechanism, or to provide ancillary services to

the grid operator. The framework could also be adopted by

system operators as a tool to assess the contribution to different

ancillary services coming from battery assets available in the

whole network and used along with other tools to select in

real-time which service providers to use. The co-optimisation

frameworks currently adopted by system operators will need to

change in order to take into account the different contributions

coming from diverse and multiple flexibility service providers

and the proposed framework yields a first contribution toward

these new tools.

Remark 4.1: The proposed approach could indirectly discern

whether a BESS is online and connected. More specifically,

when a BESS i is disconnected, this is reflected by a change

in the topology of the communication network and thus the

corresponding weights ωij would change accordingly. As a

result, the availability of BESS would be represented by the

weighting factors ωij .
Remark 4.2: The illustrated approach aims at maximising

the contribution from an arbitrarily large number of BESS to

improve the frequency response. Therefore the focus is on

BESS and the control action is driven by the amount of active

power imbalance that has to be covered by BESS. The BESS

power setpoints are continuously updated in a coordinated

manner based on the capacity and the current energy stored

in each individual storage device, so as to adapt to the time-

varying network conditions. The BESS are able to coordinate

each other without the need of any central entity and without

sharing any local private information with the system operator

or the storage aggregator.
The convergence of the proposed OCO algorithm is illus-

trated in Appendix B.

B. Algorithm Implementation

Algorithm 1 details the steps of the proposed distributed

algorithm.

Algorithm 1 Distributed OCO algorithm for BESS.

Initialize: t = 0, for all i ∈ B
Time horizon: T ; Local algorithm coefficients: wij , ε; Local
PSC: P i

B,0 ∈ FB , λi,0 = 0, yi,0 = hi,t(P
i
B(0));

OCO Algorithm: If t = T , then stop. Otherwise:
1: Consensus-based updates:

λ̃i,t−1 =
∑

j∈B
wijλj,t−1 ỹi,t−1 =

∑

j∈B
wijyj,t−1,

2: Each battery PSC: calculate (6)
3: t = t+ 1 and go to Step 1
4: return P i

B,t;

In the proposed scheme, each local PSC is responsible for

receiving the generation/demand information of RES and loads

from its neighbouring agents through a local communication

network, and the reward price broadcast by the system operator

in an online fashion. The time horizon of the scheduling

process is T and each time slot over the given horizon

represents a specific time period, ∆t.
V. SIMULATION STUDY

In this section the distributed solution obtained by (6)

is evaluated through two case studies. In Case 5.1 the

effectiveness of the proposed distributed OCO algorithm to

support frequency regulation is verified for the IEEE 14-

bus system. The scalability and plug-and-play capability of

Algorithm 1 are investigated in Case 5.2, where the IEEE 33-

bus system is adopted. All systems are modelled using data

from MatPower [37]. Results demonstrate that the dispatching

BESS can guarantee real-time supply-demand balance with

minimal operation costs.
Remark 5.1: The proposed control framework covers the

time scales and the control objectives of the traditional pri-

mary and secondary control approaches. A comparison with

conventional droop-based approaches would not be appropriate

since they cannot keep frequency at nominal value, being

basically proportional controllers. Although improved and

modified droop-based approaches have been proposed in the

literature, these fully decentralised approaches are generally

less effective since they do not utilise any information ex-

change and can achieve highly sub-optimal solutions [38]. The
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proposed approach not only targets the same control goals as

traditional primary and secondary control, but it also achieves

those goals in an optimal and real-time manner, minimising

the BESS degradation and power losses, as well as maximising

the revenue deriving from the frequency service provision.

A. Simulation setup

1) Parameters: the system nominal frequency is f0 = 50
Hz. The considered time horizon T and the reward price is

7.45 £/MW [4]. In order to model an imperfect price signal,

a uniform and random noise from [0, 1] over T is added

to the price signal. The coefficients ai,t and bi,t are varied

and determined by the SoC and output power at each current

point in time [27]. BESS with 13 MWh rated capacity and

cell cost of 0.56 £/W are considered in the optimisation. The

SoC operational range is [20, 80] %, where each battery has a

constant marginal cost. The considered time slot is ∆t = 0.2s.

