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Distributed Coordination Control of Multiagent
Systems While Preserving Connectedness

Meng Ji, Student Member, IEEE, and Magnus Egerstedt, Senior Member, IEEE

Abstract—This paper addresses the connectedness issue in mul-
tiagent coordination, i.e., the problem of ensuring that a group of
mobile agents stays connected while achieving some performance
objective. In particular, we study the rendezvous and the formation
control problems over dynamic interaction graphs, and by adding
appropriate weights to the edges in the graphs, we guarantee that
the graphs stay connected.

Index Terms—Connected graphs, formation control, graph
Laplacian, multiagent coordination.

I. INTRODUCTION

THE HISTORY behind this work can be traced back to
Reynolds’ “boids” model [1], where each agent only reacts

to its neighboring flock-mates following three adhoc protocols
for autonomous agents, i.e., separation, alignment, and cohe-
sion. A special case of the “boids” model was studied by Vicsek
et al. [2], where all the agents move at the same constant speed
and update their headings according to the nearest neighbor rule.
Velocity cohesion and flocking behavior was observed in both
cases, and a proof of convergence was provided by Jadbabaie
et al. [3].

What makes the multiagent problem challenging is that the
agents are subjected to limitations on the available information,
which has made graph-based models useful and natural tools for
encoding these limitations [4]–[12]. Among several important
properties of such graph models, the graph Laplacian stands out,
and it has been used for proving convergence and characterizing
stability. Additional results that rely on such algebraic graph-
theoretic tools for graph-based control of mobile agents involve
edge-based control and Lyapunov functions over graphs [3],
[13]–[15].

The agreement problem (or consensus problem) is concerned
with finding decentralized strategies that achieve convergence
to a common value. This problem arises in a number of applica-
tions such as swarming, schooling, flocking, or rendezvous. The
agreement is typically achieved through a nearest-neighbor-like
protocol

ẋi(t) = −ki(t)
∑

j∈nbhdi (t)

αij(t)(xi(t) − xj(t))

where xi is the state vector of agent i, and nbhdi(t) denotes the
neighborhood set (to be carefully defined later) of agent i at time
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t. Variations in this protocol consist mainly of different weight
factors ki and αij . For example, linear time-varying weights are
used for αij in continuous time [6], [7] and discrete time [3],
[9]. Nonlinear weights are proposed in [11] and [15]. In addi-
tion, a robust (in the sense of disturbance rejection) rendezvous
algorithm is presented in [16].

The formation control problem has also been extensively stud-
ied. Generally speaking, there are two kinds of formation control
approaches: the leader-follower approach and the leaderless ap-
proach. In the leader-follower approach, either an agent [17] or a
virtual leader [18]–[21] is chosen as the leader, whose movement
is constrained by a predefined trajectory. The remaining agents
then track the leader, while obeying some coordination rules to
keep the formation. In contrast, the other approach to forma-
tion control is the leaderless approach [22], [23]. Here, the con-
troller is typically given by a mixture of formation-maintenance,
obstacle-avoidance, and trajectory-following terms. Alternative
approaches to this problem include, e.g., local navigation func-
tions, and recent work along these lines can be found in [24]
and [25].

In this paper, we will focus on providing solutions to the co-
ordination problem that preserve connectedness in the presence
of limited sensing and communication ranges. In particular, the
rendezvous and formation control problems are investigated. It
should be noted that these problems have already been solved
if either connectedness is assumed [5], [7], [15], or connected-
ness is only required at distinct times [4], [3], [16], [26]–[28]
in the sense that the agents sense their environment and then
move in such a way that the network is connected at the sens-
ing times, where the agents may be operating synchronously
or asynchronously. In particular, the first solution to the con-
nectedness preserving rendezvous problem was given by Ando
et al. in [4]; a discrete-time control algorithm was proposed
that evaluated and ensured connectivity, as well as other con-
straints, at each instant of (discrete time). An additional relevant
contribution along these lines can be found in [29], where the
connectivity-maintenance problem for ad hoc networks with
discrete-time double-integrator dynamics is considered.

In this paper, we show how to make the graph stay connected
for all times (thus, removing the separation of the movements
into sensing and movement phases), and the outline of the paper
is as follows: In Section II, we review some previous results
and recall some basic notions from algebraic graph theory. In
Section III, we show how to add weights in the static graph
case in order to solve the rendezvous problem, followed by
the dynamic case in Section IV. The connectedness preserving
control law is extended to the formation control in Section V,
followed by a collection of simulation results in Section VI.
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II. BACKGROUND

The graph Laplacian can be thought of as an encoding of the
discrete topology heat equation [30]–[32], where differential
operators can be defined for functions over graphs. This in-
terpretation of the graph Laplacian, defined as a mapping from
graph nodes to graph nodes, tells us that the graph Laplacian de-
fines a diffusion of information over the network in that a node
value changes based on the values associated with its neigh-
boring nodes. And, as already mentioned, pioneering work on
consensus problems or agreement problems utilizing the graph
Laplacian can be found in [6] and [11]–[13].

