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Abstract— This paper contains two main contributions: (i) a
provably correct distributed control strategy for collision avoid-
ance and convergence of multiple holonomic agents to a desired
feasible formation configuration and (ii) a connection between
formation infeasibility and flocking behavior in holonomic kine-
matic multi-agent systems. In particular, it is shown that when
inter-agent formation objectives cannot occur simultaneously
in the state-space then, under certain assumptions, the agents
velocity vectors and orientations converge to a common value
at steady state, under the same control strategy that would lead
to a feasible formation. Convergence guarantees are provided
in both cases using tools from algebraic graph theory and
Lyapunov analysis.

I. INTRODUCTION

Multi-agent Navigation is a field that has recently gained

increasing attention both in the robotics and the control

communities, due to the need for autonomous control of

more than one mobile robotic agents in the same workspace.

While most efforts in the past had focused on central-

ized planning, specific real-world applications have lead

researchers throughout the globe to turn their attention to

decentralized concepts. The motivation for this work comes

from many application domains one of the most important of

which is the field of micro robotics ([12],[7]), where a team

of a potentially large number of autonomous micro robots

must cooperate in the sub micron level.

Among the various specifications that the control design

aims at achieving in the case of a multi-agent team, formation

convergence and achievement of flocking behavior are two

objectives that have been pursued extensively in the last few

years. The main feature of formation control is the coop-

erative nature of the equilibria of the system. Agents must

converge to a desired configuration encoded by the inter-

agent relative positions. Many feedback control schemes that

achieve formation stabilization to a desired formation in a

distributed manner have been proposed in literature, see for

example [22],[11],[10] for some recent results. Of particular

interest is also the so-called consensus problem, in which

agents must converge to the same point in the state space

([13],[17],[16], [2],[9],[19],[18]). On the other hand, flocking

behavior involves convergence of the velocity vectors and

orientations of the agents to a common value at steady state;

contributions include [8], [21],[15],[20].

In this paper, the problem of formation control is consid-

ered. The main feature of formation control is the cooperative
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nature of the equilibria of the system. Agents must con-

verge to a desired configuration encoded by the inter-agent

relative positions. Inspired by our previous work ([3],[4])

involving decentralized navigation and collision avoidance of

multi-agent systems to non-cooperative equilibria (i.e. each

agent had a specific goal configuration not related to the

goal positions of the others) in this paper we propose a

methodology that handles the problem of formation control

satisfying at the same time, the collision avoidance objective

in a distributed manner.

A further issue we also deal with in this paper, is the case

where the desired formation in infeasible. That is the case

when inter-agent objectives cannot occur simultaneously in

the state space. By decoupling the two objectives (collision

avoidance and formation convergence) it can be shown that

under certain assumptions formation infeasibility forces the

agents velocity vectors to a common value at steady state.

This paper contains similar results with our previous

work on sphere world topologies ([5]). The main distinction

between the point world and the sphere world topologies is

that collision avoidance can be treated in a totally distributed

manner in the first case. In the sphere world topology of [5],

the decentralization level of the collision avoidance objective

was limited by the fact that agents had to have knowledge

of the exact number of agents in the group. In this paper,

we exploit the point world topology to treat the problem in

a totally distributed manner.

The rest of the paper is organized as follows: section II

presents the system definition and problem statement. Sec-

tion III presents the proposed control scheme. The stability

analysis is provided in section IV. Section V contains a

result relating formation infeasibility and flocking behavior.

In section VI simulation results are presented for a number of

non-trivial multi agent navigational tasks. Section VII sum-

marizes the conclusions and indicates our current research.

II. SYSTEM AND PROBLEM DEFINITION

Consider a system of N point agents operating in the

same workspace W ⊂ R
2. Let qi ∈ R

2 denote the position

of agent i. The configuration space is spanned by q =
[q1, . . . , qN ]T . The motion of each agent is described by the

single integrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

where ui denotes the velocity (control input) for each agent.

Each agents’ objective is to converge to a desired relative

configuration with respect to a certain subset of the rest of

the team, in a manner that will lead the whole team to a



desired formation. Specifically, each agent is assigned with

a specific subset Ni of the rest of the team, called agent i’s
communication set with which it can communicate in order

to achieve the desired formation. Specifically, agent i has

knowledge of the relative positions of agents belonging to

Ni. Following the literature on formation control [14],[21],

the desired formation can be encoded in terms of a formation

graph:

Definition 1: The formation graph G = {Q,E,C} is

an undirected graph that consists of (i) a set of vertices

Q = {1, ..., N} indexed by the team members, (ii) a set

of edges, E = {(i, j) ∈ Q × Q} containing pairs of nodes

that represent inter-agent formation specifications, therefore

for (i, j) ∈ E ⇒ j ∈ Ni and (iii) a set of labels C = {cij},

where (i, j) ∈ E, that specify the desired inter-agent relative

positions qi − qj = cij ∈ R
2 in the desired formation

configuration.

