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Abstract—We present a distributed coverage control scheme
for cooperating mobile sensor networks. The mission space is
modeled using a density function representing the frenquency of
random events taking place, with mobile sensors operating over
a limited range defined by a probabilistic model. A gradient-
based algorithm is designed requiring local information at
each sensor and maximizing the joint detection probabilities
of random events. We also incorporate communication costs
into the coverage control problem, viewing the sensor network
as a multi-source, single-basestation data collection network.
Communication cost is modeled as the power consumption
needed to deliver collected data from sensor nodes, thus trading
off sensing coverage and communication cost. The control
scheme is tested in a simulation environment to illustrate its
adaptive, distributed, and asynchronous properties.

I. INTRODUCTION

A sensor network consists of a collection of (possibly
mobile) sensing devices that can coordinate their actions
through wireless communication and aim at performing
tasks such as reconnaissance, surveillance, target tracking
or environmental monitoring over a specific region, often
referred to as the “mission space”. Collected field data are
further processed and often support higher-level decision
making processes. Nodes in such networks are generally
inhomogeneous, they have limited on-board resources (e.g.,
power and computational capacity), and they may be subject
to communication constraints. The performance of a sensor
network is sensitive to the location of its nodes in the mission
space. This leads to the basic problem of deploying sensors
in order to meet the overall system objectives, which is
referred to as the coverage control or active sensing problem
[1],[2],[3]. In particular, sensors must be deployed so as
to maximize the information extracted from the mission
space while maintaining acceptable levels of communica-
tion and energy consumption. The static version of this
problem involves positioning sensors without any further
mobility; optimal locations can be determined by an off-
line scheme which is akin to the widely studied facility
location optimization problem. The dynamic version allows
the coordinated movement of sensors, which may adapt to
changing conditions in the mission space, typically deploying
them into geographical areas with the highest information
density.
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Because of the similarity of coverage control with facility
location optimization, the problem is often viewed in that
framework. In [2], the authors develop a decentralized cov-
erage control algorithm which is based on Voronoi partitions
and the Lloyd algorithm. In [1] a coverage control scheme is
proposed which aims at the maximization of target exposure
in some surveillance applications, while in [4] a heuristic
algorithm based on “virtual forces” is applied to enhance the
coverage of a sensor network. Much of the active sensing
literature [3] also concentrates on the problem of tracking
specific targets using mobile sensors and the Kalman filter
is extensively used to process observations and generate
estimates.

Some of the methods that have been proposed for coverage
control assume uniform sensing quality and an unlimited
sensing range. Partition-based deployment methods, on the
other hand, tend to overlook the fact that the overall sensing
performance may be improved by sharing the observations
made by multiple sensors. There are also efforts which rely
on a centralized controller to solve the coverage control
problem. A centralized approach, however, does not suit
the distributed communication and computation structure of
sensor networks. In addition, the combinatorial complexity
of the problem constrains the application of such schemes
to limited-size sensor networks. Finally, another issue that
appears to be neglected is the cost of relocating sensors.
The movement of sensors not only impacts sensing perfor-
mance, but it also influences other quality-of-service aspects
in a sensor network, especially those related to wireless
communication: because of the limited on-board power and
computational capacity, a sensor network is not only required
to sense but also to collect and transmit data as well.
For this reason, both sensing quality and communication
performance need to be jointly considered when controlling
the deployment of sensors.

In this paper, we develop a distributed coverage control
approach for cooperative sensing. The mission space is
modeled using a density function representing the frequency
that specific events take place (e.g., data are generated at
a ceratin point). We assume that a mobile sensor has a
limited range which is defined by a probabilistic model.
A deployment algorithm is applied at each mobile node
and it maximizes the joint detection probabilities of random
events. We assume that the event density function is fixed
and given; however, in the case that the mission space (or
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our perception of the mission space) changes over time,
the adaptive relocation behavior naturally follows from the
optimal coverage formulation.

Another contribution of this paper is the incorporation of
communication cost into the coverage control problem, view-
ing the sensor network as a multi-source, single-basestation
data collection network. Communication cost is modeled as
the power consumption needed to deliver collected data from
sensor nodes (data sources) to the basestation using wireless
multi-hop links. Thus, the coverage problem we formulate
trades off sensing coverage and communication cost.