Since few mobile networks have a static network topology
due to the movements of the individual nodes as well as to the
temporal variations in the available communication channels,
interest in networks with changing topologies has been growing
rapidly. In [8] and [33], a dynamic extension of the static graph
theory is proposed as a framework to address network problems
with time-varying topologies. Ren and Beard [9] find that under
a dynamically changing interaction topology, if the union of the
interaction graphs across some time interval contains a spanning
tree at a sufficient frequency as the system evolves, an informa-
tion consensus is still achievable. An average consensus prob-
lem is solved for switching topology networks in [13], where a
common Lyapunov function is obtained for directed balanced
graphs, based on a so-called disagreement function. Moreover,
similar Lyapunov function arguments were employed in [34],
where the stability of coupled nonlinear oscillator networks was
investigated. In this paper, we will draw inspiration from these
results, and we first establish some notation and review some
previous results.

N agents, whose positions x1, . . . , xN take on values in R
n

are given. The problem that we are studying in this paper is
that of limited information, decentralized control. As such, we
are focusing our attention on interaction and high-level control
strategies rather than on nonlinear vehicle models, and we as-
sume that the dynamics of each individual agent is given by a
single integrator

ẋi = ui, i = 1, . . . , N. (1)

In order to establish what we mean by limited and decentral-
ized control, we follow the standard procedure of associating an
interaction graph with the available information flow in that the
nodes correspond to agents, and edges to available interagent
communication links. Such interaction graphs are, thus, reflec-
tive of the underlying network topology, and different graphs
arise in different applications. Of particular importance to the
development in this paper are the ∆-disk proximity graphs, of
connectivity graphs, where edges are established between nodes
vi and vj , if and only if the agents are within distance ∆ of each
other, i.e., when |xi − xj | ≤ ∆. It sould be noted at this point
that such graphs are dynamic in nature, i.e., edges may appear
or disappear as agents move in or out of sensing (or communi-
cation) distance of each other. Moreover, it is conceivable that
agents are added or removed themselves, making not only the
edge set but also the node set a dynamical structure. In this
paper, we will not study this latter situation, and thus, restrict

the node set to be static while allowing the edge-set to undergo
dynamic changes.

Before we can study the dynamic situation, a few words
should be said about the static case. In this situation, the agents
have established communication links between the predefined
agents, and these links are assumed to be available through-
out the duration of the maneuver. In fact, by a static interac-
tion graph (SIG) G = (V,E), we understand the graph where
the nodes V = {v1, . . . , vN} are associated with the different
agents, and the static edge set E ⊂ V × V is a set of unordered
pairs of agents, with (vi, vj) = (vj , vi) ∈ E if and only if a
communication link exists between agents i and j. We will use
the shorthand V (G) and E(G) to denote the edge and node sets
associated with a graph G.

Given an agent i, we will associate NG(i) = {j|(vi, vj) ∈
E(G)} with the neighborhood set to i, i.e., the set of agents
adjacent to agent i. Using this terminology, what we understand
by a limited-information time-invariant decentralized control
law in (1) is that

ui =
∑

j∈Nσ (i)

f(xi − xj) (2)

where Nσ(i) ⊆ NG(i). The symmetric indicator function
σ(i, j) = σ(j, i) ∈ {0, 1} determines whether or not the infor-
mation available through edge (vi, vj) should be taken into
account with

j ∈ Nσ(i) ⇔ (vi, vj) ∈ E(G) ∧ σ(i, j) = 1. (3)

(Using the terminology in [35], just because two nodes are
“neighbors” it does not follow that they are “friends.”) Along the
same lines, the decentralized control law f(xi − xj) is assumed
to be antisymmetric

f(xi − xj) = −f(xj − xi), ∀(vi, vj) ∈ E(G). (4)

A few remarks about these particular choices of control laws
and indicator functions should be made. First of all, the fact
that we only allow f to depend on the relative displacements
between interacting agents is that this is, in general, the only
type of information available to range-sensor-based information
channels, where agent i simply measures the position of agent
j relative to its current position. Secondly, we insist on having
the agents be homogeneous in that the same control laws should
govern the motion of all agents. This restriction is quite natural
(and arguably necessary) when considering large-scale networks
where it quickly becomes unmanageable to assign and keep
track of individual control laws.

As a consequence of restricting the permissible control laws
to those given in (2), we obain that the centroid of the system is
static. This fact follows directly from the antisymmetry of f in
(4), and will be elaborated further in the following sections.

The type of control terms presented in (2) have appeared
repeatedly in the multiagent coordination community, and an
intuitive linear control law for solving the rendezvous problem
is given by

σ(i, j) = 1,

f(xi − xj) = −(xi − xj), ∀(vi, vj) ∈ E(G)
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which gives that

ẋi = −
∑

j∈NG(i)

(xi − xj), i = 1, . . . , N. (5)

Under the dynamics in (5), it has been shown that all the agents
approach the same point asymptotically, provided that the SIG
is connected. And, even though this is a well-established result
(see, e.g., [7]), we will outline a proof in this paper in order to
establish some needed notation and tools.

First, we need to associate an arbitrary orientation to the
SIG, G. An orientation is a declaration of direction to each
edge o : E(G) → {−1, 1}such that if (vi, vj) ∈ E(G), then
o(vi, vj) = −o(vj , vi). Using this orientation, we obtained the
oriented graph Go = (V,E, o).