The scaling factor ̺ in Problem (4) is set to 1.

2) Performance metric: to evaluate the performance of the

frequency regulation, the frequency deviation from nominal

value over a short-time period is calculated as fre := f̄oco

f0
×

100%, where f̄oco is the mean value of measured system

frequency using the proposed OCO algorithm over a given

time period. Therefore, fre → 100% implies that the regulated

frequency gets closer to the nominal value f0.

1

2

3

4
5

6 7

8
9

10

12
14

13

11

BESS

SG

RESs

Fig. 1. The single line diagram of IEEE 14-bus with 5 BESS in Case 5.1

B. Case 5.1

In this case study the IEEE 14-bus with five BESS is

considered (see Fig. 1). The BESS maximum power ratings

are randomly generated from [1.2, 1.5] MW using a uniform

distribution. The inertial constant is 4s and the damping is

0.015%. At t = 0 the system is exposed to an unexpected and

sustained supply-demand mismatch, which is modelled as a

random variable with a uniform distribution U(3.6, 4.4)MW.

BESS are deployed to compensate for this imbalance by using

the last available information up to the current point in time.

The results are shown in figures 2(a) and 2(c). Fig. 2(a) shows

the frequency response with/without the constraints (4e),

which limits the BESS ramp-rate proportionally to RoCoF.

It can be observed that the proposed framework can quickly

restore frequency and the performance of the frequency regula-

tion is improved by introducing the constraints (4e) in (4). The

frequency nadir is reduced (see Fig. 2(a)) and the value of the

performance indicator fre over the regulation time (from 5s to
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(c) Total active power output of the five BESS

Fig. 2. Results of Case 5.1

Fig. 3. Evolution of the regret function with time

15s) is improved from fwithout
re = 98.64% to fwith

re = 99.75%.

Fig. 2(b) depicts the BESS output updates. It can be seen

that each battery device is re-dispatched within the power

ratings. The overall output of the five BESS is given in

Fig. 2(c). Furthermore, as shown in Fig. 3, the regret function

converges to zero as the time increases, which demonstrates

the convergence analysis presented in Appendix B.
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C. Case 5.2

In this case study the plug-and-play capability and the scala-

bility of the proposed distributed OCO algorithm is evaluated.

Ten BESS with maximum power ratings ranging from 4.8 to

5.5 MW are included into a IEEE 33-bus system. The inertial

constant is 6s and the damping ratio is 0.015%. At t = 0
the system is exposed to an unexpected and sustained supply-

demand mismatch, which is modelled as a random variable

with a uniform distribution U(22.5, 27.5)MW. It is assumed

that the connected BESS can still communicate with their

neighbours under plug-and-play operations. In this scenario

on of BESS, namely BESS7, fails to operate unexpectedly at

t = 4s during the frequency drop and it is recovered at t = 23s.

Because of its failure BESS7 loses its communication with its

neighbouring BESS, and the rest of BESS are re-dispatched

accordingly to support the system supply and demand balance.

The results are shown in the figures 4(a) - 4(b). Note that

the system operator would commonly require the frequency

to be restored to the safety range within a pre-defined time,

e.g., 30 seconds for the Enhanced Frequency Response. It is

shown that the system frequency is regulated to the nominal

value within the required time irrespective of the BESS7

failure. After BESS7 is disconnected during the frequency

drop, the proposed algorithm is able to timely re-dispatch

the outputs of the remaining BESS to new optimal values,

in order to continue to regulate the system frequency, as

shown in Fig. 4(a). Furthermore, after BESS7 is reconnected,

the proposed algorithm re-dispatches the outputs of all BESS

again and converges to a new optimal value. This demonstrates

that the proposed algorithm can fully manage ”leaving and

entering” of new battery units and thus support plug-and-play

operation without causing significant effect on the frequency

response of the system even during the frequency drop.