The objective of each agent i is to be stabilized in a desired

relative position cij with respect to each member j of Ni,

avoiding at the same time collisions. Collision avoidance is

meant in the sense that the point agents are not found at

the same point in the state space at each time instant. The

collision avoidance procedure is distributed in the sense that

each agent has to have only local knowledge of the agents

that are very close at each time instant. We assume that each

agent has sense of agents (apart from the ones belonging

to its communication set) that are found within a circle of

radius d around the agent. This circle is called the sensing

zone of each agent i. The subset of N including the agents

that belong to the sensing zone of i at each time instant is

denoted by Mi. Hence

Mi = {j ∈ N , j 6= i : ‖qi − qj‖ ≤ d}
Hence each agent requires knowledge of the states of agents

belonging to the sets Ni,Mi at each time instant.

We assume that the formation graph is undirected, in the

sense that i ∈ Nj ⇔ j ∈ Ni,∀i, j ∈ N , i 6= j. It is obvious

that (i, j) ∈ E iff i ∈ Nj ⇔ j ∈ Ni. We also assume that

there are no conflicting interagent objectives, in the sense

that cij = −cji,∀i, j ∈ N , i 6= j.

III. CONTROL STRATEGY

Let us define the formation objective for agent i

γi
∆
=

1

2

∑

j∈Ni

‖qi − qj − cij‖2
(2)

Let us also define Vij as a potential field to deal with the

collision avoidance between agents i and j ∈ Mi. We require

that Vij has the following properties:

1) Vij is a function of the square norm of the Euclidean

distance between agents i, j, i.e.

Vij = Vij




‖qi − qj‖2

︸ ︷︷ ︸

βij




 = Vij (βij)

2) Vij → ∞ whenever βij → 0.

3) It is everywhere continuously differentiable.

4)
∂Vij

∂qi
= 0 and Vij = 0 whenever ‖qi − qj‖ > d.

It is straightforward to see that if the potential field sat-

isfies these requirements, then agent i needs to have only

knowledge of the states of agents within Mi at each time

instant to fulfil the collision avoidance objective. The fourth

requirement also guarantees that

∑

j∈Mi

∂Vij

∂qi

=
∑

j

∂Vij

∂qi

The gradient and the partial derivative of Vij are computed

by ∇Vij = 2ρijDijq and
∂Vij

∂qi
= 2ρij (Dij)i

q where

ρij
∆
=

∂Vij

∂βij

and the matrices Dij ,(Dij)i, for i < j, can be shown to be

given by

Dij =








O(i−1)×N

O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

O(j−i−1)×N

O1×(i−1) −1 O1×(j−i−1) 1 O1×(N−j)

O(N−j)×N









⊗ I2

and

(Dij)i
=

[
O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

]
⊗ I2

The definition of the matrices Dij ,(Dij)i, for i > j is

straightforward.

There are many alternatives for the construction of the

potential field Vij . In this paper, we use the following

definition of Vij :

Vij(βij) =







a/βij , βij < c

h
(
βij − d2

)2
, c ≤ βij < d2

0, βij ≥ d2

This definition obviously fulfills requirements 1,2,4. The

parameters a, c, h are chosen so that Vij is everywhere

continuously differentiable. Using simple calculus, it is easily

derived that the parameters a, c, d, h should satisfy the con-

ditions d2 = 3c, a = 4hc3. These conditions guarantee that

Vij(βij) is continuously differentiable at the points βij = c
and βij = d2. Hence, the design parameters a, h can be

chosen so that the sensing radius d of the agent can be chosen

arbitrarily small.

Figure 1 shows a plot of the function Vij with respect to

βij for h = 100 and d2 = 0.001.

This definition of Vij guarantees that the potential field

has the following important symmetry property:

ρij = ρji,∀i, j ∈ N , i 6= j

The last property is crucial in the stability analysis of the

proposed control scheme, as will be shown in the analysis

that follows.
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Fig. 1. The function Vij for h = 100 and d2
= 0.001.