Now, if the total number of edges is equal to M , and we asso-
ciate an index with each edge such that E(G) = {e1, . . . , eM},
then the N × M incidence matrix of Go is I(Go) = [ιij ], where

ιij =

{ 1, if vi is the head of ej

−1, if vi is the tail of ej

0, otherwise
. (6)

Through this incidence matrix, we can now define the graph
Laplacian L(G) ∈ R

N×N as

L(G) = I(Go)I(Go)T (7)

where we have removed the orientation dependence in the left-
hand side of (7). The reason for this is that the Laplacian does not
depend on the particular choice of orientation. In fact, one can
easily define the Laplacian without any reference to orientation
or incidence matrices, but we follow this definition to ease the
notation in future sections.

The graph Laplacian has a number of well-studied proper-
ties (found, e.g., in [36]); the properties of importance to the
developments in this paper are listed as follows.

1) I(Go)I(Go)T = I(Go′
)I(Go′

)T for all orientation o, o′,
i.e., the Laplacian is orientation-independent.

2) L(G) is symmetric and positive semidefinite.
3) Let {λi}N

i=1 be the ordered eigenvalues of L(G).
Then 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . Moreover, λ1 = 0 and
λ2, . . . , λN > 0 if G is connected.

4) If G is connected, then the set of eigenvectors ν1, . . . , νN

form an orthogonal basis in R
N , and ν1 = 1/

√
N1, where

1 denotes the vector with every entry equal to one. In other
words, if G is connected then null(G) = span{1}, where
null(·) denotes the null space.

If we now let the n-dimensional position of agent i
be given by xi = (xi,1, . . . , xi,n), i = 1, . . . , N , and let x =
(xT

1 , . . . , xT
N )T , we can define the componentwise operator as

c(x, j) = (x1,j , . . . , xN,j)T ∈ RN , j = 1, . . . , n.

Using this notation, together with the observation that (5) can
be decoupled along each dimension, we can in fact rewrite (5)
as

d

dt
c(x, j) = −L(G)c(x, j), j = 1, . . . , n. (8)

As pointed out in [7] and [36], if G is connected, then the
eigenvector corresponding to the semisimple eigenvalue 0 is

1. This, together with the nonnegativity of L(G) and the fact
that span{1} is L(G)-invariant, is sufficient to show that c(x, j)
approaches span{1} asymptotically.

This result, elegant in its simplicity, can in fact be extended
to dynamic graphs as well. In fact, since c(x, j)T c(x, j) is a
Lyapunov function to the system in (5), for any connected graph
G, the control law

d

dt
c(x(t), j) = −L(G(t))c(x(t), j) (9)

drives the system to span{1} asymptotically as long as G(t) is
connected for all t ≥ 0.

This well-known result is very promising, since dynamic net-
work graphs are frequently occurring in which all real sen-
sors and transmitters have finite range. This means that infor-
mation exchange links may appear or be lost as the agents
move around. In fact, if we focus our attention on ∆-disk
proximity graphs, we get the dynamic interaction graph (DIG)
G(t) = (V,E(t)) where (vi, vj) = (vj , vi) ∈ E(t), if and only
if |xi(t) − xj(t)| ≤ ∆.

By applying the control law in (5) to such DIGs, we get a
system behavior that seemingly solves the rendezvous problem
quite efficiently. However, the success of the control in (5) hinges
on an assumption that it shares with most graph-based results
(e.g., [3], [15]), i.e., on the connectedness assumption. Unfor-
tunately, this property has to be assumed rather than proved,
and in Fig. 1, an example is shown where connectedness is lost
when using (9) to control a system whose network topology is
a ∆-disk proximity DIG.

The remainder of this paper will show how this assumption
can be overcome by modifying the control law in (5) in such a
way that connectedness holds for all times, while ensuring that
the control laws are still based solely on local information, in
the sense of (2).

III. WEIGHTED GRAPH-BASED FEEDBACK

In this section, we will restrict the interaction graphs to be
static, i.e., we will only study the SIG-case in which the behav-
ior of the multiagent system is defined through a fixed network
topology. In particular, we will show how the introduction of
nonlinear edge-weights can be used to establish certain invari-
ance properties.

To arrive at the desired invariance properties, we will first
investigate the decentralized control laws of the form

σ(i, j) = 1,

f(xi − xj) = −w(xi − xj)(xi − xj), ∀(vi, vj) ∈ E(G)

(10)

where w : R
n → R+ is a positive symmetric weight function

that associates a strictly positive and bounded weight to each
edge in the SIG, based solely on the displacement xi − xj . We
will study in detail as to how to choose the weight w in order to
maintain connectedness.
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Fig. 1. Progression where connectedness is lost even though the initial graph is connected (∆ = 4.5).

This choice of decentralized control law gives

ẋi = −
∑

j∈NG(i)

w(xi − xj)(xi − xj) (11)

which can be rewritten as

d

dt
c(x, j) = −IoW(x)IoT c(x, j), j = 1, . . . , n (12)

where W(x) =diag(w1(x), . . . , wM (x)) ∈ R
M×M , where, as

before, M = |E(G)| is the total number of edges, and where we
have associated a label in {1, . . . , M} with each of the edges.

We can then define the state-dependent weighted graph
Laplacian as

LW(x) = IoW(x)IoT (13)

where, as before, W(x) ∈ R
M×M is a diagonal matrix with

each element corresponding to a strictly positive edge weight. It
is moreover straightforward to establish that as long as the graph
is connected, LW(x) is still positive semidefinite, with only one
zero eigenvalue corresponding to the null-space span{1}.

