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Distributed Coordinated Tracking With Reduced
Interaction via a Variable Structure Approach

Yongcan Cao, Member, IEEE, and Wei Ren, Member, IEEE

Abstract—A distributed coordinated tracking problem is solved
via a variable structure approach when there exists a dynamic
virtual leader who is a neighbor of only a subset of a group
of followers, all followers have only local interaction, and only
partial measurements of the states of the virtual leader and the
followers are available. In the context of coordinated tracking, we
focus on both consensus tracking and swarm tracking algorithms.
In the case of first-order kinematics, we propose a distributed
consensus tracking algorithm without velocity measurements
under both fixed and switching network topologies. In particular,
we show that distributed consensus tracking can be achieved in
finite time. The algorithm is then extended to achieve distributed
swarm tracking without velocity measurements. In the case of
second-order dynamics, we first propose two distributed consensus
tracking algorithms without acceleration measurements when
the velocity of the virtual leader is varying under, respectively,
a fixed and switching network topology. In particular, we show
that the proposed algorithms guarantee at least global exponen-
tial tracking. We then propose a distributed consensus tracking
algorithm and a distributed swarm tracking algorithm when
the velocity of the virtual leader is constant. When the velocity
of the virtual leader is varying, distributed swarm tracking is
solved by using a distributed estimator. For distributed consensus
tracking, a mild connectivity requirement is proposed by adopting
an adaptive connectivity maintenance mechanism in which the
adjacency matrix is defined in a proper way. Similarly, a mild con-
nectivity requirement is proposed for distributed swarm tracking
by adopting a connectivity maintenance mechanism in which the
potential function is defined in a proper way. Several simulation
examples are presented as a proof of concept.

Index Terms—Consensus tracking, cooperative control, dis-
tributed control, multiagent systems, swarm tracking, variable
structure approach.

I. INTRODUCTION

I
N THE past two decades, multivehicle cooperative control

has received significant attention in the systems and con-

trols society. The motivation behind multivehicle cooperative

control is that a group of vehicles working cooperatively can

achieve great benefits including low cost, high adaptivity, and

easy maintenance [2]–[6].

A distributed approach used in multivehicle cooperative con-

trol is consensus, which means that a group of vehicles reaches
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an agreement on a common value by interacting with their local

(time-varying) neighbors. Consensus has been studied for sys-

temswithbothfirst-orderkinematicsandsecond-orderdynamics.

Recent study of consensus and its applications in distributed mul-

tivehicle cooperative control can be found in [7] and [8]. Existing

consensus algorithms were often studied either when there does

not exist a leader or when the leader is static. Although consensus

without a leader is useful in applications such as cooperative ren-

dezvousofagroupofvehicles, therearemanyapplicationsthatre-

quire a dynamic leader. Examples include formation flying, body

guard, and coordinated tracking applications.
Consensus with a dynamic leader, called consensus tracking

hereafter, has been studied from different perspectives. The
objective of consensus tracking is that a group of followers
tracks a dynamic leader with local interaction. The authors
in [9] and [10] proposed and analyzed a consensus tracking
algorithm under a variable undirected network topology.
However, [9] and [10] require the availability of the leader’s
acceleration input to all followers and/or the design of dis-
tributed observers. In [11] and [12], the authors proposed a
proportional-and-derivative-like consensus tracking algorithm
under a directed network topology in both continuous-time and
discrete-time settings. However, [11] and [12] require either the
estimates of the leader’s velocity and the followers’ velocities
or a small sampling period. In [13], the authors studied a
leader-follower consensus tracking problem with time-varying
delays. However, [13] requires the velocity measurements of
the followers and an estimator to estimate the leader’s velocity.
In addition to the consensus tracking algorithms, various
flocking and swarm tracking algorithms were also studied
when there exists a leader. The objective of flocking or swarm
tracking with a leader is that a group of followers tracks the
leader while the followers and the leader maintain a desired
geometrical configuration. In [14], the author studied a flocking
algorithm under the assumption that the leader’s velocity is
constant and is available to all followers. The authors in [15]
extended the results in [14] in two aspects. When the leader has
a constant velocity, [15] requires accurate position and velocity
measurements of the leader. When the leader has a varying
velocity, [15] requires that the leader’s position, velocity, and
acceleration are available to all followers. In [16], flocking of
a group of autonomous vehicles with a dynamic leader was
solved by using a set of switching control laws. However, [16]
requires the availability of the acceleration of the leader. In
[17], the authors studied a swarm tracking algorithm via a
variable structure approach using artificial potentials and the
sliding mode control technique. However, [17] requires the
availability of the leader’s position to all followers and an
all-to-all communication pattern among all followers.

Taking into account the limitations in the aforementioned ref-

erences, we focus on solving a distributed coordinated tracking
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problem via a variable structure approach when there exists a dy-

namicvirtual leaderunder the following threeassumptions:1) the

virtual leader isaneighborofonlyasubsetofagroupof followers;

2) there exists only local interaction among all followers; and 3)

the velocity measurements of the virtual leader and all followers

in the case of first-order kinematics or the accelerations of the vir-

tual leader and all followers in the case of second-order dynamics

are not required. In the context of this paper, we use the term co-

ordinated tracking to refer to both consensus tracking and swarm

tracking. Incontrast to theassumptions thatappeared in theafore-

mentioned references, the three assumptions are more general

and practical. The contributions of this paper are twofolds. In the

caseoffirst-orderkinematics,weproposeadistributedconsensus

tracking algorithm without velocity measurements under both

fixed and switching network topologies. In particular, we show

that distributed consensus tracking can be achieved in finite time.

