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ABSTRACT

We consider the problem of coordinating a team of agents
engaged in executing a set of inter-dependent, geographically
dispersed tasks in an oversubscribed and uncertain environ-
ment. In such domains, where there are sequence-dependent
setup activities (e.g., travel), we argue that there is inher-
ent leverage to having agents maintain advance schedules.
In the distributed problem solving setting we consider, each
agent begins with a task itinerary, and, as execution un-
folds and dynamics ensue (e.g., tasks fail, new tasks are dis-
covered, etc.), agents must coordinate to extend and revise
their plans accordingly. The team objective is to maximize
the utility accrued from executed actions over a given time
horizon. Our approach to solving this problem is based on
distributed management of agent schedules. We describe an
agent architecture that uses the synergy between intra-agent
scheduling and inter-agent coordination to promote task al-
location decisions that minimize travel time and maximize
time available for utility-acrruing activities. Experimental
results are presented that compare our agent’s performance
to that of an agent using an intelligent dispatching strategy
previously shown to outperform our approach on synthetic,
stateless, utility maximization problems. Across a range of
problems involving a mix of situated and non-situated tasks
our advance scheduling approach dominates this same dis-
patch strategy. Finally, we report performance results with
an extension of the system on a limited set of field test ex-
periments.
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1. INTRODUCTION
In many practical domains, a team of agents is faced with

the problem of carrying out geographically dispersed tasks
under evolving execution circumstances in a manner that
maximizes global payoff. Consider the situation following
a natural disaster such as an earthquake or hurricane in a
remote region. A recovery team is charged with surveying
various sites, rescuing injured, determining what damage
there is to the infrastructure (power, gas, water) and effect-
ing repairs. The tasks that must be performed entail various
dependencies; some rescues cannot be safely completed un-
til infrastructure is stabilized, certain repairs require parts
that must be brought on site or prerequisite repairs to other
services, and some services, such as clinics for injured, are
not operational until utilities at the clinic sites are restored.
There will likely be more for the team to do than can be
achieved in the early stages of the response, necessitating
judicious ordering of tasks for each agent and consideration
of deadlines imposed by medical emergencies. Since sites are
distributed geographically, task allocation must take into ac-
count locality to minimize the time agents spend traveling
and maximize the time they spend performing disaster relief
tasks. Complicating travel between sites is the possibility of
discovering either roads that are blocked and require spe-
cialized resources to clear them, or impassable roads that
cannot be repaired within the mission time. Furthermore,
communications may have latency and periods of blackouts.

It is difficult to coordinate centrally in such environments,
given the spatially distributed nature of unfolding events,
communication limitations, and the need for each agent to
act quickly as conditions evolve. While typically each team
member has a globally constructed initial plan going into
the mission, they quickly have to coordinate among them-
selves to accommodate discoveries that require additional or
revised tasks.

In this paper, we consider this distributed coordination
problem. Our general claim is that in domains where agents
are both mobile and spatially distributed, and where sequence-
dependent setup activities such as agent travel are required
to perform target tasks, there is inherent leverage in main-
taining advance schedules and using them to drive coordi-
nation. Projection of future actions provides an explicit
basis for reasoning about the costs and benefits of differ-
ent task allocation and task ordering decisions that might
be taken by different agents, and for maximizing the time
spent by the team of agents on utility accruing tasks. We
focus specifically on the Phase 3 version of this problem de-
fined within the DARPA Coordinators program, where each



agent is given an initial schedule of tasks to perform, to-
gether with knowledge of the inter-dependencies with other
agents’ schedules and a specification of local (fall-back) task
substitution options. The overall set of target tasks is a mix-
ture of located and non-located tasks. The objective is to
maximize the cumulative utility accrued from all executed
tasks as execution unfolds in an environment where some
tasks take more or less time than expected, others fail, and
additional tasks are introduced.