What we would like to show is that, given a critical distance
δ, together with the appropriate edge-weights, the edge-lengths
never go beyond δ if they start out being less than δ − ε, for
some arbitrarily small ε ∈ (0, δ). For this, we need to establish
some additional notation, and, given an edge (vi, vj) ∈ E(G),
we let �ij(x) denote the edge vector between the agents i and j,
i.e., �ij(x) = xi − xj .

We, moreover, define the ε-interior of a δ-constrained real-
ization of an SIG, G as

Dε
G,δ = {x ∈ R

nN | ‖�ij‖ ≤ (δ − ε), ∀(vi, vj) ∈ E(G)}.
An edge-tension function Vij , can then be defined as

Vij(δ, x) =
{ ‖�ij (x)‖2

δ−‖�ij (x)‖ , if (vi, vj) ∈ E(G)
0, otherwise

(14)

with

∂Vij(δ, x)
∂xi

=
{ 2δ−‖�ij (x)‖

(δ−‖�ij (x)‖)2 (xi − xj), if(vi, vj) ∈ E(G)
0, otherwise.

(15)

it is to be noted that this edge-tension function (as well as its
derivatives) is infinite when ‖�ij(x)‖ = δ for some i, j, and, as
such, it may seem like an odd choice. However, as we will see,
we will actually be able to prevent the energy to reach infinity,
and instead we will study its behavior on a compact set on which
it is continuously differentiable.

The total tension energy of G can now be defined as

V(δ, x) =
1
2

N∑
i=1

N∑
j=1

Vij(δ, x). (16)

Lemma 3.1: Given an initial position x0 ∈ Dε
G,δ , for a given

ε ∈ (0, δ). If the SIG G is connected, then the set Ω(δ, x0) :=
{x|V(δ, x) ≤ V(δ, x0)} is an invariant set to the system under
the control law

ẋi = −
∑

j∈NG(i)

2δ − ‖�ij(x)‖
(δ − ‖�ij(x)‖)2 (xi − xj). (17)
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Proof: We first note that the control law in (17) can be rewrit-
ten as

ẋi = −
∑

j∈NG(i)

∂Vij(δ, x)
∂xi

= −∂V(δ, x)
∂xi

= −∇xi
V(δ, x).

This expression may be ill-defined, since it is conceivable that
the edge-lengths approach δ and what will be shown is that this
will not happen. In fact, assume that at time τ we have x(τ) ∈
Dε′

G,δ for some ε′ > 0. Then, the time derivative of V(δ, x(τ)) is

V̇(δ, x(τ)) = ∇xV(δ, x(τ))T ẋ(τ)

= −
N∑

i=1

ẋi(τ)T ẋi(τ)

= −
n∑

j=1

c(x(τ), j)TLW(δ, x(τ))2c(x(τ), j) (18)

where LW(δ, x) is given in (13), with weight positive definite
(on Ω(δ, x0)) matrix W(δ, x)

W(δ, x) = diag(wk(δ, x)), k = 1, 2, . . . ,M

wk(δ, x) =
2δ − ‖�k(x)‖

(δ − ‖�k(x)‖)2 (19)

where we have arranged the edges such that subscript k cor-
responds to edge k. We will use this notation interchangeably
with wij and �ij , whenever it is clear from the context.

We note that for any ε′ bounded away from 0 from below
and δ from above, and for any x ∈ Dε′

G,δ , the time derivative
of the total tension energy is well defined. Moreover, for any
such x, V(δ, x) is nonnegative and V̇(δ, x) is nonpositive (since
LW(δ, x) is positive semidefinite for all x ∈ Ω(δ, x0)). Hence,
in order to establish the invariance of Ω(δ, x0), all that needs to
be shown is that as V decreases (or at lest does not increase),
no edge-distances will tend to δ. In fact, since Dε

G,δ ⊂ Dε′
G,δ if

ε > ε′, we would have established the invariance of Ω(δ, x0) if
we could find an ε′ > 0 such that whenever the system starts
from x0 ∈ Dε

G,δ , we can ensure that it never leaves the superset

Dε′
G,δ.
Let

V̂ε := max
x∈Dε

G,δ

V(δ, x).

This maximum always exists, and is obtained when all edges
are at the maximal allowed distance

V̂ε =
M(δ − ε)2

ε

which is a monotonously decreasing function in ε over (0, δ).
We can bound the maximal edge distance that can generate

this total tension energy, and the maximal edge-length �̂ε ≥
δ − ε is one where the entire total energy is contributed from
that one single edge. In other words, all other edges have length
0, and the maximal edge length satisfies

V̂ε =
�̂2ε

δ − �̂ε

that is

M(δ − ε)2

ε
=

�2ε
δ − �ε

which implies that

�̂ε ≤ δ − ε

M
< δ.

Hence, �ε is bounded away from above from δ, and it is moreover
bounded from above by a strictly decreasing function in ε on
(0, δ). Hence, as V decreases (or at least is nonincreasing), no
edge-distances will tend to δ, which completes the proof.

The invariance of Ω(δ, x0) now leads us to the main SIG
theorem.

Theorem 3.2: Given a connected SIG G with initial condition
x0 ∈ Dε

G,δ, for a given ε > 0. Then, the the multiagent system
under the control law in (17) asymptotically converges to the
static centroid x̄(x0).