We then extend the result to achieve distributed swarm tracking

without velocity measurements. In the case of second-order kine-

matics, we first propose two distributed consensus tracking al-

gorithms without acceleration measurements when the velocity

of the virtual leader is varying under, respectively, a fixed and

switching network topology. In particular, we show that the pro-

posed algorithms guarantee at least global exponential tracking.

We then propose a distributed consensus tracking algorithm and

a distributed swarm tracking algorithm when the velocity of the

virtual leader is constant. When the velocity of the virtual leader

is varying, distributed swarm tracking is solved by using a dis-

tributedestimator.Fordistributedconsensus tracking,amildcon-

nectivity requirement is proposed by adopting an adaptive con-

nectivity maintenance mechanism in which the adjacency ma-

trix is defined in a proper way. Similarly, a mild connectivity re-

quirement isproposed fordistributedswarmtrackingby adopting

a connectivity maintenance mechanism in which the potential

function is defined in a proper way.

The remainder of this paper is organized as follows. In Sec-

tion II, the graph theory notions used throughout this paper are

introduced. Sections III and IV are the main parts of this paper

focusing on distributed coordinated tracking for, respectively,

first-order kinematics and second-order dynamics. Several sim-

ulation examples are presented in Section V. Conclusion and

future works are given in Section VI.

II. BACKGROUND AND PRELIMINARIES

Suppose that a team consists of vehicles. We use a weighted

undirected graph to model the interaction among

these vehicles, where is the node set,

is the edge set, and is the weighted

adjacency matrix. An edge in denotes that vehicles and

can obtain information from each other. Vehicle is a neighbor

of vehicle if . The weighted adjacency matrix

associated with is defined such that is a positive weight

if , and otherwise. Note that here ,

, since implies .

A path is a sequence of edges in an undirected graph of the

form , where . An undirected graph is

connected if there is an undirected path between every pair of

distinct nodes.

Let the Laplacian matrix associated with

be defined as and , . Note

that is symmetric positive semidefinite. Also note that has a

simple zero eigenvalue with an associated eigenvector , where

is an all-one column vector with a compatible size, and all other

eigenvalues are positive if and only if is connected [18].

III. DISTRIBUTED COORDINATED TRACKING

FOR FIRST-ORDER KINEMATICS

In this section, we study distributed coordinated tracking for

first-order kinematics. Suppose that in addition to the vehi-

cles, labeled as vehicles 1 to , called followers hereafter, there

exists a virtual leader, labeled as vehicle 0, with a (time-varying)

position and velocity . We assume that , where

is a positive constant.

Consider followers with first-order kinematics given by

(1)

where is the position and is the control input

associated with the th vehicle. Here we have assumed that all

vehicles are in a one-dimensional space for the simplicity of

presentation. However, all results hereafter are still valid for the

-dimensional case by introduction of the Kronecker

product.

A. Distributed Consensus Tracking Under Fixed and Switching

Network Topologies

In this subsection, we design for (1) such that all followers

track the virtual leader with local interaction in the absence of

velocity measurements. We propose the distributed consensus

tracking algorithm for (1) as

(2)

where , , , is the th entry of the adjacency

matrix , , , is a positive constant if the virtual

leader’s position is available to follower and other-

wise, is a nonnegative constant, is a positive constant, and

is the signum function. We first consider the case of a

fixed network topology.

Theorem 3.1: Suppose that the fixed undirected graph is

connected and at least one is nonzero (and hence positive).

Using (2) for (1), if , then in finite time.

In particular, for any , where

(3)

where is the column stack vector of , , with

, with being the

Laplacian matrix, and and denote, respectively,

the smallest and the largest eigenvalue of a symmetric matrix.

Proof: Noting that , we can rewrite the closed-

loop system of (1) using (2) as

(4)
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Equation (4) can be written in matrix form as

where and are defined in (3), and is defined com-

ponentwise. Because the fixed undirected graph is connected

and at least one is nonzero (and hence positive), is sym-

metric positive definite.

Consider the Lyapunov function candidate .

The derivative of is

(5)

where we have used the Hölder’s inequality to obtain the first

inequality and to obtain the second inequality. Note

that is symmetric positive definite, is nonnegative, and

. Therefore, it follows that is negative definite. It then

follows from Theorem 3.1 in [19] that as .

We next show that will decrease to zero in finite time (i.e.,

in finite time). Note that .

It then follows from (5) that the derivative of satisfies

After some manipulation, we can get that

Therefore, we have when , where is given by

(3). This completes the proof.

Let denote the neighbor set of follower

in the team consisting of the followers and the virtual leader.

We next consider the case of a switching network topology by

assuming that , , , if

at time and otherwise, where denotes

the communication/sensing radius of the vehicles. In this case,

we consider the distributed consensus tracking algorithm for (1)

as

(6)
where , , , are positive constants,

and , , and are defined as in (2).

Theorem 3.2: Suppose that the undirected graph is con-

nected and the virtual leader is a neighbor of at least one follower

(i.e., for some ) at each time instant. Using (6) for

(1), if , then as .

