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Abstract— In this paper we realize a real-time communication
on Ethernet and develop an onbody distributed control system
for a humanoid robot, HRP-3P. Real-time communication on
Ethernet is realized by (1) a communication method using the
data link layer directly and (2) timing control using a real-time
operating system ARTLinux. This enables us to reduce the cost
of embedded systems and improve developmental efficiency. A
CORBA implementation which works on this communication
layer is also developed to increase compatibility with existing
software. Finally a small-size distributed robot controller is
developed for the onbody network of HRP-3P and a distributed
I/O system is developed on top of this.

I. INTRODUCTION

System configurations of self-contained robots can be di-

vided broadly into two categories, that is, a centralized system

and a distributed one as shown in Fig.1. A centralized system

places a computer and an interface board which has A/D, D/A

etc. at the center. Motors and sensors are all connected to the

computer. A distributed system distributes I/O nodes all over

the body which are connected by onbody network. Motors and

sensors are connected to the nearest I/O node.

From perspective of software, the centralized system can be

controlled by simple software, because only one CPU controls

all I/Os. On the other hand, software for the distributed

system must be more complicated. Software on I/O nodes must

communicate with a central computer while doing I/O. Also a

software on the central computer needs to gather information

from all nodes and distribute motion commands to them while

doing an whole body motion control.

From the perspective of hardware, wires between mo-

tors/sensors and the interface board become long and gather

to the board on the centralized system. Therefore they are
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Fig. 1. Configurations of self-contained robots

susceptible to noise and wiring near the board becomes

difficult. In the case of adding a motor or a sensor, a new wire

must be added from the center. Wires between motors/sensors

and I/O nodes are short on the distributed system and it is

easy to add a motor or a sensor so long as the capacity of the

network is sufficient. The number of wires between nodes is

also constant(power and network).

This distributed system configuration is effective especially

on humanoid robots. Many humanoid robots have about 30

DOF. It is expected that the number of DOF increases by

introducing multi fingered robot hands. The number of sensors

can also increase dramatically by introducing sensor skin.

Humanoid robots have wide movable ranges of joints and for
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Fig. 2. Time chart of HRP-3P system

that reason it is hard to provide spaces for wires. These issues

are especially serious on a small-size humanoid robot, thus

some of them adopted a distributed system from the start.

We realize real-time communication on Ethernet and de-

velop a distributed I/O system using it as an onbody network

for a humanoid robot HRP-3P.

This paper is organized as follows. Section 2 explains why

Ethernet is selected as an onbody network. Section 3 describes

how to realize real-time communication on Ethernet. Section 4

presents a small-size controller to distribute all over the body.

Section 5 explains a real-time CORBA which works on real-

time Ethernet. Section 6 measures the performance of a real-

time communication library. Section 7 describes a distributed

I/O system for HRP-3P using the real-time CORBA. Section 8

concludes the paper.

II. ONBODY NETWORK

Requirements on an onbody network of robot changes

according to specifications of a robot system. Therefore, we

decided specifications of HRP-3P system at first as follows

based on a humanoid robot HRP-2[1] which has a centralized

system configuration.

1) The system consists of a central computer and I/O nodes.

In order to decrease the number of wires, bus-connection

or daisy chain is used.

2) An whole body motion control task is executed on the

central computer in 5[ms] period.

3) A joint control task is executed on I/O nodes in 1[ms]

period.

4) The computer and nodes communicate every 5[ms]

and those communications are completed within 1[ms].

Figure 2 shows a time chart of HRP-3P system.

5) Tasks on the computer and nodes runs in sync to get

sensory information at the same time and rotate motors

at the same time.

Assuming the computer and all I/O nodes are connected to a

single network, a requested bandwidth is estimated as follows.

Central Computer → I/O node Motor commands and

PD gains(36 DOF) are described with 16[bit] data and

16×(36+36+36)/0.001=1,728,000[bps] is required.

I/O node → Central Computer Joint angles, joint torques,

motor temperatures(36 DOF), gyrometers(×3), 6 axis force

sensors(×4), accelerometers(×3) are described with 16[bit]

and 16×(36+36+36+6×4+3+3)/0.001=2,208,000[bps] is re-

quired.