We propose the following control law for each agent i:

ui = −
∑

j∈Mi

∂Vij

∂qi

− ∂γi

∂qi

(3)

The stability analysis of the system (1) under the control law

(3) is contained in the next sections.

IV. STABILITY ANALYSIS

A. Tools from Algebraic Graph Theory

In this subsection we review some tools from algebraic

graph theory that we shall use in the stability analysis of the

next sections. The following can be found in any standard

textbook on algebraic graph theory(e.g. [1], [6]).

For an undirected graph G with n vertices the adjacency

matrix A = A(G) = (aij) is the n × n matrix given by

aij =

{
1, if (i, j) ∈ E
0, otherwise

If there is an edge connecting two vertices i, j, i.e. (i, j) ∈ E,

then i, j are called adjacent. A path of length r from a vertex

i to a vertex j is a sequence of r+1 distinct vertices starting

with i and ending with j such that consecutive vertices are

adjacent. If there is a path between any two vertices of the

graph G, then G is called connected (otherwise it is called

disconnected). The degree di of vertex i is defined as the

number of its neighboring vertices, i.e.

di = {#j : (i, j) ∈ E}
Let ∆ be the n × n diagonal matrix of di’s. The (combina-

torial) Laplacian of G is the symmetric positive semidefinite

matrix L = ∆−A. The Laplacian captures many interesting

topological properties of the graph. Of particular interest

in our case is the fact that for a connected graph, the

Laplacian has a single zero eigenvalue and the corresponding

eigenvector is the vector of ones,
−→
1 .

The last property has lead to the result regarding the

connection between formation non-feasibility and flocking

behavior discussed in section V. The next paragraphs of this

section contain the stability analysis of the formation scheme.

B. Stability of a feasible formation

In the following we derive a sufficient condition that

guarantees that the proposed control design of the previous

section drives the agents to the desired formation configura-

tion in the case of formation feasibility. The function

V =
∑

i



γi +
∑

j 6=i

Vij





is used as a candidate Lyapunov function for the multi-agent

system. Differentiating V with respect to time we get

V̇ = (∇V )
T · q̇

Differentiating γi with respect to qi we have

∂γi

∂qi

=
∑

j∈Ni

(qi − qj − cij) =
∑

j∈Ni

(qi − qj) + cii

where cii = − ∑

j∈Ni

cij . We can then compute







−∂γ1

∂q1

...

−∂γN

∂qN







= − (Lq + cl)

where cl
∆
= [c11, . . . , cNN ]

T
, L = L⊗ I2, L is the Laplacian

of the formation graph and ⊗ denotes the matrix Kronecker

product, as usual. After simple calculations we also get
∑

i

∇γi = 2 (Lq + cl) (4)

Furthermore,

∑

i

∑

j 6=i

∇Vij = 2




∑

i

∑

j 6=i

ρijDij



 q = 2 (R1 ⊗ I2) q

where the matrix R1 can be computed by

(R1)ij =

{ ∑

j 6=i

ρij +
∑

j 6=i

ρji, i = j

−ρij − ρji, i 6= j

The last equation has been derived based on the form of the

Dij matrices.

The gradient of the candidate Lyapunov function is now

given by

∇V = 2 (z + (R1 ⊗ I2) q)

where z
∆
= Lq + cl = (L ⊗ I2) q + cl. We also have

q̇ =







−∂γ1

∂q1

...

−∂γN

∂qN







+









− ∑

j∈M1

∂V1j

∂q1

...

− ∑

j∈MN

∂VNj

∂qN









The second element is calculated by








− ∑

j∈M1

∂V1j

∂q1

...

− ∑

j∈MN

∂VNj

∂qN









=









− ∑

j 6=1

∂V1j

∂q1

...

− ∑

j 6=N

∂VNj

∂qN









= −2 (R2 ⊗ I2) q



The elements of the matrix R2 are computed based on the

form of the Dij matrix and are given by

(R2)ij =

{ ∑

j 6=i

ρij , i = j

−ρij , i 6= j

Hence

q̇ = −z − 2 (R2 ⊗ I2) q

Using now the symmetry of the potential functions we get

ρij = ρji ⇒ R1 = 2R2

so that

V̇ = (∇V )
T · q̇ =

= −2 (z + (R1 ⊗ I2) q)
T

(z + 2 (R2 ⊗ I2) q)

R1=2R2⇒ V̇ = −2 ‖(z + 2 (R2 ⊗ I2) q)‖2 ≤ 0 (5)

The first result of this section establishes collision avoid-

ance between the team members. This is established in the

following Lemma:

Lemma 1: Assume that the multi-agent system is driven

by the control law (3) and let φ (t, q(0)) denote the trajectory

of the closed loop system at time t ≥ 0 starting from an

initial condition q(0) at t = 0. Define the collision free

set I (q) = {q| ‖qi − qj‖ > 0,∀i, j ∈ N , i 6= j}. Then the

set I (q) is invariant for the trajectories of the closed loop

system.