The remainder of the paper is organized as follows. In
Section II, we formulate the coverage control problem and
develop the distributed deployment algorithm. In Section III,
the communication cost is defined and added into the original
problem. Section IV presents some simulation results which
illustrate the effectiveness of the proposed schemes and
compare sensor deployments obtained with and without com-
munication considerations. Section V concludes the paper
and describes directions for future work.

II. PROBLEM FORMULATION AND DISTRIBUTED
COVERAGE CONTROL

A. Mission Space and Sensor Model

We model the mission space as a polyhedron R2, over
which there exists an event density function ( ) ,
that captures the frenquency or density that a specific random
event takes place (in 2). ( ) satisfies ( ) 0
for all and

R
( ) . Depending on the

application, ( ) may be the frenquency that a certain type
of vehicle appears at , or it could be the probability that
the temperature at exceeds a specific threshold. In the
mission space , there are mobile sensors located at s =
( 1 ), R2 = 1 . When an event occurs
at point , it emits a signal and this signal is observed by a
sensor at location . The received signal strength generally
decays with k k, the distance between the source and
the sensor. We represent this degradation by a monotonically
decreasing differentiable function ( ), which expresses the
probability that sensor detects the event occurring at .

As an example, if we assume signal strength declines
polynomially with distance and taking into consideration
environmental noise, the signal strength received at is
expressed by ( ) = || || + , where is the total
energy emitted when an event takes plance, is the noise,
and is a decay coefficient (typically selected between 2
to 5). If a sensor detects an event when is beyond some
threshold, then ( ) can be expressed as

( ) = Prob
·
|| || +

¸
With a given probability distribution of noise (e.g., additive
white Gaussian noise), this may be used as the sensor model.
Alternatively, a sensor model with a simpler form may be:

( ) = 0
|| || (1)

where the detection probability declines exponentially with
distance, and 0 , are determined by physical characteris-
tics of the sensor.

B. Optimal Coverage Formulation and Distributed Solution
When deploying mobile sensors into the mission space,

we want to maximize the probability that events are detected.
This motivates the formulation of an optimal coverage prob-
lem. Throughout this paper, we assume that sensors make
observations independently. Then, given the mission space
and sensor model, when an event takes place at and it is
observed by the sensors, the joint probability that this event
is detected can be expressed by

( s) = 1
Q
=1
[1 ( )] (2)

The optimal coverage problem can be formulated as an opti-
mization problem to maximize the expected event detection
frequency by the sensors over the mission space :

max
s

R
( ) ( s) (3)

In this optimization problem, the controllable variables are
the locations of mobile sensors contained in s. This problem
may be solved by applying a non-linear optimizer with an
algorithm which can evaluate integrals numerically. In this
case, a centralized controller with intensive computational
capacity is required.

Thus, instead of using a centralized scheme, we will
develop a distributed method to solve the optimal coverage
problem. We denote the objective function in (3) by

(s) =
R

( ) ( s) (4)

When taking partial derivatives with respect to , =
1 , we have

=
R

( )
( s)

(5)

If this partial derivative can be evaluated locally by each
mobile sensor , then a gradient method can be applied which
directs mobile sensors towards locations that maximize (s).
In view of (2), the partial derivative (5) can be rewritten as

=

Z
( )

Y
=1 6=

[1 ( )]
( )

( ) ( )
(6)

where ( ) k k. It is hard for a mobile sensor to
directly compute (6), since it requires global information
such as the value of ( ) over the whole mission space
and the exact locations of all other sensors. In addition, the
evaluation of integrals remains a significant task for a mobile
sensor to carry out. To address these difficulties, we first
truncate the sensor model and constrain its sensing capability
by applying a sensing radius. This approximation is based on
the physical observation that when ( ) 1, ( ) = 0
for most sensing devices. Let

( ) = 0,
( )

( )
= 0 for all s.t. ( ) (7)
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Fig. 1. Neighbor set and grid layout

where denotes the sensing radius. Thus, (7) defines sensor
’s region of coverage, which is represented by = { :
( ) }. Since ( ) = 0, ( ) ( ) = 0 for all

, we can use to replace in (6). Another byproduct
of using (7) is the emergence of the concept of neighbors.
In (6), for a point and a sensor 6= , a necessary
condition for the detection probability ( ) to be greater
than 0 is ( ) . As shown in Fig. 1-(a), when the
distance between sensors and is greater than 2 , every
point in satisfies ( ) , thus ( ) = 0 and
[1 ( )] = 1 for all . If we define a set B = { :
k k 2 = 1 6= }, then, any sensor
node B ( 6= ) will not contribute to the integral in
(6).