Proof: The proof of convergence is based on LaSalle’s in-
variance theorem. Let Dε

G,δ and Ω(δ, x0) be defined as before.
From Lemma 3.1 , we know that Ω(δ, x0) is positively invari-
ant with respect to the dynamics in (17). We also note that
span{1} is LW(δ, x)-invariant for all x ∈ Ω(δ, x0). Hence, due
to the fact that V̇(δ, x) ≤ 0, with equality only when c(x(t), j) ∈
span{1},∀j ∈ {1, . . . , n}, convergence to span{1} follows.

Next, we need to show that the agents converge to the centroid.
The centroid is given by

x̄ =
1
N

N∑
i=1

xi

and the component-wise dynamics of the centroid is

d

dt
c(x, j) =

1
N

1T d

dt
c(x, j) = − 1

N
1TLW(δ, x)c(x, j).

Now, since 1TLW(δ, x) = (LW(δ, x)1)T = 0,∀x ∈ Ω(x0),
we directly have ˙̄x = 0, i.e., the centroid is static,
determined entirely by the initial condition x0. As such, we
can denote the centroid by x̄(x0). This is in fact just a spe-
cial case of the observation that the centroid is static under any
control law in (2).

Now, let ξ̄ ∈ R
N be any point on span{1} (i.e., ξ̄ =

(ξ, . . . , ξ)T for some ξ ∈ R) that is consistent with a static cen-
troid. This implies that

c(x, j) =
1
N

N∑
i=1

ξ = ξ

and hence, ξ has to be equal to the centroid itself. As a conse-
quence, if xi, i = 1, . . . , n, converged anywhere other than the
centroid, we would have a contradiction, and the proof follows.�

It is to be noted that the construction we have described
corresponds to adding nonlinear state-dependent weights to the
edges in the graph. One could conceivably also add weights to
the nodes as well. Unless these weights were all equal, they
would violate the general assumption in (2), but for the sake of
completeness, we briefly discuss this situation in the next few
paragraphs.
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A node weight would be encoded in the dynamics of the
system through the weight matrix D(x) as

dc(x, j)
dt

= −D(x)LW(x)c(x, j), j = 1, . . . , n.

As long as D(x) is diagonal and positive definite for all x,
(with the diagonal elements bounded away from 0), the null-
space remains null(D(x)LW(x)) = span{1},∀x ∈ R

nN , and
the controller still drives the system to span{1}. However, it
is straightforward to show that in this case, the positions xi ∈
R

n, i = 1, . . . , N approach the same static point x̄D(x0) ∈ R
n,

given by

x̄D(x0) =
1

tr(D−1(x0))

N∑
i=1

(d−1
i (x0))x0,i (20)

where x0,i ∈ R
n, i = 1, . . . , N is the initial location of agent i,

di(x) is the ith diagonal element of D(x), and tr(D(x)) denotes
the trace of matrix D(x).

That concludes this section where an SIG was assumed. We
will show ion Section IV that a similar strategy can be employed
even if the graph is allowed to change as the agents move around
in the environment.

IV. DYNAMIC GRAPHS

As already pointed out, during a maneuver, the interaction
graph G may change as the different agents move in and out of
each others sensory ranges. In this section, we focus on whether
or not an argument, similar to the previous stability result, can
be constructed for the case when (vi, vj) ∈ E(G) if and only if
‖xi − xj‖ ≤ ∆.

In fact, we intend to reuse the tension energy from the previous
section, with the particular choice of δ = ∆. However, since in
(19)

lim
‖�k ‖↑∆

wk(∆, ‖�k‖) = ∞

we can not directly let the interagent tension energy affect the
dynamics as soon as two agents form edges in between them,
i.e., as they move within distance ∆ of each other. The reason
for this is that we cannot allow infinite tension energies in the
definition of the control laws. To overcome this problem, we
chose to introduce a certain degree of hysteresis into the system
through the indicator function σ. In particular, we let σ(i, j) be
given by the state machine in Fig. 2

To elaborate further on the state machine in Fig. 2, we let
the total tension energy be affected by an edge (vi, vj) that was
previously not contributing to the total energy when ‖�ij‖ ≤
(∆ − ε), where ε > 0 is the predefined switching threshold.
Once the edge is allowed to contribute to the total tension en-
ergy, it will keep doing so for all subsequent times. We note
that the switching threshold can take on any arbitrary value in
(0,∆). The interpretation is simply that a smaller ε-value cor-
responds to a faster inclusion of the inter-robot information into
the decentralized control law.

Fig. 2. Hysteresis protocol for adding interagent tension functions to the total
tension function only when agents get within a distance ∆ − ε of each other,
rather than when they first encouter each other at a distance ∆.

In other words, for the ∆-disk proximity DIGs, we propose
to let

σ(i, j)[t+] =
{

0 if σ(i, j)[t−] = 0 ∧ ‖�ij‖ > ∆ − ε
1 otherwise

f(xi − xj) =
{

0 if σ(i, j) = 0
−∂Vij (∆,x)

∂xi
otherwise

(21)

where we have used the notation σ(i, j)[t+] and σ(i, j)[t−] to
denote the value of σ(i, j) before and after the state transition
in Fig. 2. It is worth noting that if σ(i, j)[t0] = 1 for some t0,
then σ(i, j)[t0] = 1 for all t < t0.