In order to analyse the algorithm scalability, the computation

time taken to calculate the BESS power outputs using the

proposed distributed algorithm and an existing centralised

method [39] for different number of BESS is calculated and

provided in Table II. The results show that, even for 2000

BESS, the proposed distributed algorithm can calculate the

power setpoint of each BESS within 0.5s. Differently from

the centralised approach, the proposed distributed control ap-

proach is suitable for application in large-scale power systems

with thousands of BESS.
TABLE II

COMPUTATION TIMES

Num. of BESSs 150 300 500 800 1000 2000

Time (distributed) 0.055s 0.0714s 0.128s 0.18s 0.27s 0.49s

Time(centralised) 2.17s 3.05s 4.25s 5.41s 6.62s 19.74s

VI. CONCLUSIONS AND FUTURE WORK

A distributed control strategy of BESS using a combina-

tion of consensus algorithms and online convex optimisation

is proposed and illustrated in this paper. To control BESS

cooperatively and cost-effectively, a time-varying optimisation

problem is formulated while considering uncertain RES gener-

ation and demand and BESS degradation costs, and solved in
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Fig. 4. Results of Case 5.2

a distributed fashion. The numerical results demonstrate that

the system requirements of Enhanced Frequency Response [4]

are satisfied by the proposed framework. Furthermore, the

proposed approach guarantees the plug-and-play functionality

and it is scalable compared with centralised approaches.

Future work includes the incorporation of the BESS location

in the network into the control design which is essential

when coordinating a large number of BESS to provide system

services, as well as the extension of the proposed control

framework to include provision of other system services, e.g.,

voltage regulation and stability and angular stability.

APPENDIX

A. Proof of the relationship between (5) and (6a)

We drop the superscript “i” for simplicity.

Proof: (5) can be rewritten as

PB,t ∈ argmin
PB∈FB

▽
T
PB,t−1

Lt−1(PB,t−1, λt−1)(PB − PB,t−1)

+
1

2κ

∥

∥PB − PB,t−1

∥

∥

2
(7)

Let P̃B,t be the minimiser of (5) and PB,t is

calculated by (6a). For any P̂B,t ∈ FB , according to

(6a), one has
∥

∥

∥
PB,t − [PB,t−1 − κ▽T

PB,t−1
Lt−1]

∥

∥

∥

2

≤
∥

∥

∥
P̂B,t − [PB,t−1 − κ▽T

PB,t−1
Lt−1]

∥

∥

∥

2

, where

▽
T
PB,t−1

Lt−1(PB,t−1, λt−1) is denoted by ▽
T
PB,t−1

Lt−1

for simplicity. Note that FB is a convex set and

therefore PB,t is a unique solution of the minimisation
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minPB
PB− [PB,t−1−α▽T

PB,t−1
Lt−1]. To show P̃B,t = PB,t,

assume that P̃B,t �= PB,t and one has

∥

∥

∥
PB,t − [PB,t−1 − κ▽T

PB,t−1
Lt−1]

∥

∥

∥

2

<
∥

∥

∥
P̃B,t − [PB,t−1 − κ▽T

PB,t−1
Lt−1]

∥

∥

∥

2

. (8)

where P̂B,t is replaced by P̃B,t. Calculating the square of both

sides of (8), it implies that

▽
T
PB,t−1

Lt−1(PB,t − PB,t−1) +
1

2κ

∥

∥PB,t − PB,t−1

∥

∥

2

< ▽
T
PB,t−1

Lt−1(P̃B,t − PB,t−1) +
1

2κ

∥

∥

∥
P̃B,t − PB,t−1

∥

∥

∥

2

With the assumption of P̃B,t �= PB,t, P̃B,t should be a

minimiser of argminPB∈FB
▽

T
PB,t−1

Lt−1(PB − PB,t−1) +
1

2κ

∥

∥PB − PB,t−1

∥

∥

2
, which implies that for any P̂B,t ∈ FB ,

▽
T
PB,t−1

Lt−1(P̃B − PB,t−1) +
1

2κ

∥

∥

∥
P̃B − PB,t−1

∥

∥

∥

2

≤ ▽
T
PB,t−1

Lt−1(P̂B − PB,t−1) +
1

2κ

∥

∥

∥
P̂B − PB,t−1

∥

∥

∥

2

(9)