Our advance distributed scheduling approach builds on
the framework initially described in [10]. An incremental,
Simple Temporal Network (STN)-based agent scheduler de-
signed to favor high utility tasks is augmented with both an
intra-agent mechanism that heuristically selects slots on the
agent’s timeline to minimize introduced travel and an inter-
agent mechanism that arbitrates which agent executes a new
task based on minimizing the team’s tour. An additional
auction-based coordination mechanism is incorporated for
synchronizing inter-dependent tasks, also in a manner that
minimizes travel.

Prior research in distributed coordination of mobile agents
via advance planning has focused primarily on domains where
goal tasks either are largely independent of one another
and decompose nicely into local traveling salesman problems
(e.g., [7]), or possess complex interdependencies but are not
temporally constrained (e.g., [12, 11]). Other work in dis-
tributed scheduling approaches to coordination in dynamic,
uncertain domains (e.g., [5]), including prior work within the
Coordinators program [10], has focused on synthetic, state-
less domains in which tasks can be executed without delay
by qualified agents any time after specified enabling tasks
have been executed. In fact, in this problem setting it was
recently shown that a dynamic dispatching strategy, based
on distributed estimation of the relative criticality of vari-
ous pending tasks and use of simple policies like keeping an
agent busy whenever possible, significantly outperformed an
advance scheduling approach. [8]. However, as we will show
in this paper, these comparative results between dynamic
dispatch and advance scheduling are reversed when tasks
are spatially dispersed in the world and the cost of travel
must be considered.

The remainder of the paper is organized as follows. We
first specify the distributed coordination setting that we con-
sider more precisely. We then summarize the agent architec-
ture and principal underlying scheduling and coordination
mechanisms that we have developed to solve this class of
problem. We next present the results of an extensive com-
parative performance evaluation of our approach and the
above mentioned dispatch strategy across a range of prob-
lem scenarios requiring the execution of tasks at different
specified locations. We then briefly describe extensions to
allow application of our agent to a disaster response field test
exercise, and report results obtained in this experiment. We
conclude with a discussion of current research directions.

2. PROBLEM SETTING
As indicated above, we focus on solving the distributed

coordination problem defined for Phase 3 of the DARPA
Coordinators program. In this setting, it is assumed that
no agent has a global view of the overall problem and so-
lution. Instead each agent is given a local subjective view,
which encapsulates the portion of the overall team plan that
it is responsible for executing (including those tasks that are
not in the agent’s initial schedule but could potentially be

executed by the agent) and the set of remote tasks (i.e.,
owned by other agents) that have inter-dependent relation-
ships with local tasks. Any task can be constrained to occur
at a specific location; this introduces the need to reason
about agent travel. Agents accrue quality when a task is
successfully executed, and the objective is to maximize the
cumulative quality accumulated by all agents over the course
of a fixed mission duration. An agent can execute only one
activity at a time and can communicate at any time with
any other agent. A multi-agent simulation system (called
MASS) is used to provide the uncertain execution environ-
ment and an infrastructure for evaluation.1

Problem scenarios and initial agent plans are specified
using an extended version of C TAEMS [1], which is it-
self a variation of the original TAEMS (Task Analysis, En-
vironment Modeling and Simulation) framework [4]. The
C TAEMS language is essentially a fully expanded, Hier-
archical Task Network (HTN) representation of the over-
all team mission. Primitive tasks (also refered to as meth-
ods or activities) are tasks that are executable by a spe-
cific designated agent (owner), and include specification of
probability distributions for duration, quality, and failure
likelihood. Higher-level tasks aggregate more detailed pro-
cesses and alternatives, and a rich set of quality accumula-
tion functions (QAFs) is provided for specifying how suc-
cessfully completed subtasks combine to contribute to the
quality of parent tasks. Release and deadline constraints
can be associated with any task in the hierarchy and inter-
dependencies between tasks are specified as non-local effects
(NLEs). NLEs can include hard constraints such as enabling
and disabling precedence constraints between activities in
the HTN and soft constraints that specify a facilitating or
hindering relationship between two activities when they ex-
ecute in a specific order. A more complete summary of these
language features is presented in [10].