Moreover, practically a protocol overhead is additionally

required. Considering the possibility of adding motors and

sensors and shortening of the control period, about 10[Mbps]

will be required.

There are several networks in industry, ARCNET(Attached

Resource Computer NETwork), I2C(Inter Integrated Circuit),

CAN(Controller Area Network) and so on. ARCNET incor-

porates a token-passing protocol where media access is deter-

mined by the station with the token. When a station receives

the token, it can either initiate a transmission to another

station or it must pass the token to its logical neighbor. This

scheme avoids collision. It also includes network configuration

and error handling and its speed is up to 10[Mbps]. I2C is

frequently used for communication between ICs as its name

indicates. It consists of only two lines, clock and data and its

speed is up to 3.4[Mbps]. I2C interface is built into many

microprocessors, so it is easy to downsize network nodes.

Therefore, network nodes which communicate through I2C

is adopted by small-size humanoid robots that have strong

constraint on size[2], [3], [4]. Speed of CAN is up to 1[Mbps]

and it is comparatively slow. But it has high noise immunity

and it is suitable for robots where power lines generate noise

[5].

AIBO and QRIO[6] are based on an architecture called

OpenR[7]. Modules are connected by an original bus called

OpenR bus which consists of 10 lines including power line

for motors, power line for computer and network line. Its

speed is up to 12[Mbps]. A motor, a gear box and a motor

control/communication board are integrated into a module

called ISA(Intelligent Servo Actuator), and it works only

by connecting to OpenR bus. ETL-Humanoid[8] also has

an original token-passing type network and it realizes high

frequency communication at 10[kHz]. An original bus can be

optimized for applications, but it requires development of new

interface hardware, device drivers and so on.

In addition, there are robots which adopt USB or IEEE1394

that are developed for personal computers originally.

HOAP series[9] have been adopted USB as an onbody

network since its prototype [10] that is developed in HRP[11].

Its version is 1.0, so its speed is up to 12[Mbps].

Ethernet is a global standard network that is used by PCs

etc. Its speed is fast enough, up to 1[Gbps]. However, it can’t

communicate in real-time, and meet deadlines. If real-time

communication on Ethernet is possible, (1)cost of embedded

systems can be reduced by using low-cost parts and (2)existing

applications that use TCP/IP can be used therefore improving

maintenance and developmental efficiency. Therefore, stan-

dardization of real-time communication on Ethernet have been

discussed by the working group IEC/TC65/SC65C. Several

specifications including PROFINET IO[12] and TCnet[13]

were already proposed to this working group. Our system uses

Ethernet as onbody network since real-time communication on

Ethernet is realized with a small change on ARTLinux using

a similar way to PROFINET IO and TCnet.
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III. REAL-TIME COMMUNICATION ON ETHERNET

A. Realization of Real-time Communication

There are three reasons real-time communication on Ether-

net is considered to be difficult.

1) Ethernet incorporates CSMA/CD method. Completion

time of communication can’t be expected since collision

is possible.

2) Processing time can’t be expected since TCP/IP includes

packet retransmission and buffering.

3) There is no way of controlling frame transmission time.

A frame collision in 1) occurs when using bus-connection

with coaxial cable like 10BASE5 or star connection with

repeater hubs. But it doesn’t occurs when using point-to-

point connection or star connection with twisted-pair cables

or optical cables,

Unexpectable processing time in 2) can be avoided by

not using TCP/IP as PROFINET IO and TCnet. That is,

application data is transmitted directly in payload of Ethernet

frame as shown in Fig.3. Using this method, time since an

application calls data transmission system call of OS to a

Ethernet device executes a transmission command becomes

expectable. If transmission queue in a Ethernet device is

empty, the frame is sent immediately after a transmission

command is issued.

Frame transmission time in 3) need not to be controlled by

network hardware, device driver and OS. It can be controlled

by an application on real-time OS that decides when it calls a

system call, since time between the system call and an actual

transmission time is foreseeable. In this paper, ARTLinux[14]

is used as a real-time OS.