After applying (7) and using B , (6) reduces to

=
R

( )
Y
B
[1 ( )]

( )

( ) ( )
(8)

The final step in making (8) computable is to discretize the
integral evaluation. As shown in Fig. 1-(b), a grid is applied
over the coverage region . The grid has a resolution

, and is represented by a (2 + 1) × (2 + 1) grid
with = b c. On the grid of each sensor , a Cartesian
coordinate system is defined, with its origin located at , its
axes parallel to the grid’s setting, and the unit length being .
In this local coordinate system, let ( ) denote the location
of a point . Then, the transformation that maps ( ) onto
the global coordinate system is = +

£ ¤
.

Upon switching to this local coordinate system, the terms in
(8) become:

( ) = ˜ ( ), ( ) = ˜ ( ),
( )

( )
= 0̃( )

where ˜ ( ) indicates sensor ’s local perception (map)
on the event density of the mission space. In a typical
dynamic deployment application, all sensors start with the
same copy of an estimated event density function at the
beginning of the deployment. As sensors are deployed and
data are collected, an individual sensor may update its local
map through merging new observations into its perception,
and by exchanging information with nearby neighbors.

We also rewrite the product term in (8) as

˜ ( )
Y
B
[1 ( )]

=
Y
B

£
1 ˜

¡
1 1 2 2

¢¤
where

¡
1 1 2 2

¢
are the coordinates of

in the th sensor’s local coordinate system. By applying the
grid and the coordinate tranformation, (8) can be rewritten
as

1

2 P
=

P
=

˜ ( ) ˜ ( ) 0̃( )
2+ 2

(9)

2

2 P
=

P
=

˜ ( ) ˜ ( ) 0̃( )
2+ 2

These derivatives can be easily computed by mobile sensors
using only the local information available.

The gradient information above provides direction for a
mobile sensor’s movement. The precise way in which this
information is used depends on the choice of motion scheme.
The most common approach in applying a gradient method
is to determine the next waypoint on the th mobile sensor’s
motion trajectory through

+1 = + (10)

where is an iteration index, and the step size is
selected according to standard rules (e.g., see [5]) in order
to guarantee the convergence of motion trajectories.

The computational complexity in evaluating the gradient
shown in (9) depends on the scale of the grid and the size
of neighbor set B . In the worst case, node has 1
neighbors and the number of operations needed to compute

is ( 2). The best case occurs when there is no
neighbor for node , and the corresponding complexity is
( 2). In both cases, the complexity is quadratic in .

III. ADDING COMMUNICATION COSTS

A. System Structure and Communication Energy Model

Besides sensing and collecting data from the mission space
, another important task of a sensor network is to forward
field data to a basestation, denoted by . Most current sensor
networks assume a two-layer structure [6], in which all
sensor nodes form the first layer. The second layer consists
of a unique basestation, which is the common destination for
all data.

In a two-layer data collection network, the cost of commu-
nication mainly comes from the power consumption for wire-
less transmissions. In order to ensure reliable data fowarding,
a wireless link must preserve some basic channel quality
which is measured by its Signal to Interference and noise
Ratio (SIR). To preserve a given SIR, the power of the
transmitter is a monotonically increasing function of the
length of the current link [7]. For a single-hop link, the key
energy parameters are the energy needed to transmit a bit
( ) and to receive a bit ( ) over a distance . Assuming
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a 1 path loss, these parameters take the form (see also
[6]):

= 11 + 2 , = 12 (11)

where 11 is the energy/bit consumed by the transmitter
electronics, 2 accounts for energy dissipated in the transmit
op-amp, and 12 is the energy/bit consumed by the receiver
electronics. Hence, the energy consumed by a node acting
as a relay that receives a bit and then transmits it a distance

onward is

( ) = 11 + 2 + 12 1 + 2 (12)

Typical numbers for current radios are 1 = 180 and
2 = 10

2 ( = 2) or 0 001 4 ( = 4)[8].

B. Optimal Coverage Problem with Communication Costs

The previous discussion provides some backgroud to in-
corporate communication costs into the optimal coverage
problem. Consider a mobile sensor network with sensors,
each located at , = 1 , and a single basestation

that resides at 0 R2. The data rate originating from
the th sensor is denoted by ( ), = 1 . Note
that is defined as a function of because the amount of
data forwarded at is determined by the number of events
detected, and the latter depends on the sensor’s location. Here
we assume that ( ) is proportional to the frequency that
events are detected, i.e.,

( ) = 3

R
( ) ( ) (13)

where 3 (bit/detection) is the amount of data forwarded
when the sensor detects an event.