Proof: Let , , , when

and when . Also

let , , when

and when . Consider the

Lyapunov function candidate

. Note that is not smooth but is regular. We use

differential inclusions [20], [21] and nonsmooth analysis [22],

[23] to analyze the stability of (1) using (6). Therefore, the

closed-loop system of (1) using (6) can be written as

(7)

where is the differential inclusion [21] and a.e. stands for

“almost everywhere.”

The generalized derivative of is given by

(8)

(9)

where we have used the fact

to derive (8) and to derive (9), is the column stack

vector of , , with , and

is defined as

.
(10)
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Note that is symmetric positive definite at each time in-

stant under the condition of the theorem. Because , it then

follows that the generalized derivative of is negative definite

under the condition of the theorem. It then follows from The-

orem 3.1 in [19] that as . Therefore, we can

get that as .

Remark 3.3: Under the condition of Theorem 3.2, dis-

tributed consensus tracking can be achieved in finite time under

a switching network topology. However, in contrast to the

result in Theorem 3.1, it is not easy to explicitly compute the

bound of the time (i.e., in Theorem 3.1) because the switching

pattern of the network topology also plays an important role in

determining the bound of the time.

B. Distributed Swarm Tracking Under a Switching

Network Topology

In this subsection, we extend the distributed consensus
tracking algorithm in Section III-A to achieve distributed
swarm tracking. The objective here is to design for (1)
such that all followers move cohesively with the virtual leader
while avoiding intervehicle collision with local interaction in
the absence of velocity measurements. Before moving on, we
need to define potential functions which will be used in the
distributed swarm tracking algorithms.

Definition 3.4: The potential function is a differentiable,
nonnegative function of 1 satisfying the following
conditions.

1) achieves its unique minimum when is equal
to its desired value .

2) if .
3) if , where

is a positive constant.
4) , , where is a positive constant.
Lemma 3.1: Let be defined in Definition 3.4. The fol-

lowing equality holds:

Proof: Note that

where we have used the fact that from
Definition 3.4. Therefore, the lemma holds.

1In this definition, � can be �-dimensional.

We propose the distributed swarm tracking algorithm for (1)
as

(11)

where , , and are defined as in Section III-A, and
is defined in Definition 3.4.

Theorem 3.5: Suppose that the undirected graph is con-
nected and the virtual leader is a neighbor of at least one follower
(i.e., for some ) at each time instant. Using (11) for
(1), if , the followers will stay close to the virtual leader
and the intervehicle collision is avoided.

Proof: Consider the Lyapunov function candidate

Note that is continuously differentiable with respect to and
. It follows that

(12)

(13)

where we have used Lemma 3.1 to derive (12) and the fact that
to derive (13). Because , we

get that , which in turn proves the theorem by applying
Theorem 3.1 in [19].
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IV. DISTRIBUTED COORDINATED TRACKING

FOR SECOND-ORDER DYNAMICS

In this section, we study distributed coordinated tracking

for second-order dynamics. Suppose that there exists a virtual

leader, labeled as vehicle 0, with a (time-varying) position

and velocity . We consider four different cases.

A. Distributed Consensus Tracking With a Varying Virtual

Leader’s Velocity

Consider followers with second-order dynamics given by

(14)

where and are, respectively, the position and ve-

locity of follower , and is the control input. We assume

that , where is a positive constant. Again we only

consider the case when all vehicles are in a one-dimensional

space. All results hereafter are still valid for the -dimensional

case by introduction of the Kronecker product.

In this subsection, we assume that the virtual leader has a

varying velocity (i.e., is time-varying). The objective here

is to design for (14) such that all followers track the virtual

leader with local interaction in the absence of acceleration mea-

surements. We propose the distributed consensus tracking algo-

rithm for (14) as

(15)

where , , , is defined as in (2), and

, , and are positive constants. We first consider the case

of a fixed network topology. Before moving on, we need the

following lemma.

Lemma 4.1: Suppose that the fixed undirected graph is con-

nected and at least one is nonzero (and hence positive). Let

where and are positive constants and

. If satisfies

(16)

then both and are symmetric positive definite.

Proof: When the fixed undirected graph is connected and

at least one is nonzero (and hence positive), is symmetric

positive definite. It follows that can be diagonalized as

, where with being the th

eigenvalue of . It then follows that can be written as

(17)

where is the zero matrix. Let be an eigenvalue of

. Because is a diagonal matrix, it follows from (17) that

satisfies , which

can be simplified as

(18)

Because is symmetric, the roots of (18) are real. Therefore, all

roots of (18) are positive if and only if and

. Because , it follows that

. When , it follows that . It

thus follows that when , the roots of (18) are positive.

Noting that has the same eigenvalues as , we can get that

is positive definite if .

By following a similar analysis, we can get that is positive

definite if . Combining

the above arguments proves the lemma.

Theorem 4.1: Suppose that the fixed undirected graph is

connected and at least one is nonzero (and hence positive).

Using (15) for (14), if and satisfies (16), then

and globally exponentially as . In

particular, it follows that

(19)

where and are, respectively, the column stack vec-

tors of and , , with

and , and are defined in Lemma 4.1,

, and

.