Before we can state the rendezvous theorem for dynamic
graphs, we also need to introduce the subgraph Gσ ⊂ G, induced
by the indicator function σ

Gσ = (V (G), E(Gσ))

where

E(Gσ) = {(vi, vj) ∈ E(G)| σ(i, j) = 1}.

Theorem 4.1: Given an initial position x0 ∈ Dε
g0,∆, where

ε > 0 is the switching threshold in (21), and G0 is the initial ∆-
disk DIG. Assume that the graph G0

σ is connected, where G0
σ is

the graph induced by the initial indicator function value. Then,
by using the control law

ui = −
∑

j∈Nσ (i)

∂Vij(∆, x)
∂xi

(22)

where σ(i, j) is given in (21), the group of agents asymptotically
converges to span{1}.

Proof: Since, from Lemma 3.1, we know that no edges in
G0

σ will be lost, only two possibilities remain, i.e., that no new
edges will be added to the graph during the maneuver, or new
edges will in fact be added. If no edges are added, then we know
from Theorem 3.2 that the system will converge to span{1}
asymptotically. However, the only graph consistent with x ∈
span{1} is G0

σ = KN (the complete graph over N nodes), and
hence, no new edges will be added only if the initial, indicator-
induced graph is complete. If it is not complete, at least one
new edge will be added. But, since G0

σ is an arbitrary connected
graph, and connectivity can never be lost by adding new edges,
we obtain that new edges will be added until the indicator-
induced graph is complete, at which point the system converges
asymptotically to span{1}. �
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V. FORMATION CONTROL

In the previous sections, it was shown that the connectedness-
preserving control method solves the rendezvous problem. In
this section, we will follow the same methodology to solve the
distributed formation control problem.

A. Graph Formation

By formation control, we understand the problem of driving
the collection of mobile agents to some translationally invariant
target geometry, i.e., the control objective is to drive the col-
lection of autonomous mobile agents to a specific configuration
such that their relative positions satisfy some desired topologi-
cal and physical constraints. These constraints can be described
by a connected edge-labeled graph Gd = (V,Ed, d), where the
subscript d denotes “desired.” Here, Ed encodes the desired
robot interconnections, i.e., whether or not a desired interagent
distance is specified between two agents or not, and the edge-
labels d : Ed → R

n defines the desired relative interagent dis-
placements, with ‖dij‖ > ∆ for all i, j such that (vi, vj) ∈ Ed.
In other words, what we would like is that xi − xj → dij ,∀i, j
such that (vi, vj) ∈ Ed.

One may notice that it is possible that the assignment of gen-
eral edge-labels to a DIG may result in conflicting constraints.
This is addressed in [37] as the realization problem of connec-
tivity graphs. We will not discuss this problem here and simply
assume that the constraints are compatible. Another issue con-
cerning the target formation is that of rigidity, which has been
discussed in [10], [38], and [39], and will not be discussed fur-
ther in this paper. Instead, we assume that the target formation
is chosen in such a way that rigidity is obtained if, in fact, this is
a desired characteristic of the target formation graph-topology.

Given a desired formation, the goal of the distributed forma-
tion control is to find a feedback law such that:

F1 dynamic interaction graph G(t) converges to a graph
that is a supergraph of the desired graph Gd (without
labels) in finite time. In other words, what we want is
that Ed ⊂ E(t) for all t ≥ T , for some finite T ≥ 0;

F2 ‖�ij(t)‖ = ‖xi(t) − xj(t)‖ converges asymptoti-
cally to ‖dij‖ for all i, j such that (vi, vj) ∈ Ed; and

F3 feedback law utilizes only local information.
Here, “F” stands for “formation” and it will be established

that these properties hold for a particular choice of decentralized
control law.

B. Graph-Based Formation Control

Analogous to the treatment of the rendezvous problem, we
first propose a solution to the formation control problem, and
then show that this solution does, in fact, preserve connectedness
as well as guarantee convergence in the sense of F1 and F2
above. The solution will be based on a variation of the previously
derived rendezvous controller. In fact, assume that we have
established a set of arbitrary targets τi ∈ R

n that are consistent
with the desired interagent displacement

dij = τi − τj , ∀i, j

such that

(vi, vj) ∈ Ed.

We can then define the displacement from τi at time t as

yi(t) = xi(t) − τi.

We let �ij(t) = xi(t) − xj(t) and λij(t) = yi(t) − yj(t), im-
plying that

λij(t) = �ij(t) − dij .

Now, under the assumption that Gd is a connected spanning
graph of the initial interaction graph, G i.e., V (Gd) = V (G) and
Ed ⊆ E(G), we propose the following control law:

ẋi = −
∑

j∈NGd
(i)

2(∆ − ‖dij‖) − ‖�ij − dij‖
(∆ − ‖dij‖ − ‖�ij − dij‖)2

(xi − xj − dij).

(23)
The reason why this seemingly odd choice makes sense is

because we can again use the edge-tension functionV to describe
this control law. In particular, using the following parameters in
the edge-tension function

Vij(∆ − ‖dij‖, y) =

{
‖λij ‖2

∆−‖dij ‖−‖λij ‖
, if (vi, vj) ∈ Ed

0, otherwise

(24)

we obtain the decentralized control law

σ(i, j) = 1 f(xi − xj) = −∂Vij(∆ − ‖dij‖, y)
∂yi

,

∀(vi, vj) ∈ Ed. (25)

Note that this control law, in fact, implies something stronger
than just measurements of displacement. Instead, the agents
must also share a common coordinate system. However, they do
not need to know their exact location in this coordinate system.