For Phase 3 problem definition, the C TAEMS language
was extended to provide constructs for specifying located
activities and movement of agents. Locations are defined by
associating a label with a unique pair of latitude and longi-
tude values. An activity with a designated location carries
the semantics that the executing agent must be located at
this location for the activity’s entire duration for the spec-
ified quality to be accrued. The route network is specified
through special movement template forms that provide a
basis for instantiating agent movement activities between
two locations. Each movement template specifies the dura-
tion for a movement between the two designated locations.
Movement activities accrue no quality when executed; they
are inserted into an agent’s schedule to relocate the agent
from one declared domain location to another.

3. BASIC AGENT ARCHITECTURE
Our approach to maintaining advance schedules is based

on the agent architecture originally described in [10], which
is depicted schematically in Figure 1. In its most basic form,
an agent comprises four principal components - an Execu-
tor, a Scheduler, a Distributed State Manager (DSM), and
an Options Manager - all of which share a common model of
the current problem task structure and solution state. This
common model couples a domain-level representation of the
agent’s local (subjective) view of the overall team mission

1Coordinators Phase 3 also included an extended field test
exercise, based on a disaster rescue scenario, that will be
discussed in Section 6.
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(encoded as a CTAEMS task structure) to an underlying
Simple Temporal Network (STN) [3]. The STN includes
time points corresponding to the start and end of each task
in an agent’s task hierarchy, along with special time points
representing the time origin and the current time. Various
temporal constraints corresponding to task durations, re-
lease times, deadlines and causal dependencies are encoded
in the STN as distance constraints. Scheduling decisions are
implemented by posting additional precedence constraints in
the STN between the set of activities currently selected for
execution. These precedence constraints specify the agent’s
current schedule (or timeline).

At any point during operation, the currently installed
schedule dictates the timing and sequence of domain-level
activities that will be initiated by the agent, and the execu-
tion flexibility provided by the STN serves as a basic hedge
against durational uncertainty. The Executor, running in its
own thread, continually monitors the enabling conditions of
various pending activities and activates the next pending
activity as soon as all of its causal and temporal constraints
are satisfied. The other three components run on a sepa-
rate thread in a blackboard-based control regime and have
responsibility for coordinating with other agents and man-
aging the current schedule over time.

When execution results are received back from the envi-
ronment (shown in Figure 1 as the MASS simulator) and/or
changes to assumed external constraints are received from
other agents, the agent’s model of current state is updated.
An incremental propagator based on [2] is used to infer con-
sequences within the STN. If an update leads to inconsis-
tency in the STN or it is otherwise recognized that the local
schedule might now be improved, the Scheduler is invoked
to revise the current solution and install a new schedule. To
manage detected STN conflicts that are due simply to the
asynchrony and potential latency of inter-agent communica-
tion, a domain-level interpretation of each conflict is used to
determine which constraints to retract or temporarily sus-
pend to allow the agent scheduler to continue (for details, see
[6]). Whenever the agent’s local schedule changes, either in
response to a current state update or through manipulation
by the Scheduler, the DSM is invoked to communicate these
changes to those agents that share dependencies and have
overlapping subjective views. After responding locally to
a given state update and communicating consequences, the

agent will use any remaining computation time to explore
possibilities for improvement through joint schedule change
or extension. The Options Manager utilizes the Scheduler
(in this case in hypothetical mode) to generate one or more
non-local options, i.e., identifying changes or extensions to
the schedule of one or more other agents that will enable the
local agent to raise the quality of its schedule. These options
are formulated and communicated as queries to the appro-
priate remote agents, who in turn hypothetically evaluate
the impact of proposed changes from their local perspec-
tive. In those cases where global improvement is verified,
the agents commit to the joint changes.