By letting P̂B,t = PB,t, it is obtained that

▽
T
PB,t−1

Lt−1(P̃B − PB,t−1) +
1

2κ

∥

∥

∥
P̃B − PB,t−1

∥

∥

∥

2

≤ ▽
T
PB,t−1

Lpt−1(PB − PB,t−1) +
1

2κ

∥

∥

B − PB,t−1

∥

∥

2
, (10)

which contradicts the previous results in (8). As a result, it

can be concluded that P̃B,t = PB,t, which indicates that (6a)

has the same solution as (5).

B. Convergence analysis

Assumption A.1: The feasible set FB is compact and the

iterates {λi,t}i∈B,t≥1 are bounded, i.e.,
∥

∥PB,t

∥

∥ ≤ BFB
, and

‖λt‖ ≤ Bλ.

Assumption A.2: Ct(·) is bounded on FB , i.e.,
∥

∥Ct(·)
∥

∥ ≤
Bc, and is gradient boundedness and Lipschitz continu-

ous with a constant Lc > 0, i.e.
∥

∥▽Ct(·)
∥

∥ ≤ Lc and
∣

∣Ci,t(x)− Ci,t(y)
∣

∣ ≤ Lc‖x− y‖, ∀x, y ∈ FB . ht(·) is

bounded on FB , i.e.,
∥

∥ht(·)
∥

∥ ≤ Bh, and has the bounded

gradient, i.e.,
∥

∥▽ht(·)
∥

∥ ≤ Lh

Assumption A.3: The sequence {P i
B,t} is uniformly

bounded, i.e., Up := supt≥1 supP i
B,t

∈FB

∥

∥

∥
P i
B,t

∥

∥

∥

2

< ∞. Also,

FB has a bounded radius, i.e.,
∥

∥

∥
P i
B,t − PB,j(t)

∥

∥

∥
≤ RFB

,

∀P i
B,t, PB,j(t) ∈ FB .

Note that Assumptions A.1-A.3 are widely used in the saddle-

point-based OCO framework [22], [36], [39]. The Lemmas

introduced in the following are convenient to the proof of

Theorem 16.
Lemma A.1: Let ∆yi

:= 1

2
(
∥

∥yi,t+1

∥

∥

2 −
∥

∥yi,t
∥

∥

2
) where

ỹi,t :=
∑

ij wijyi,t. It follows that
∑NB

i ∆yi
≤ ∑NB

i yi,t ▽
hi,t(P

i
B,t)(P

i
B,t+1 − P i

B,t)) + 2Θ2R2
FB

L2
h.

Proof:

NB
∑

i

∥

∥yi,t+1

∥

∥

2
=

NB
∑

i

∥

∥

∥
ỹi,t + θi ▽ hi,t(P

i
B,t)(P

i
B,t+1 − P i

B,t)
∥

∥

∥

2

=

NB
∑

i

(

∥

∥ỹi,t
∥

∥

2
+ 2ỹi,tθi ▽ hi,t(P

i
B,t)(P

i
B,t+1 − P i

B,t)

+θ2i

∥

∥

∥
▽hi,t(P

i
B,t)(P

i
B,t+1 − P i

B,t)
∥

∥

∥

2
)

≤
NB
∑

i

(
∥

∥yi,t
∥

∥

2
+ 2yi,t ▽ hi,t(P

i
B,t)(P

i
B,t+1 − P i

B,t))