Due to methods mentioned above, real-time communication

on Ethernet is possible. But there are two points that must be

paid attention. Since Ethernet is a protocol of physical layer

and data link layer, a packet relay function of router is not

available and we must implement our own relay function.

If some error occurs during communication, the transmitted

frame can’t be received. Since an automatic retransmission

in OS level causes deadline miss, an application must be

developed considering that data may disappear.

B. Real-time Communication Library

A real-time communication library is developed based on

methods mentioned in the previous section. This library can

be used at the user-level.
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Fig. 4. Route reconfiguration(RM:Relay Mode, TM:Through Mode)

Two modes, that is, a relay mode and a pass-through mode

of sockets can be set respectively.

In the relay mode, if a destination MAC address of a

received frame is different from that of a received Ethernet

port, the frame is re-transmitted. This function is required since

functions in network layer of TCP/IP can’t be used.

The through mode selects a destination port which is used

by relay mode. When it is on, the other port is selected and

when off, the same port is selected. Using this mode, two

communication routes can be selected. Even if one of couple

routes is disconnected, communication can be continued by

selecting the other route. For instance, say node B and node

E are communicating through a route shown in Fig.4 left. In

this case the through mode of node A is on. If node A detects

a disconnection of route between node A and node E, node B

and node E can continue to communicate selecting a new route

shown in Fig.4 right by turning the through mode of node A

off. Network wires tend to suffer stress since they run through

joints and it can cause disconnections. Introducing redundant

routes and a route switching function, reliability of an onbody

network can be improved.

C. Clock Synchronization

To realize specification 5), a function that synchronize all

nodes running based on different clock is required.

In order to synchronize the clock on all nodes, a command

that is based on IEEE 1588 Precision Time Protocol(PTP) is

implemented. A node(called slave) is synchronized to the other

node(called master) while communication. The synchroniza-

tion error where a master and a slave are connected directly

is smaller than where there are several nodes between them.

So configuring neighboring nodes make pairs of master and

slave as shown in Fig.5 right is preferred to where that one

node works as a master of rest nodes as shown in Fig.5 left.

A timer interrupt is generated based on an external clock of

a CPU. However its frequency is slightly different because of

individual differences. If you synchronize a clock only once

at the beginning, the difference is accumulated and causes a

disturbance after a certain amount of execution period. So this

clock synchronization function is executed at 1[s] period in the

background.
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Fig. 6. CPU board, link I/O board, sensor I/O board and serial I/O board

IV. DISTRIBUTED ROBOT CONTROLLER

In order to make a distributed I/O system using the real-

time communication library, a small-size CPU board and I/O

boards are developed. Figure 6 shows four kinds of developed

boards. The upper row shows a CPU board which has SH4

and it is used by stacking with an I/O board as shown in the

middle row. The bottom row shows a link I/O board which

controls up to five joints, a sensor I/O board which measures

sensors with analog outputs and a serial I/O board which has

four RS422 ports from left. I/O boards are connected with a

CPU board by a connector which is mounted at the upper left

corner of boards and power is supplied through the connector.

Brief specifications of these boards are shown in Table I.

The CPU board has two Ethernet ports to construct ring

topology as mentioned above. A kernel and a root filesystem of

ARTLinux are placed in flash memory and their modification

can be done while running OS. Therefore, if a maintenance is

required, a user can log on from a remote computer through

network and modify them. The user need not to connect a

serial cable and download a new files. This is possible by

using Ethernet as network.

TABLE I

SPECIFICATIONS OF CPU BOARD AND I/O BOARDS

Common Specification

Board size 55[mm]×95[mm]

CPU board

CPU 32bit RISC-CPU SH4 240[MHz]
Memory FLASH Memory 32[MB], SDRAM 32[MB]

I/O 10/100Base-T Ethernet × 2
RS232C serial port× 1

Power DC12[V]

Link I/O board

AD 12[bit], ±10[V], × 10
DA 12[bit], ±10[V], × 5

Counter 24[bit], always-on with backup power supply, ×5
DIO 5[bit]

Sensor I/O board

AD 16[bit], ±10[V], × 12
DA 12[bit], ±10[V], × 4

Serial I/O board

AD 12[bit], ±10[V], × 4
RS422 asynchronous, up to 921.6[Kbps], ×4

Encoder counters of a link I/O board works with a power

supply from a CPU board or a backup power line. So they

continues to count encoder pulses even while the power supply

to the CPU board is off. As long as the backup power is

supplied, an origin of a joint needs not to be calibrated.