Now, along each individual dimension, the dynamics in (25)
becomes

dc(x, j)
dt

=
dc(y, j)

dt

= −LW(∆ − ‖d‖, y)c(y, j), j = 1, 2, . . . n

where LW (∆ − ‖d‖, y) is the graph Laplacian associated with
Gd, weighted by W(∆ − ‖d‖, y), and where we have used the
convention that the term ∆ − ‖d‖ should be interpreted as

W(∆ − ‖d‖, y) = diag(wk(∆ − ‖dk‖, y)), k ∈ {1, |Ed|}

wk(∆,−‖dk‖, y) =
2(∆ − ‖dk‖) − ‖λk‖
(∆ − ‖dk‖ − ‖λk‖)2

). (26)

Here again, the index k runs over the edge set Ed. This con-
struction allows us to study the evolution of yi, rather than
xi, i = 1, . . . , N , and we formalize this in the following lemma
for static interaction graphs.

Corollary 5.1: Let the total tension energy function be

V(δ − ‖d‖, y) =
1
2

N∑
i=1

N∑
j=1

Vij(∆ − ‖dij‖, y). (27)
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Fig. 3. State machine describing how the system undergoes transitions from
rendezvous (collection of the agents to a tight complete graph) to formation
control.

Given y0 ∈ Dε
Gd ,∆−‖d‖, with Gd being a connected spanning

graph, then the set Ω(∆ − ‖d‖, y0) := {y|V(δ − ‖d‖, y) ≤
V0}, where V0 denotes the initial value of the total tension
energy function, is an invariant set under the control law in (23),
under the assumption that the interaction graph is static.

Proof: By the proposed control law in (23),

ẏi = −
∑

j∈NGd
(i)

∂Vij(∆ − ‖dij‖, y)
∂yi

= −∂V(∆ − ‖d‖, y)
∂yi

= −∇yi
V(δ − ‖d‖, y).

The nonpositivity of V̇ now follows the same argument as in
(18) in the proof of Lemma 3.1. Moreover, for each initial
y0 ∈ Dε

Gd ,∆−‖d‖, the corresponding maximal total tension en-
ergy induces a maximal possible edge length. Following the
same line of reasoning as in the proof of Lemma 3.1, the invari-
ance of Ω(∆ − ‖d‖, y0) thus follows.

It is to be noted that Lemma 5.1 says that if we could use
Gd as an SIG, Ω(∆ − ‖d‖, y0) is an invariant set. In fact, it is
straightforward to show that if Gd is a spanning graph to the
initial proximity ∆-disk DIG, then it remains a spanning graph
to G(x(t))∀t ≥ 0.

Corollary 5.2: Given an initial condition x0 such that y0 =
(x0 − τ0) ∈ Dε

Gd ,∆−‖d‖, with Gd being a connected spanning
graph of G(x0), the group of autonomous mobile agents adopt-
ing the decentralized control law in (23) can guarantee that
‖xi(t) − xj(t)‖ = ‖Lij(t)‖ < ∆,∀t > 0 and (vi, vj) ∈ Ed.

Proof: Given two agents i, j that are adjacent in Gd, and
suppose that ‖λij‖ = ‖yi − yj‖ approaches ∆ − ‖dij‖. Since
Vij ≥ 0,∀i, j and t > 0, as well as

lim
‖λij ‖↑(∆−‖dij ‖)

Vij = ∞

this would imply that V → ∞, which contradicts Lemma 5.1.
As a consequence, ‖λij‖ is bounded away from ∆ − ‖dij‖. This

means that

‖�ij‖=‖λij +dij‖≤‖λij‖+‖dij‖<∆−‖dij‖+‖dij‖=∆

and hence, edges in Ed are never lost under the control law
in (2.3). In other words, ‖Lij(t)‖ < ∆,∀t ≥ 0, which in turn
implies that connectedness is preserved. �

We have, thus, established that if Gd is a spanning graph
of G(x0), then it remains a spanning graph of G(x(t)),∀t > 0
(under certain assumptions on x0), even if G(x(t)) is given by
a ∆-disk DIG. And, since the control law in (23) only takes
pairwise interactions in Ed into account, we can view this dy-
namic situation as a static situation, with the SIG being given
by Gd. It still remains to be shown that the system in fact con-
verges in the sense of the formation control properties F1, F2,
and F3, as previously defined. That F3 (decentralized control) is
satisfied follows trivially from the definition of the control law
in (23). Moreover, we have already established that F1 (finite
time convergence to the appropriate graph) holds trivially as
long as it holds initially, and what remains to be shown here
is that we can drive the system in finite time to a configuration
in which F1 holds, after which Lemma 5.2 applies. Moreover,
we need to establish that the inter-robot displacements (defined
for edges in Ed) converge asymptotically to the desired relative
displacements (F3), which is the topic of the next theorem.

Theorem 5.3: Under the same assumptions as in Lemma
5.2 ‖�ij(t)‖ = ‖xi(t)‖ − ‖xj(t)‖ converges asymptotically to
‖dij‖ for all i, j such that (vi, vj) ∈ Ed.