Proof: Noting that and , we

rewrite the closed-loop system of (14) using (15) as

(20)

Equation (20) can be written in matrix form as

where and are defined in (19) and

.

Consider the Lyapunov function candidate

(21)

Note that according to Lemma 4.1, is symmetric positive def-

inite when satisfies (16). The derivative of is
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(22)

where the last inequality follows from the fact that .

Note that according to Lemma 4.1, is symmetric positive def-

inite when satisfies (16). Also note that . It follows that

is negative definite. Therefore, it follows from Theorem 3.1

in [19] that and as , where is

the zero vector. Equivalently, it follows that

and as .

We next show that distributed consensus tracking

is achieved at least globally exponentially. Note that

. It then follows from (22)

that

Therefore, we can get that .

Note also that . After some ma-

nipulation, we can get (19).

Remark 4.2: In the proof of Theorem 4.1, the Lyapunov func-

tion is chosen as (21). Here can also be chosen as

and the derivative of also satisfies (22) with

By following a similar analysis to that of Lemma 4.1, we can

show that there always exist positive and such that both

and are symmetric positive definite and derive proper condi-

tions for and . In particular, one special choice for and

is and .

We next consider the case of a switching network topology.

We assume that the network topology switches according to the

same model as described right before (6). In this case, we pro-

pose the distributed consensus tracking algorithm for (14) as

(23)

where is defined as in Section III-A, , ,

, are positive constants, and , , and are positive

constants.2 Before moving on, we need the following lemma.

Lemma 4.2: Suppose that the undirected graph is con-

nected and the virtual leader is a neighbor of at least one follower

2Because the virtual leader has no neighbor, we let

��� � ���� � � � � �� � � �� 	 
�

(i.e., for some ) at each time instant. Let be

defined as in (10). Let

and

where and are positive constants. If satisfies

(24)

then both and are symmetric positive definite at each

time instant.

Proof: The proof is similar to that of Lemma 4.1 and is

therefore omitted here.

Theorem 4.3: Suppose that the undirected graph is con-

nected and the virtual leader is a neighbor of at least one fol-

lower (i.e., for some ) at each time instant. Using

(23) for (14), if and (24) is satisfied, then

and as .

Proof: Let and be defined as in the proof of

Theorem 3.2. Consider the Lyapunov function candidate

, where

with and

with . Note that can be written as

(25)

Note also that according to Lemma 4.2, is symmetric pos-

itive definite when (24) is satisfied. By following a similar line

to the proof of Theorem 4.1 and using nonsmooth analysis, we

can obtain that the generalized derivative of is negative def-

inite under the condition of the theorem. Therefore, it follows

from Theorem 3.1 in [19] that and

as .

Remark 4.4: It can be noted that (23) requires the availability

of the information from both the neighbors (i.e., one-hop neigh-

bors) and the neighbors’ neighbors (i.e., two-hop neighbors).

However, accurate measurements of the two-hop neighbors’ in-

formation are not necessary because only the signs (i.e., “ ”

or “ ”) are required in (23). In fact, (23) can be easily imple-

mented in real systems in the sense that follower , ,

shares both its own state (i.e., position and velocity) and the sign

of with its neighbors. Note

that follower also has to compute and

in (23) [correspondingly,

and in (15)] in order to derive the corre-

sponding control input for itself.

Remark 4.5: Under the condition of Theorem 4.3, the

distributed consensus tracking algorithm (23) guarantees at

least global exponential tracking under a switching network

topology. However, in contrast to the result in Theorem 4.1, it

might not be easy to explicitly compute the decay rate (i.e.,

in Theorem 4.3) because the switching pattern of the network
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topology will play an important role in determining the decay

rate.

Remark 4.6: Similar to the analysis in Remark 4.2, in Lya-

punov function (25), we can choose

It then follows that

We can show that there always exist positive and

such that both and are symmetric positive def-

inite and derive proper conditions for and . In par-

ticular, one special choice for and is and

.

Remark 4.7: In Theorems 3.2 and 4.3, it is assumed that the

undirected graph is connected and the virtual leader is a

neighbor of at least one follower at each time instant. However,

this poses an obvious constraint in real applications because

the connectivity requirement is not necessarily always satisfied.

Next, we propose an adaptive connectivity maintenance mech-

anism in which the adjacency matrix with entries in (6) and

(23) is redefined as follows:

1) is a function of .

2) When , if

and otherwise.

3) When , is defined satisfying:

1) ; 2) is nondecreasing; 3) is dif-

ferentiable (or differentiable almost everywhere); 4)

goes to infinity if goes to .

The motivation here is to maintain the initially existing con-

nectivity patterns. That is, if two followers are neighbors of each

other (correspondingly, the virtual leader is a neighbor of a fol-

lower) at , the two followers are guaranteed to be neigh-

bors of each other (correspondingly, the virtual leader is guar-

anteed to be a neighbor of this follower) at . However, if

two followers are not neighbors of each other (correspondingly,

the virtual leader is not a neighbor of a follower) at , the

two followers are not necessarily guaranteed to be neighbors of

each other (correspondingly, the virtual leader is not necessarily

guaranteed to be a neighbor of this follower) at .