Data originating at each sensor are finally delivered to
basestation . Let (s) be the total power consumed by
the network in order to deliver a bit of data from sensor

to . Then, the optimal coverage problem can be revised
by combining sensing coverage and communication cost as
follows:

max
s

(
1

R
( ) ( s) 2

X
=1

( ) (s)

)
(14)

where 1 2 are weighting factors.
Let us denote the communication cost by (s) =P
=1 ( ) (s) and, recalling (4), the overall objective

function is written as

(s) = 1 (s) 2 (s) (15)

In order to derive partial derivatives similar to Section
II, we shall focus on the evaluation of , which can be
expressed as

= (s)
( )

+
X
=1

( )
(s)

(16)

In this expression, both and can be obtained by
applying the same method as the one described in Section

II. That is, recalling that = +
£ ¤

,

3
2
X
=

X
=

˜ ( ) ˜ ( )

1
3

2 P
=

P
=

˜( ) 0̃ ( )
2+ 2

(17)

2
3

2 P
=

P
=

˜( ) 0̃ ( )
2+ 2

The only term remaining to derive in is (s) and its
gradient. The cost of delivering a bit of data from to , (s),
is determined by the way in which data forwarding paths
are constructed, i.e., the precise routing protocol used. Many
wireless routing protocols are available to build reliable
and efficient multi-hop paths between a data source and its
destination (e.g., see [9]). Among them, we are interested in
those that can generate minimal power consumption paths
(e.g. [10]).

Let us represent the sensor network by a graph G =
(N E), where N = {0 1 } denotes the set for all
nodes ( is indexed by 0) and E = {( )| N} is the
set for all links. A cost is defined for link ( ) E to
be

= (k k) ( ) E (18)

where (·) is the communication power consumption on edge
( ) as in (12). Over G, a routing protocol is executed
which generates a set of “shortest” paths L = { 1 }
between each sensor and the basestation . Here, a path
= {( ) ( 0)} is said to be a “shortest” path

between node and 0 in the sense that =
P
( )

is minimized over all possible paths between and 0. It is
well-known that the set of “shortest” paths L forms a tree
structure [11], and it can be expressed by a forward index
vector = ( 1 ), where {0 1 } denotes
the index of the next-hop node when forwarding data from
.

At each sensor , the forward index and forward cost
are given by the routing protocol. The routing protocol also
provides sensor an upstream vector = ( 1 ) and
a cumulative flow factor defined as

= 1[ = ], = +
X
=1

where indicates whether is ’s upstream node and
records the total data rate originated from : accounts for
data collected at and

P
=1 is the total traffic from

upstream nodes.
Given , , and , a node can evaluate locally.

To accomplish this, let us rewrite (s) in (15) as

(s) =
X
=1

( ) (s)

=
X

( ) E

(X
=1

1 [( ) ]

)
(19)
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where
P

=1 1 [( ) ] is actually equivalent to the
total flow on link ( ). Because of the tree structure of
L, we haveX

=1

1 [( ) ] =

½
if =

0 otherwise

By removing all the terms with value zero in (19), we get
(s) =

P
=1 and the term

P
=1 in (16) is

equivalent to X
=1

=
X
=1

where we assume that network routing (L) remains fixed
when sensor locations (s) change slightly. Using (12) and
(18),

=½
2 k k( 2)

( ) if = or =
0 otherwise

Thus,

X
=1

= +
X

{ | =1}
(20)

By combining (9), (16), (17) and (20), sensor node can de-
rive locally. Then, each sensor uses gradient information
to direct motion control as in (10) with replacing .
With properly selected step sizes, mobile sensors will finally
converge to a maxmium point of ( ).

IV. SIMULATION RESULTS

The previously presented distributed deployment algo-
rithm has been implemented in a Java-based simulation
environment (see frontera.bu.edu/Applets/CoverageContr/ ).
As shown in Fig. 2, a team of 6 mobile sensors is waiting
to be deployed into a 40 × 40 (meter) mission space. The
event density function ( ) is given by,

( ) = 0 k 0k (21)

where 0 = 3 0, = 0 1, 0 = [0 20]. According to (21),
the event density of a point ( ) declines linearly with
the distance between and the center point 0 of the mission
space.