+ Θ2R2
FB

L2
h (11)

where the first order approximation of ht(PB,t+1), and
∑NB

i θi = 1,
∑NB

i ỹi,t =
∑NB

i

∑NB

j wijyi,t =
∑NB

i yi,t
are used. The last inequality comes from the bounded gradient

and radius. The proof is completed by rearranging the terms

in Lemma A.1.
Lemma A.2: Considering (6) and defining ∆ :=

∑NB

i ∆yi
,

the following holds ∀P i
B ∈ FB,i, i = [1, . . . , NB ],

∆ ≤ ∑NB

i=1

∑NB

i=1
(Ci,t(P

i
B) − Ci,t(P

i
B,t)) +

∑NB

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t

∥

∥

∥

2

− ∑NB

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t+1

∥

∥

∥

2

+

κ
∑NB

i=1

∥

∥

∥
▽Ci,t(P

i
B,t)

∥

∥

∥

2

+ B0 + 2Θ2R2
FB

L2
h, where B0 is

defined later.
Proof: By using the definition of ∆ and Lemma A.1 it is

implied that ∆ ≤ ∑NB

i yi,t ▽ hi,t(P
i
B,t)(P

i
B,t+1 − P i

B,t)) +

2Θ2R2
FB

L2
h. Recall that PB,t+1 = [P 1

B,t+1, . . . , P
NB

B,t+1
]T is

the optimal solution of the following optimisation problem,

i.e, PB,t+1 ∈ argminPB∈FB

∑NB

i=1
▽Ci,t(P

i
B,t)(P

i
B−P i

B,t)+
∑NB

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t

∥

∥

∥

2

+
∑NB

i=1
λi,t▽hi,t(P

i
B,t)(P

i
B−P i

B,t),

where
∑NB

i λ̃i,t =
∑NB

i

∑NB

j wijλi,t =
∑NB

i λi,t. By

adding
∑NB

i=1
▽ϕi +

∑NB

i=1

1

2κ

∥

∥

∥
P i
B,t+1 − P i

B,t

∥

∥

∥

2

, where ϕi =

Ci,t(P
i
B,t)(P

i
B,t+1 − P i

B,t), to both sides of the previous
inequality, it is derived the following

∆+

NB
∑

i=1

▽ϕi +

NB
∑

i=1

1

2κ

∥

∥

∥
P

i
B,t+1 − P

i
B,t

∥

∥

∥

2

≤

NB
∑

i=1

▽ϕi +

NB
∑

i=1

1

2κ

∥

∥

∥
P

i
B,t+1 − P

i
B,t

∥

∥

∥

2

+ 2Θ2
R

2
FB

L
2
h

+

NB
∑

i

yi,t ▽ hi,t(P
i
B,t)(P

i
B,t+1 − P

i
B,t)). (12)

Since PB,t+1 is the minimizer of (5), one has that

(12) ≤
NB
∑

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t

∥

∥

∥

2

−
NB
∑

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t+1

∥

∥

∥

2

+

NB
∑

i

λi,t ▽ hi,t(P
i
B,t)(P

i
B − P i

B,t)) + 2Θ2R2
FB

L2
h

+

NB
∑

i=1

▽Ci,t(P
i
B,t)(P

i
B − P i

B,t)

+

NB
∑

i

(yi,t − λi,t)▽ hi,t(P
i
B,t)(P

i
B − P i

B,t), (13)
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where, by using Lemma 3 in [36], it can be obtained that
∥

∥yi,t
∥

∥ ≤ Cy , and it can be concluded that the last term in (13)

is bounded by KLgRFB
, where K = By−Bλ. Note that λi,t

can be either ≥ 0 or < 0. The case of λi,t ≥ 0 is discussed

first. Therefore,

∆+

NB
∑

i=1

1

4κ

∥

∥

∥
P i
B,t+1 − P i

B,t

∥

∥

∥

2

≤
NB
∑

i=1

(Ci,t(P
i
B)− Ci,t(P

i
B,t))

+ 2Θ2R2
FB

L2
h +B0 + κ

NB
∑

i=1

∥

∥

∥
▽Ci,t(P

i
B,t)

∥

∥

∥

2

+

NB
∑

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t

∥

∥

∥

2

−
NB
∑

i=1

1

2κ

∥

∥

∥
P i
B − P i

B,t+1

∥

∥

∥

2

(14)

where the inequality is obtained by using the convex-

ity of Ct(PB,t) ht(PB,t), and the Cauchy-Schwarz in-

equality, i.e., −∑NB

i=1
▽TCi,t(P

i
B,t)(P

i
B,t+1 − P i

B,t) ≤
∑NB

i=1
(κ
∥

∥

∥
▽Ci,t(P

i
B,t)

∥

∥

∥

2

+ 1

4κ

∥

∥

∥
P i
B,t+1 − P i

B,t

∥

∥

∥

2

), and B0 :=

maxt maxPB

∥

∥ht+1(PB)− ht(PB)
∥

∥. Thus the proof is com-

pleted by dropping the non-negative term in LHS of (14).