Proof: For every initial condition q(0) ∈ I(q), the time

derivative of V remains non-positive for all t ≥ 0, by

virtue of (5). Hence V (φ (t, q(0))) ≤ V (φ (0, q(0))) =
V (q(0)) < ∞ for all t ≥ 0. Since V → ∞ if and only

if ‖qi − qj‖ → 0 for at least one pair i, j ∈ N , we conclude

that φ (t, q(0)) ∈ I (q), for all t ≥ 0. ♦
Lemma 1 guarantees collision avoidance. The next Theo-

rem refers to the formation convergence objective:

Theorem 1: Assume that the multi-agent system is driven

by the control law (3) and let φ (t, q(0)) denote the trajectory

of the closed loop system at time t ≥ 0 starting from an

initial condition q(0) at t = 0. Assume that the following

hold:

1) The formation graph is connected.

2) The condition

rank
(

(2R2 + L) ⊗ I2 cl

)
> rank ((2R2 + L) ⊗ I2)

holds for all q such that

∃t ≥ 0 : φ (t, q(0)) = q ∈ C
∆
=

∆
= {q ∈ W |∃i, j, i 6= j : ‖qi − qj‖ ≤ d}

3) The formation configuration is feasible, in the sense

that

∃q ∈ W\C : (L ⊗ I2) q + cl = 0

Then, under the control law (3) the state of the system

converges to the desired formation configuration.

Proof: The last assumption of the theorem implies that the

algebraic equation z + 2 (R2 ⊗ I2) q = 0 does not have a

solution whenever the matrix R2 is not identically zero for

all q that belong to the trajectory of the closed loop system.

Hence

V̇ = −2 ‖(z + 2 (R2 ⊗ I2) q)‖2 ≤ 0

with equality holding only when ρij = 0∀i, j ⇒ R2 = 0.

Furthermore, the level sets of V define compact sets with

respect to the agents’ relative positions. Specifically, for all

(i, j) ∈ E we have

V ≤ c ⇒ γi ≤ c ⇒ 1
2 ‖qi − qj − cij‖2 ≤ c ⇒

‖qi − qj − cij‖ ≤
√

2c ⇒ |‖qi − qj‖ − ‖cij‖| ≤
√

2c ⇒
⇒ −

√
2c + ‖cij‖ ≤ ‖qi − qj‖ ≤

√
2c + ‖cij‖ ⇒

⇒ 0 ≤ ‖qi − qj‖ ≤
√

2c + cmax

where cmax
∆
= max

(i,j)∈E
‖cij‖. Connectivity of the formation

graph ensures that the maximum length of a path connecting

two vertices of the graph is at most N − 1. Hence 0 ≤
‖qi − qj‖ ≤

(√
2c + cmax

)
(N − 1) , ∀i, j ∈ N .

Application of LaSalle’s invariance principle ensures the

convergence of the system to the largest invariant subset of

the set S = {q : Lq + cl = 0}.

For all i ∈ N , let ci denote the configuration of agent

i in a desired formation configuration with respect to the

global coordinate frame. It is then obvious that cij = ci −
cj∀(i, j) ∈ E for all possible desired final formations. Define

qi − qj − cij = qi − qj − (ci − cj) = q̃i − q̃j . Then we have

Lq+cl = 0 ⇒ Lq̃ = 0 ⇒ Lx̃ = Lỹ = 0 where x̃, ỹ the stack

vectors of q̃ in the x, y directions. The fact that the formation

graph is connected implies that the Laplacian has a simple

zero eigenvalue with corresponding eigenvector the vector

of ones,
−→
1 . This guarantees that both x̃, ỹ are eigenvectors

of L belonging to span{−→1 }. Therefore all q̃i are equal to

a common vector value c. Hence q̃i = c ∀i ⇒ qi − qj =
cij∀i, j, j ∈ Ni. We conclude that the agents converge to the

desired relative configuration. ♦
V. FORMATION INFEASIBILITY RESULTS IN FLOCKING

BEHAVIOR

The key assumption behind the stability analysis of the

previous section is formation feasibility, namely that there

exists a configuration q ∈ W\C such that Lq + cl = 0. But

what happens when there does not exist such a configuration

in the state space? The answer is contained in the next

theorem:

Theorem 2: Assume that the first two assumptions of The-

orem 1 hold. Under these assumptions, the system reaches

a configuration in which all agents have the same velocities

and orientations even if the formation feasibility assumption

of this theorem does not hold.