Using the proposed adaptive adjacency matrix, the consensus

tracking algorithm for (1) can be chosen as

(26)

with the Lyapunov function chosen as while the

consensus tracking algorithm for (14) can be chosen as (23) with

the Lyapunov function chosen as

with chosen as in Remark 4.6. According to the defini-

tion of , for ,

for all vectors under the connectivity mainte-

nance mechanism. Let be the right eigenvector

of associated with the eigenvalue , i.e.,

. It follows that

. Because

, it follows that . This

implies that is nondecreasing with respect to time.

Therefore, there always exist and satisfying the conditions

in Remark 4.6 because is nondecreasing under the

connectivity maintenance mechanism. When the control gains

are chosen properly (i.e., and for first-order

kinematics and and satisfies Remark 4.6 and

for second-order dynamics), it can be shown that distributed

consensus tracking can be guaranteed for both first-order

kinematics and second-order dynamics if the undirected graph

is initially connected and the virtual leader is initially a

neighbor of at least one follower (i.e., at ). The proof

follows a similar analysis to that of the corresponding algorithm

in the absence of connectivity maintenance mechanism except

that the initially existing connectivity patterns can be main-

tained because otherwise as by

noting that as ,

for first-order kinematics,

and for second-order dynamics,

where is defined in Remark 4.6.

B. Distributed Consensus Tracking With a Constant Virtual

Leader’s Velocity

In this subsection, we assume that the virtual leader has a con-

stant velocity (i.e., is constant). We propose the distributed

consensus tracking algorithm for (14) as

(27)

where is defined as in (15) and is a positive constant. We

first consider a fixed network topology.

Theorem 4.8: Suppose that the fixed undirected graph is

connected and at least one is nonzero (and hence positive).

Using (27) for (14), and as .

Proof: Letting and , we can

rewrite the closed-loop system of (14) using (27) as

(28)

Equation (28) can be written in matrix form as

(29)

where and are, respectively, the column stack vectors of

and , , and .

Consider the Lyapunov function candidate

. The derivative of

is given by



40 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 1, JANUARY 2012

Because is symmetric positive definite, it follows that is

negative semidefinite. Note that implies that ,

which in turn implies that from (29). By using Theorem

3.2 in [19], it follows that and as .

Equivalently, it follows that and as

.

Remark 4.9: In contrast to (15) and (23), which require both

accurate position and velocity measurements, (27) does not nec-

essarily require accurate velocity measurements because the ve-

locity measurements are only used to calculate the sign (i.e.,

“ ” or “ ”). Therefore, (27) is more robust to measurement

inaccuracy.

C. Distributed Swarm Tracking With a Constant Virtual

Leader’s Velocity

In this subsection, we study distributed swarm tracking under

switching network topologies when the velocity of the virtual

leader is constant. We again assume that the network topology

switches according to the model described right before (6). We

propose the distributed swarm tracking algorithm for (14) as

(30)

where is the potential function defined in Definition 3.4,

is defined as in Section III-A, is a positive constant, and

, , and are defined as in (23). Note that (30) requires

both the one-hop and two-hop neighbors’ information.

Theorem 4.10: Suppose that the undirected graph is con-

nected and the virtual leader is a neighbor of at least one follower

(i.e., for some ) at each time instant. Using (30)

for (14), the velocity differences of all followers and the virtual

leader will ultimately converge to zero (i.e., the intervehicle dis-

tance will be maintained), ,

, and the intervehicle collision is avoided.

Proof: Letting and , it follows

that (30) can be written as

Consider the Lyapunov function candidate

Fig. 1. Potential functions � and � with � � ��� and � � �. (a) Poten-
tial function � . (b) Potential function � .

where is a column stack vector of . Taking derivative of

gives that

(31)

(32)

where is defined in (10), (31) is derived by using

Lemma 3.1 and the fact that , and (32) is derived by

using the fact that is symmetric. By following a similar

analysis to that in the proof of Theorem 4.8, it follows from

Theorem 3.2 in [19] that and

as , which in turn proves the theorem.

D. Distributed Swarm Tracking With a Varying Virtual

Leader’s Velocity

In this subsection, we assume that the virtual leader’s velocity

is varying (i.e., the virtual leader’s acceleration is, in general,
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Fig. 2. Network topology for a group of six followers with a virtual leader.
Here � denotes the virtual leader while � , � � �� � � � � �, denote the followers.

Fig. 3. Trajectories of the followers and the virtual leader using (2) in 2-D. The
circle denotes the starting position of the virtual leader while the squares denote
the starting positions of the follwers.

nonzero.). We propose the following distributed swarm tracking

algorithm with a distributed estimator for (14) as

(33)
where and are positive constants, , , , , and

are defined in (30), and

(34)

with being the th vehicle’s estimate of the virtual leader’s

velocity and . Here (34) is a distributed estimator mo-

tivated by the results in Section III-A.

Theorem 4.11: Suppose that the undirected graph is

connected and the virtual leader is a neighbor of at least one

follower (i.e., for some ) at each time instant.

Using (33) for (14), if , the velocity differences of

all followers and the virtual leader will ultimately converge

to zero (i.e., the intervehicle distance will be maintained),

, , and the inter-

vehicle collision is avoided.

Fig. 4. Position tracking errors using (2) in 2-D.