The proof of the case of λi,t < 0 follows similar lines and it

is omitted here.

Theorem A.1: Under Assumptions A.1-A.3 the dynamic

regret of the proposed distributed OCO algorithm (6), with

yi,0 =
∑

i∈B P i
B(0) − ∆PL(0) and λi,0 = 0, for i ∈ B, is

upper-bounded by

Rd
T ≤ B0T + 2Θ2R2

FB
L2
hT +

R2
FB

T

κ

+
RFB

κ
V ({P ∗

B,t}Tt=1) + κL2
cT +

ByT

2
, (15)

where the definition of V ({P ∗
B,t}Tt=1) is provided later.

Proof: Let P i,∗
B,t ∈ FB be the minimizer of (5). By

replacing P i
B by P i,∗

B,t in Lemma A.2, it can be proved that

∆ ≤
NB
∑

i=1

1

2κ

∥

∥

∥
P i,∗
B,t − P i

B,t

∥

∥

∥

2

+ 2Θ2R2
FB

L2
h

+

NB
∑

i=1

(Ci,t(P
i,∗
B,t)− Ci,t(P

i
B,t))−

NB
∑

i=1

1

2κ

∥

∥

∥
P i,∗
B,t − P i

B,t+1

∥

∥

∥

2

+ κ

NB
∑

i=1

∥

∥

∥
▽Ci,t(P

i
B,t)

∥

∥

∥

2

+B0 (16)

Note that two distance terms (16) are bounded

by
∥

∥

∥
P i,∗
B,t − P i

B,t

∥

∥

∥

2

−
∥

∥

∥
P i,∗
B,t − P i

B,t+1

∥

∥

∥

2

≤

2RFB

∥

∥

∥
P i,∗
B,t − P i,∗

B,t−1

∥

∥

∥
+

∥

∥

∥
P i
B,t − P i,∗

B,t−1

∥

∥

∥

2

−
∥

∥

∥
P i,∗
B,t − P i

B,t+1

∥

∥

∥

2

where the bounded radius of FB,i in

Assumption A.3 is used to obtain the last inequality. Using

the bound in (16) and the property of telescoping series,

which is a technique to cancel part of each term with part of

the next term, and summing up (16) over t = [1, . . . , T ], the

following inequality is derived

1

2

NB
∑

i=1

(
∥

∥yi,T+1

∥

∥

2 −
∥

∥yi,1
∥

∥

2
))

≤
T
∑

t=1

NB
∑

i=1

(Ci,t(P
i,∗
B,t)− Ci,t(P

i
B,t)) +B0T

+
RFB

κ
V ({P ∗

B,t}Tt=1) + κL2
cT +

R2
FB

κ
+ 2Θ2R2

FB
L2
hT,

(17)

where the last inequality is obtained from the definition

of the accumulated variation of the per-slot minimiser, i.e.,

V ({P ∗
B,t}Tt=1) :=

∑T

t=1

∑NB

i=1

∥

∥

∥
P i,∗
B,t − P i,∗

B,t−1

∥

∥

∥
, and the

bounded radius RFB
. Lastly, using the definition of dynamic

regret it is deduced that Rd
T ≤ +B0T + 2Θ2R2

FB
L2
hT +

R2

FB
T

κ
+

RFB

κ
V ({P ∗

B,t}Tt=1)+κL2
cT+

ByT

2
, where

∥

∥

∥
y2i,T+1

∥

∥

∥
≥

0.
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