At time = 0, mobile sensors reside near the origin of
the mission space. Each mobile node is equipped with a
sensor whose detection probability is modeled as in (1) by
( ) = 0

|| || where 0 = 1 0, = 1 0 for all
= 1 . The sensing radius is = 5 0, as illustrated

by black cirlces in Fig. 2. A mobile sensor also has a wireless
transeiver whose power consumption is modeled by (12) with
1 = 0 01 , 2 = 0 001 4 and = 4. In

the mission space, there is a radio basestation residing at
0 = [0 0], (marked by a red square in Fig. 2). Upon a sensor

detecting an event, it collects 32 bits of data and forwards
them back to the basestation (so that 3 = 32 in (13)).

Fig. 2. Cooperative coverage control problem with 6 mobile sensors

(a) (b)

(c) (d)

Fig. 3. Sensors deployment without communication cost consideration

We will present simulation results for this coverage control
problem by looking at two distinct cases. In the first case,
no communication cost is considered, which corresponds to
1 0, 2 = 0 in the optimal coverage formulation (14). In

the second case, both sensing coverage and communication
cost are included ( 1 2 0).

Figure 3 presents several snapshots taken during the de-
ployment process of the first case. Starting with Fig. 3-(a),
6 sensors establish a formation and move towards the center
of the mission space. During its movement, the formation
keeps evolving, so that sensors expand the overall area of
sensing and at the same time jointly cover the points with
high event density. In addition, sensors also maintain wireless
communication with the basestation. This is shown in Fig.
3 as links between sensor nodes and the basestation. The
team of sensors finally converges to a stationary formation
as shown in Fig. 3-(d). It can be seen in this symmetric
formation that all 6 sensors are jointly sensing the area with
the highest event density.

We incoporate communication cost into the optimal cov-
erage formulation by setting 2 = 0 0008 and 1 = 1 2

in (14). The corresponding deployment simulation results
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(a) (b)

(c) (d)

Fig. 4. Sensors deployment with communication cost consideration
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Fig. 5. Comparison on sensing coverage and communication costs

are shown in Fig. 4. Comparing with the first case, a
critical difference can be observed in the formation of mobile
sensors: sensors not only move towards the area with high
event density, but they also maintain an economical multi-
hop path to the basestation. The team of sensors reaches a
stationary deployment as illustrated in Fig. 4-(d). In contrast
to the final formation of the first case (Fig. 3-(d)), only
4 sensors gather around the center of the mission space.
The other 2 sensors are aligned as relays to support the
communication with the basestation.

Figure 5 demonstrates the sensing coverage and com-
munication cost associated with the previously shown two
cases. Fig. 5-(a) depicts the change in sensing coverage
(measured by the expected frequency of event detection)
when sensors move towards the optimal deployment. A direct
observation is that in both cases, sensing coverage increases
monotonically with the evolution of formations. If no com-
munication cost is considered during sensor deployment,
sensing coverage reaches a maximum at 91 47 . However,
in the case that communication cost is considered, when
sensors reach optimal deployment, only 84 74 events can be
detected per second, which corresponds to a 7 36% coverage
loss. This coverage loss is natural, since the optimal coverage

formulation (14) actually trades off sensing coverage for
a lower communication cost. This tradeoff can be further
examined by looking at Fig. 5-(b). If communication cost
is considered, the final power consumption is 8 01 × 103

. Compared to the communication cost of the first case
(1 877× 105 ), there is a 95 73% power saving.

V. CONCLUSIONS

We have developed a distributed coverage control scheme
for cooperating mobile sensor networks. The mission space
is modeled using a density function representing the fren-
quency of random events taking place. We assume that a
mobile sensor has a limited range which is defined by a
probabilistic model. A deployment algorithm is applied at
each mobile node so that it maximizes the joint detection
probabilities of random events. We also incorporate commu-
nication costs into the coverage control problem, viewing
the sensor network as a multi-source, single-basestation data
collection network. Communication cost is modeled as the
power consumption needed to deliver collected data from
sensor nodes to a basestation using wireless multi-hop paths.
Thus, the coverage problem we formulate trades off sensing
coverage and communication cost.

This distributed deployment algorithm has been exten-
sively tested in a simulation environment. Experimental
results indicate that this scheme is efficient and it can
generate a quality deployment scheme. In addition, by ap-
plying gradient methods and geographic routing techniques,
the algorithm avoids solving global optimization problems,
which in turn guarantees real-time performance.
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