Proof: Letting and , we can

rewrite the closed-loop system of (14) using (33) as

(35)
For (34), it follows from Theorem 3.2 that there exists posi-

tive such that for any . Note that

in (34) is a switching signal, which is different from at

each time instant. However, for , we have that

by noting that for

any . Therefore, and will remain unchanged when

(equivalently, ) in (35) is

replaced with for . For , by choosing the same

Lyapunov function candidate as in the proof of Theorem 4.10,

we can get that
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Fig. 5. Distributed swarm tracking for 48 followers with a virtual leader using
(11) in 2-D. The circles denote the positions of the followers while the square
denotes the position of the virtual leader. An undirected edge connecting two
followers means that the two followers are neighbors of each other while a di-
rected edge from the virtual leader to a follower means that the virtual leader is
a neighbor of the follower.

which implies that for

. That is, is bounded for . For

,by replacing (equiv-

alently, ) in (35) with and choosing the same Lyapunov

function candidate as in the proof of Theorem 4.10, we can get

that . It follows from a similar analysis to

that in the proof of Theorem 4.10 and Theorem 3.2 in [19] that

and as .

This completes the proof.

Remark 4.12: Note that (30) and (33) require the availability

of both the one-hop and two-hop neighbors’ information. The

availability of the leader’s information (i.e., the position, ve-

locity, and acceleration) to all followers is not required in (30)

Fig. 6. Trajectories of the followers and the virtual leader using (15) in 2-D.
The circle denotes the starting position of the virtual leader while the squares
denote the starting positions of the followers.

due to the fact that is constant and in (33) due to the intro-

duction of the distributed estimator. In addition, (30) does not

require accurate velocity measurements of the leader and the

followers while (33) does not require accurate velocity mea-

surements of the followers because the velocity measurements

are only used to calculate the signs (i.e., “ ” or “ ”). Therefore,

(30) and (33) are robust to velocity measurement inaccuracy.

Remark 4.13: In Theorems 3.5, 4.10, and 4.11, it is assumed

that the undirected graph is connected and the virtual leader

is a neighbor of at least one follower at each time instant. How-

ever, this poses an obvious constraint in real applications be-

cause the connectivity requirement is not necessarily always sat-

isfied. In the following, a mild connectivity requirement is pro-

posed for distributed swarm tracking by adopting a connectivity

maintenance mechanism in which the potential function in Def-

inition 3.4 is redefined as follows.

1) When at the initial time (i.e., ), is

defined as in Definition 3.4.

2) When at the initial time (i.e., ),

is defined satisfying conditions 1), 2), and 4) in Definition

3.4 and condition 3) in Definition 3.4 is replaced with the

condition that as . The motivation

here is also to maintain the initially existing connectivity

patterns as in Remark 4.7.
Using the potential function defined above, distributed swarm

tracking can be guaranteed for both first-order kinematics (cf.
Theorem 3.5) and second-order dynamics (cf. Theorems 4.10
and 4.11) if the undirected graph is initially connected (i.e.,

), the virtual leader is initially a neighbor of at least one
follower, and the other conditions for the control gains aresat-
isfied. The proof follows directly from those of Theorems 3.5,
4.10, and 4.11 except that a pair of followers who are neighbors
of each other initially will always be the neighbors of each other
(correspondingly, if the virtual leader is initially a neighbor of
a follower, the virtual leader will always be a neighbor of this
follower) because otherwise the potential function will go to in-
finity. This contradicts the fact that as shown in the proofs
of Theorems 3.5 and 4.10 and the facts that is bounded for

and for as shown in the proof of Theorem
4.11. Note that the connectivity maintenance strategy in [24] re-
quires that the number of edges be always nondecreasing. That
is, if a pair of followers are neighbors of each other (respectively,
the virtual leader is a neighbor of a follower) at some time instant
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Fig. 7. Position and velocity tracking errors using (15) in 2-D. (a) � position. (b) � position. (c) � velocity. (d) � velocity.

,3 then the pair of followers are always neighbors of each other
(respectively, the virtual leader is always a neighbor of this fol-
lower) at any time . This requirement might not be appli-
cable in reality, especially in large-scale systems where the size
of the vehicles cannot be ignored because the group of vehicles
will become very compact with the increasing number of edges.
Meanwhile, the computation burden will increase significantly
as well. In contrast, the connectivity maintenance mechanism
with the corresponding potential function proposed in Remark
4.13 takes these practical issues into consideration. In addition,
hysteresis is introduced to the connectivity maintenance strategy
in [24] to avoid the singularity of the Lyapunov function. How-
ever, the hysteresis is not required in the potential function pro-
posed in Remark 4.13.

To illustrate the connectivity maintenance mechanism as pro-
posed in Remark 4.13, we compare two different potential func-
tions and whose derivatives satisfy, respectively

(36)
and

(37)

3Equivalently, a pair of followers are within the communication range of each
other (respectively, the virtual leader is within the communication range of a
follower).

where and . Fig. 1 shows the plot of the po-
tential functions and .4 It can be seen from Fig. 1(b) that

approaches infinity as the distance approaches

. However, does not have the property [cf. Fig. 1(a)]. In

particular, satisfies condition 3) in Definition 3.4 as shown

in Fig. 1(a). In addition, both and satisfy conditions 1),
2), and 4) in Definition 3.4. According to Remark 4.13, we can
choose the potential function as when

and otherwise.

Remark 4.14: From the proofs of all theorems, it can be seen

that the condition that is undirected connected and the

leader is a neighbor of at least one follower in each theorem

can be relaxed to be that is undirected and the leader has

directed paths to all followers.