Proof: Based on the observation that Gd remains a spanning
graph to the DIG, together with the observation that

dc(y, j)
dt

= −LW (∆ − ‖d‖, y)c(y, j), j = 1, 2, . . . n,

Theorem 3.2 ensures that c(y, j) will converge to span{1},∀j ∈
{1, . . . , n}. This implies that all displacements must be the
same, i.e., that yi = ζ,∀i ∈ {1, . . . , N} for some constant
ζ ∈ R

n. But, this simply means that the system converges
asymptotically to a fixed translation away from the target points
τi, i = 1, . . . , N , as

lim
t→∞

yi(t) = lim
t→∞

(
xi(t) − τi

)
= ζ, i = 1, . . . , N

which, in turn, implies that

lim
t→∞

�ij(t) = lim
t→∞

(
(
¯
xi(t) − xj(t)

)
= lim

t→∞
(yi(t) + τi − yj(t) − τj)

= ζ + τi − ζ − τj = dij ∀i, j

such that(vi, vj) ∈ Ed, which completes the proof. �

C. Hybrid, Rendezvous-To-Formation Control Strategies

The last property that must be established is that it is possible
to satisfy F1, i.e., that the initial ∆-disk proximity DIG does,
in fact, converge to a graph that has Gd as a spanning graph
in finite time. If this was achieved, then Theorem 5.3 would
be applicable and F2 (asymptotic convergence to the correct
interagent displacements) would follow. To achieve this, we
propose to use the rendezvous control law developed in Section
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Fig. 4. Progression where connectedness is maintained during the rendezvous maneuver, with D = I . Positions of the agents and the edges in the DIG as a
function of time are depicted.

V-B for gathering all agents into a complete graph, of which
any desired graph is a subgraph. Moreover, we need to achieve
this in such a manner that the assumptions in Theorem 5.3 are
satisfied.

Let KN denote the complete graph over N agents. Moreover,
we will use Kε

N to denote the situation in which the ε-disk
proximity graph is in fact a complete graph, i.e., a DIG that is a
complete graph in which no interagent distances are greater than
ε. This notation is slightly incorrect in that graphs are inherently
combinatorial objects, while interagent distances are geometric,
and, to be more precise, we will use the notation G = Kε

N to
denote the fact that{

G = KN

‖�ij‖ ≤ ε, ∀(i, j), i �= j.

The reason for this construction is that, in order for Theo-
rem 5.3 to be applicable, the initial condition has to satisfy
y0 = (x0 − τ0) ∈ Dε

Gd ,∆−‖d‖, which is ensured by making ε
small enough. Moreover, since the rendezvous controller in (22)
asymptotically achieves rendezvous, it will consequently drive
the system to Kε

N in finite time, for all ε bounded below by 0
and above by ∆.

After Kε
N is achieved, the controller switches to the controller

in (23), as depicted in Fig. 3. However, this hybrid control strat-
egy is only viable if the condition that G = Kε

N is locally veri-
fiable in the sense that the agents can decide for themselves that
a synchronous mode switch is triggered [35]. In fact, if an agent

has N − 1 neighbors, i.e., degree N − 1, all of which are within
a distance ε/2, this implies that the maximal separation between
two of those neighbors is ε. (This occurs when the agents are
polar opposites on an n-sphere of radius ε/2.) Hence, when one
agent detects this condition, it will trigger a switching signal (in-
volving a 1-bit broadcast communication to all its neighbors),
and the transition in Fig. 3 occurs. It is to be noted that first,
this argument hinges on the fact that the total number of agents
N is known to each agent. This could arguably be a concern
for graphs with time-varying node sets. Second, transition in
Fig. 3 might actually not occur at the exact moment when G
becomes Kε

N , but rather at a later point. Regardless of the kind
of transition, we know that this transition will, in fact, occur in
finite time in such a way that the initial condition assumptions
of Theorem 5.3 are satisfied.

VI. EXAMPLES

In this section, we will show some simulation results that
illustrate the proposed coordination control strategies for differ-
ent problems. In all of these simulations, the cutoff distance for
interagent sensing and communication is ∆ = 4, and the switch-
ing threshold dictating when to add edges is ε = 0.05, i.e., a new
edge is added only when the corresponding interagent distance
is ∆ − ε.

The first two simulations show the rendezvous behavior
under slightly different control laws. In fact, Fig. 4 shows
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Fig. 5. Evolution of the formation process. The last graph shows the trajectory of the formation process from t = 0 s to t = 0.5 s, starting from 1, 2, 3, 4, 5 and
ending at 1’, 2’, 3’, 4’, 5’.

the movement of the collection of agents under the weighted
Laplacian control law given in (22), under exactly the same
initial position as in Fig. 1. What is different here is, as could
be expected, that no links are broken.

The third simulation highlights the proposed formation con-
trol strategy, and is implemented based on the formation control
law in (23). In the simulation, five agents starting from a straight
line are to form a pentagonal formation, with Gd = C5 (the
cyclic graph with 5 nodes), and the desired interagent distances
being ‖dij‖ = 3.2 for all (vi, vj) ∈ Ed. The movement of the
group during the first 0.5 s and the trajectories corresponding to
the same time period are shown in Fig. 5.

VII. CONCLUSION

In this paper, a collection of graph-based nonlinear feedback
control laws are studied for distributed multiagent systems. The
nonlinear feedback laws are based on weighted graph Laplacians
and they are proved to be able to solve the rendezvous and
formation-control problems while ensuring connectedness.
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