V. PERFORMANCE EVALUATION

In order to evaluate performance of the developed real-

time communication library, an period error and a processing

time of communication at a constant period is measured while

changing the data size and the period. Outline of the program

is shown in the following.

1 periodic_send(unsigned long period, int len,
char *name, struct ether_addr *addr)

2 {
3 EtherRTSock *sock;
4 sock = EtherRTSocket(SOCK_DGRAM, ETH_P_RT);
5 EtherRTBind(sock, name);
6 EtherRTConnect(sock, addr);
7 art_enter(ART_PRIO_MAX, ART_TASK_PERIODIC,

period);
8 for (i = 0; i < LOOP_COUNT; ++i) {
9 art_wait();
10 EtherRTSend(sock, buf, len, 0);
11 }
12 art_exit();
13 EtherRTClose(sock);
14 }
15
16 periodic_recv(unsigned long period,

char *name, struct ether_addr *addr)
17 {
18 EtherRTSock *sock;
19 sock = EtherRTSocket(SOCK_DGRAM, ETH_P_RT);
20 EtherRTBind(sock, name);
21 EtherRTConnect(sock, addr);
22 art_enter(ART_PRIO_MAX, ART_TASK_PERIODIC,

period);
23 do{
24 art_wait();
25 }while(EtherRTRecv(sock, buf, ETH_DATA_LEN,

MSG_DONTWAIT) == -1);
26 for (i = 0; i < LOOP_COUNT-1; ++i) {
27 art_wait();
28 EtherRTRecv(sock, buf, ETH_DATA_LEN, 0);
29 }
30 art_exit();
31 EtherRTClose(sock);
32 }
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Fig. 7. Time chart of real-time communication program

Here periodic send() is sending side and

periodic recv() is receiving side.

The sending side is executed periodically by

art wait()and it sends data with EtherRTSend()

once per period.

The receiving side waits for the arrival of the first

data(from line 23 to 25). Calling EtherRTRecv() with

MSG DONTWAIT, it returns -1 immediately if no data arrives.

If data is found, it returns 0 and goes to the line 26. Executing

the sending side and the receiving side at the same period,

when EtherRTRecv() is called at the line 28, data must

have already arrived if there is no communication error. Then

EtherRTRecv() returns immediately. Figure 7 shows a time

chart of this communication.

By this means, a real-time communication which

send/receive data at the specified period is realized.

This performance evaluation is done using computers which

have the following specification and developed SH4 boards,

connecting them by a cross cable.

Processor Intel Pentium 4 2.4CGHz

Chipset Intel 865G

Memory DDR SDRAM 400MHz 256MB * 2

Network Intel 82559

Figure 8 show results on Pentium4 and Fig.9 do on SH4

while 100,000 times communication. The horizontal axis

shows the size of data and the vertical axis does the maximum

period error/processing time. Measurements is done at several

periods, 1000, 500, 200, 100 and 50[µs]. Measurements of

1500[byte] at 100[µs], 1000 and 1500[byte] at 50[µs] are not

done since their communications traffic exceeds 100[Mbps]

limit.

In the case of Pentium4, Measurement results shows max-

imum errors are almost all under 2[µs] at the sending and

receiving side. Measurements of 1000[byte] at 100[µs] and

at 50[µs] has about 8[µs] error. It is considered that it is

caused by an overhead of OS. In the case of SH4, the same

thing happens in the measurement of 1000[byte] at 200[µs].

Since it takes about 200[µs] to call EtherRTSend and

EtherRTRecv, measurements at 100[µs] and 50[µs] were

skipped.