V. SIMULATION

In this section, we present several simulation examples to
validate some theoretical results in the previous sections. We
consider a group of six followers with a virtual leader. We let

and , where and de-
note, respectively, the and positions of agent while and

denote, respectively, the and velocities of agent . We
also let if vehicle is a neighbor of vehicle , where

and , and otherwise.

In the case of first-order kinematics, the network topology

is chosen as in Fig. 2(a). It can be noted that the undirected

graph for all followers 1 to 6 is connected and the virtual

leader is a neighbor of follower 4. Using (2) in 2-D, we choose

4Note that neither � nor � is unique because for positive constant � ,
� �� and � �� are also potential functions satisfying, respectively, (36)
and (37). We only plot one possible choice for them.
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Fig. 8. Distributed swarm tracking for 49 followers with a virtual leader using
(30) in 2-D. The circles denote the positions of the followers while the square
denotes the position of the virtual leader. An undirected edge connecting two
followers means that the two followers are neighbors of each other while a di-
rected edge from the virtual leader to a follower means that the virtual leader is
a neighbor of the follower. (a) � � � s. (b) � � � s. (c) � � �� s.

, , and . The

trajectories of the followers and the virtual leader are shown in

Fig. 3. The tracking errors of the and positions are shown

in, respectively, Fig. 4(a) and (b). It can be seen from Fig. 4 that

the tracking errors converge to zero in finite time. That is, all

followers track the virtual leader accurately after a finite period

of time as also shown in Fig. 3.

For distributed swarm tracking in the case of first-order kine-

matics, we choose , , , and . The par-

tial derivative of the potential function is chosen as in (36). Using

(11) for (1) in 2-D, Fig. 5 shows the consecutive snapshots of dis-

tributedswarmtrackingfor48followers with avirtual leader.The

initial statesof the followersare randomlychosenfromthesquare

box and is chosen as . It

can be seen that the followers ultimately stay close to the leader

and the interagent collision is avoided.

Fig. 9. Distributed swarm tracking for 50 followers with a virtual leader using
(33) in 2-D. The circles denote the positions of the followers while the square
denotes the position of the virtual leader. An undirected edge connecting two
followers means that the two followers are neighbors of each other while a di-
rected edge from the virtual leader to a follower means that the virtual leader is
a neighbor of the follower. (a) � � � s. (b) � � � s. (c) � � �� s.

In the case of second-order dynamics, the network topology is

chosen as in Fig. 2(b). It can be noted that the undirected graph

for all followers 1 to 6 is connected as well and the virtual

leader is a neighbor of follower 1. Using (15) in 2-D, we choose

, , , and . The

trajectories of the followers and the virtual leader are shown in

Fig. 6. The tracking errors of the and positions are shown in

Fig. 7(a) and (b). The tracking errors of the and velocities

are shown in Fig. 7(c) and (d). It can be seen from Fig. 7 that the

tracking errors ultimately converge to zero. That is, all followers

ultimately track the virtual leader as also shown in Fig. 6.

For distributed swarm tracking in the case of second-order

dynamics, we choose , , , and

if vehicle is a neighbor of vehicle and otherwise.

The partial derivative of the potential function is chosen as in
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Fig. 10. Trajectories of the followers and the virtual leader using (26) in 2-D
with connectivity maintenance mechanism. The circle denotes the starting po-
sition of the virtual leader while the squares denote the starting positions of the
followers.

Fig. 11. Position tracking errors using (26) in 2-D with connectivity mainte-
nance mechanism. (a) � position. (b) � position.

the case of first-order kinematics. In the case of a constant vir-

tual leader’s velocity, the initial states of the followers are ran-

domly chosen from the square box and is chosen

as . Using (30) for (14) in 2-D, Fig. 8 shows the

consecutive snapshots of distributed swarm tracking for 49 fol-

lowers with a virtual leader. In the case of a dynamic virtual

leader’s velocity, the initial states of the followers are randomly

chosen from the square box and is chosen as

. We choose . Using (33) for (14)

in 2-D, Fig. 9 shows the consecutive snapshots of distributed

swarm tracking for 50 followers with a virtual leader. Due to

the random choice of the initial states, the vehicles form sepa-

rated subgroups initially. As a result, fragmentation appears in

Fig. 12. Trajectories of the followers and the virtual leader using (23) in 2-D
with connectivity maintenance mechanism. The circle denotes the starting po-
sition of the virtual leader while the squares denote the starting positions of the
followers.

Fig. 13. Position tracking errors using (23) in 2-D with connectivity mainte-
nance mechanism. (a) � position. (b) � position.

this case. However, for each subgroup, the relative distances of

the followers and the virtual leader if the virtual leader is in the

subgroup remain unchanged ultimately.

For distributed consensus tracking with the connectivity

maintenance mechanism in Remark 4.7, we choose

and according to Remark 4.7 with

and .

Using (26) for (1) in 2-D with the connectivity maintenance

mechanism in Remark 4.7, we choose and .