Proof : Equation V̇ = −2 ‖(z + 2 (R2 ⊗ I2) q)‖2
guarantees

that the system converges to the set W\C at steady state.

Hence, at steady state system kinematics are given by:

q̇ = − (Lq + cl) (6)

Differentiating equation(6) wrt time we get

q̇ = − (Lq + cl) ⇒ q̈ = −Lq̇ (7)



Using W = 1
2 ‖q̇‖

2
as a candidate Lyapunov function for

the differential equation (7) and taking its time derivative

we have

W =
1

2
‖q̇‖2 ⇒ Ẇ = q̇T q̈ = −q̇T Lq̇ ≤ 0

LaSalle’s Invariance Principle guarantees that the state of

the system converges to the largest invariant subset of the

set S =
{

q̇|Ẇ = 0
}

. Since q̈ = −Lq̇ we necessarily have

q̈ = 0 inside S. Hence agent velocities converge to a constant

value. Using the notation vx, vy for the N -dimensional stack

vectors of the components of the agents’ velocities in the x, y
directions at steady state, we have

Ẇ = 0 ⇒ q̇T (L ⊗ I2) q̇ = 0 ⇒ vT
x Lvx + vT

y Lvy = 0

at steady state. This implies that both vx, vy are eigenvectors

of L corresponding to the zero eigenvalue, meaning that

vx, vy belong to span{−→1 }, which ensures that all agent

velocity vectors will have the same components at steady

state, and will therefore be equal. ♦
This simple result shows that formation non-feasibility is

directly related to a phenomenon with many similarities to

what is known as flocking behavior in multi-agent systems.

Please note that the final common velocities in the result of

theorem 2 are not necessarily equal to zero.

VI. SIMULATIONS

To verify the results of the previous paragraphs we provide

two computer simulations.

The first simulation in Figure 2 involves convergence to a

feasible formation configuration. Specifically, we implement

a line formation of four holonomic agents with communica-

tion sets given by

N1 = {2, 3, 4}, N2 = {1}, N3 = {1}, N4 = {1}
It is easily verified that the corresponding communication

graph is connected. The four agents aim to converge to a

line formation and the desired inter-agent relative positions

are chosen accordingly. Screenshots I-V show the evolution

in time of the multi-agent team. In screenshot I, A-i denotes

the initial position of agent i. In the last screenshot, the

agents converge to the desired line formation configuration.

A collision avoidance maneuver between agents 1 and 3

occurs in screenshot IV. The values of the parameters in this

simulation are: d2 = 1e − 5, h = 1,a = (4/27)1e − 15.

The second simulation in Figure 3 involves four agents

and a non-feasible formation configuration. The values of

the parameters in this simulation are the same as previously

while the desired inter-agent distances have been slightly

perturbed in order to achieve formation infeasibility. Hence

the third assumption of Theorem 1 may no longer be valid.

The formation configuration may be rendered infeasible in

this way. Theorem 2 however, guarantees that the system will

reach a configuration where all agents will have the same

velocities. Screenshots I-V of Figure 3 show the evolution

in time and achievement of velocity alignment for the multi-

agent system. The last screenshot shows that the velocities

of the four agents converge to a common value.
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Fig. 2. Four agents converge to a line formation
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Fig. 3. Formation infeasibility results in flocking behavior for the multi-
agent system.



VII. CONCLUSIONS

A provably correct distributed feedback control strategy

that achieves convergence of a multi-agent system to a

desired formation configuration avoiding at the same time

collisions has been proposed. The collision avoidance and

formation convergence objectives are treated in a decoupled

manner. The symmetry of the potential field that ensures

collision avoidance is used in the stability analysis of the

system. When inter-agent objectives that specify the desired

formation cannot occur simultaneously in the state space the

desired formation is infeasible. It has been shown that under

certain assumptions, formation infeasibility forces the agents

velocity vectors to a common value at steady state. This

provides a connection between formation infeasibility and

flocking behavior for the multi-agent system.

Current research involves extending the current results to

more general motion models, including three-dimensional

models and general nonlinear dynamics. Another direction of

research is to take into account directed graphs and switching

communication topology.
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