In the case of HRP-3P, 2,208,000×0.001/8=276[byte] data

must be transmitted within 1[ms]. Figure 8 and Fig.9 shows

that 1500[byte] can be transmitted in 1000[µs] periods. Its

maximum period error is about 7[µs] and it is small enough

as compared to period.
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Fig. 8. Measurement result on Pentium4

VI. REAL-TIME CORBA

In order to keep compatibility with existing software, an

application layer protocol GIOP of middleware CORBA is

implemented on the real-time communication protocol. Users

can use this real-time CORBA with a small modification of

applications.

Orbix/E[15] from IONA technologies is used as an imple-

mentation of CORBA. Orbix/E defines API called OCI(Open

Communication Interface) which enable to add a new transport

protocol easily(see Fig.10). Implementing these API using a

new protocol, an application program can use it with a small

modification.

Implementing API of OCI using the real-time communi-

cation library, a CORBA which works on real-time Ether-

net was realized easily. When using CORBA on embedded
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Fig. 9. Measurement result on SH4

systems, there are several problems, memory consumption,

processing time and protocol overhead. But in this case, they

are not serious problems and convenience of CORBA exceed

those demerits. Because Orbix/E is originally developed to

minimize its memory consumption and computing power

requirement for embedded use the CPU(SH4@240[MHz]) and

network(100[Mbps]) of this CPU board are fast enough.

VII. HUMANOID ROBOT HRP-3P

A humanoid robot HRP-3P[16] is a prototype of HRP-3

which is under development aiming a humanoid robot which

can work in an actual environment including dusty or wet

workplace. HRP-3P has 36 DOF in total. And it also has many

sensors to monitor its condition while working in a hazardous

GIOP (General Inter-ORB Protocol)

ORB(Object Request Broaker)

OCI (Open Communications Interface)

IIOP(Internet Inter-ORB Protocol)

Non-Real time Data Link Real time Data Link

GIOP

ORB

OCI

ERIOP

Fig. 10. Difference between conventional and real-time CORBA
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Fig. 11. Humanoid robot HRP-3P

environment. As a result, HRP-3 adopted a distributed system

configuration in contrast with HRP-2 has a centralized system.

Figure 11 shows the appearance and specifications of HRP-3P.

Figure 12 shows network topology and connections between

nodes and motors/sensors. 13 nodes are used and they con-

struct three rings. Dashed lines indicates cables which are not

used for communication while other communication paths are

normal. These rings and two PCs(for motion control and image

processing) are connected to a switching hub. PCs don’t have

redundant connection with the hub. Because PCs and the hub

are mounted in the same link and it is expected that cables

between them don’t suffer stress consequently.

Figure 13 shows a time chart of software for this distributed

system. Software for distributed nodes consists of two threads.

One of them controls motors, gets sensor outputs at 1[ms]

period and sends data to a motion control PC at 5[ms] period.

The other receives motion commands from the PC at 5[ms]

period. In order to do I/O at precise timing, the sending thread

is executed at a higher priority than the receiving one. Software

for a motion control PC consists of three threads, (1)sends

motion commands which is calculated at the previous period,

(2)receives sensor data and (3)calculates whole body motion

using sensor data. They run at 5[ms] period and their execution

order is controlled by setting priorities.

VIII. CONCLUSIONS

This paper realized a real-time communication on Ether-

net and developed a distributed I/O system of a humanoid

robot HRP-3P using distributed robot controllers and real-time

CORBA working on top of them. Contributions of this paper

are summarized as follows.
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Fig. 13. Time chart of distributed I/O software

1) A real-time communication on Ethernet is realized by

ARTLinux. It was enabled by (1)making a processing

time predictable by not using TCP/IP and (2)controlling

transmission time using a real-time OS. Using Ethernet

as a real-time network, it is possible to reduce costs

of embedded systems using existing low cost parts and

improve development efficiency using existing software.

2) A small-size distributed robot controller is developed. A

CPU board and I/O boards are separated and they can

be combined according to configuration of robot.

3) A real-time CORBA which runs on real-time Ethernet

is developed. It enables existing software to introduce

real-time communication easily. A distributed control

software for HRP-3P was developed using this. Its

effectiveness has already confirmed by a basic walking

experiment and a tele-operation experiment.

The distributed robot controllers are now available(only in

Japan) through General Robotix[17] and a real-time Ethernet

will be commercialized by MovingEye[18] after much further

R&D.
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