Fig. 10 shows the trajectories of the followers and the virtual

leader. The initial positions of the followers are randomly

chosen from the square box and is chosen as

. The tracking errors of the and positions
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Fig. 14. Distributed swarm tracking for 20 followers with a virtual leader using
(11) in 2-D in the presence of the connectivity maintenance mechanism in Re-
mark 4.13. The circles denote the positions of the followers while the square
denotes the position of the virtual leader. An undirected edge connecting two
followers means that the two followers are neighbors of each other while a di-
rected edge from the virtual leader to a follower means that the virtual leader is
a neighbor of the follower. (a) � � � s. (b) � � � s. (c) � � �� s.

are shown in Fig. 11(a) and (b). It can be seen that the tracking

errors ultimately converge to zero. That is, all followers ulti-

mately track the virtual leader as also shown in Fig. 10. Using

(23) for (14) in 2-D with the connectivity maintenance mecha-

nism in Remark 4.7, we choose , , and .

Fig. 12 shows the trajectories of the followers and the virtual

leader. The initial positions of the followers are randomly

chosen from the square box and is chosen as

. The tracking errors of the and positions

are shown in Fig. 13(a) and (b). It can be seen from Fig. 13

that the tracking errors ultimately converge to zero. That is, all

followers ultimately track the virtual leader as also shown in

Fig. 12.

For distributed swarm tracking with the connectivity main-

tenance mechanism as in Remark 4.13, all parameters are

Fig. 15. Distributed swarm tracking for 20 followers with a virtual leader using
(30) in 2-D in the presence of the connectivity maintenance mechanism in Re-
mark 4.13. The circles denote the positions of the followers while the square
denotes the position of the virtual leader. An undirected edge connecting two
followers means that the two followers are neighbors of each other while a di-
rected edge from the virtual leader to a follower means that the virtual leader is
a neighbor of the follower. (a) � � � s. (b) � � � s. (c) � � �� s.

chosen the same as those for distributed swarm tracking

without connectivity maintenance. When two followers are

initially neighbors of each other or the virtual leader is initially

a neighbor of some follower(s), the partial derivative of the

corresponding potential function is chosen as (37). Otherwise,

the partial derivative of the potential function is chosen as (36).

In the case of first-order kinematics, the initial positions of the

followers are randomly chosen from the square box

and is chosen as . Fig. 14 shows

the consecutive snapshots of distributed swarm tracking for

20 followers with a virtual leader in 2-D with the connec-

tivity maintenance mechanism in Remark 4.13. In the case of

second-order dynamics with a constant virtual leader’s velocity,

the initial positions of the followers are randomly chosen from

the square box and is chosen as .

Fig. 15 shows the consecutive snapshots of distributed swarm
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Fig. 16. Distributed swarm tracking for 20 followers with a virtual leader using
(33) in 2-D in the presence of the connectivity maintenance mechanism in Re-
mark 4.13. The circles denote the positions of the followers while the square
denotes the position of the virtual leader. An undirected edge connecting two
followers means that the two followers are neighbors of each other while a di-
rected edge from the virtual leader to a follower means that the virtual leader is
a neighbor of the follower. (a) � � � s. (b) � � � s. (c) � � �� s.

tracking for 20 followers with a virtual leader in 2-D with the

connectivity maintenance mechanism in Remark 4.13. In the

case of second-order dynamics with a varying virtual leader’s

velocity, the initial positions of the followers are randomly

chosen from the square box and is chosen as

. Fig. 16 shows the consecutive snapshots

of distributed swarm tracking for 20 followers with a virtual

leader in 2-D with the connectivity maintenance mechanism in

Remark 4.13. It can be seen that at each snapshot the network

topology for the 20 followers is connected and the virtual leader

is a neighbor of at least one follower because of the initial con-

nectivity and the existence of the connectivity maintenance

mechanism. Meanwhile, the relative distances of the followers

and the virtual leader remain unchanged ultimately. In contrast

to Fig. 5, Figs. 8 and 9 where the initially existing connectivity

patterns might not always exist, the initially existing connec-

tivity patterns in Figs. 14–16 always exist due to the existence

of connectivity maintenance mechanism.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we studied a distributed coordinated tracking

problem via a variable structure approach when there exists

a dynamic virtual leader who is a neighbor of only a subset

of a group of followers, all followers have only local interac-

tion, and only partial measurements of the states of the vir-

tual leader and the followers are available. For first-order kine-

matics, we proposed a distributed consensus tracking algorithm

without velocity measurements and showed that distributed con-

sensus tracking can be achieved in finite time. We then extended

the result to derive a distributed swarm tracking algorithm in

the absence of velocity measurements. For second-order dy-

namics, we proposed two distributed consensus tracking algo-

rithms without acceleration measurements when the velocity of

the virtual leader is varying and showed that the proposed algo-

rithms guaranteed at least global exponential tracking. We then

proposed a distributed consensus tracking algorithm and a dis-

tributed swarm tracking algorithm when the velocity of the vir-

tual leader is constant. When the velocity of the virtual leader

is varying, distributed swarm tracking was solved by employing

a distributed estimator. For distributed consensus tracking (re-

spectively, swarm tracking) problems, a mild connectivity re-

quirement was proposed by adopting an connectivity mainte-

nance mechanism in which the adjacency matrix (respectively,

the potential function) is defined in a proper way. Several il-

lustrative examples were presented to show the effectiveness of

our algorithms. Future works include the study of distributed

consensus tracking and swarm tracking algorithms in directed

networks and finding the conditions of the control gains in a

distributed manner.
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