4. PLANNING WITH LOCATED ACTIVITIES
In this section, we describe the mechanics of the schedul-

ing and coordination components developed to cope with the
execution of geographically dispersed tasks. Since tasks are
physically situated and it takes time to travel between task
locations, the agent’s scheduling and coordination mecha-
nisms are designed to minimize travel time where possible,
and hence maximize the time spent on value accruing tasks.

4.1 Managing Local Schedules
The Scheduler consists of two basic components: a quality

propagator and an activity allocator that work in a tightly
integrated loop. The quality propagator analyzes the task
hierarchy and collects a set of activities that (if scheduled)
would maximize the quality of the agent’s local problem.
The activities are collected without regard for resource con-
tention; in essence, the quality propagator optimally solves
a relaxed problem where agents are capable of performing
multiple activities at once. The allocator selects activities
from this list in decreasing order of expected quality gain
and attempts to insert each activity together with any ad-
ditional enabling activities into the agent’s schedule (also
referred to as scheduling the activity). If the allocator fails
in this attempt, the quality propagator is reinvoked with the
problematic activity excluded.

When scheduling situated activities, travel between differ-
ent activity locations must also be inserted into the agent’s
timeline. Since no quality is accrued for travel activities,
the activity allocator is designed to minimize the time spent
traveling in the interest of leaving more time available for
quality accruing activities. This section describes the mech-
anisms used to determine where on the agent’s timeline to
insert a new located activity to meet this objective.

In general, the agent’s schedule (or timeline) can contain
both located activities and non-located activities (i.e., those
that can be executed at any location). Between any two lo-
cated activities A1 and A2 on the timeline, any number of
non-located activities might be scheduled. The travel activ-
ities scheduled for moving from A1 to A2 do not necessarily
have to appear adjacent to A1 or A2; when non-located
activities are scheduled between A1 and A2, travel can be
scheduled before or after any of these non-located activities.

When scheduling an activity A, a sub-interval on the agent’s
timeline (called a slot) that is within A’s specified time win-
dow and large enough to be feasible is sought. Scheduling
a non-located activity requires no changes to the travel ac-
tivities that are already scheduled and on the timeline. In
contrast, scheduling a located activity A will always require
some deletion and insertion of existing travel activities, un-
less the slot found for A is situated between two located
activities that have the same location as A.



Figure 2: Slot selection: checking slot feasibility to insert activity A situated at W1 between A1 at Site1
and A2 at Site2. Delta travel added to the timeline if the slot is feasible is: dur(Site1, W1) + dur(W1, Site2) −
dur(Site1, Site2), where dur(X, Y ) represents the duration of travel between sites X and Y . The < 0,∞ > arcs

in the figure are precedence constraints. Right figure depicts the associated geographical layout.

The search for candidate slots for a located activity A
proceeds forward in time over the agent’s timeline. On
each iteration the subsequence bounded by the next pair
of consecutive located activities, A1 and A2, is examined.
Specifically, the travel activities within this subsequence are
temporarily unscheduled, and checks are performed to de-
termine if A can be feasibly inserted into any slot between
A1 and A2 (if there are no non-located activities scheduled
between A1 and A2, there is only one possibility). If a fea-
sible slot is found between A1 and A2, the additional travel
time that would be incurred if A were inserted in this slot
is recorded. This quantity, referred to as the travel delta
(△tr), reflects the difference between the duration of the
new travel to be inserted on the timeline and the duration
of the travel activities that were temporarily unscheduled.
After checking all possible slots between A1 and A2, the
original travel between these two activities is restored and
the search continues with the next pair of located activities.
After considering all subsequences that contain possible slots
within A’s time window, the slot with the smallest △tr is
chosen for the insertion.

The check for feasibility of a given slot between two lo-
cated activities A1 and A2 is complicated by the need to
account for travel: there must be sufficient time available
not only to perform A but also to travel from A1’s location
to A’s and then on to A2’s. To confirm feasibility, an at-
tempt is made to post two new sequencing constraints in
the underlying STN, reflecting the required travel duration
associated with each travel leg. If both constraints can be
successfully posted, the slot in question is feasible. In the
simplest case where there is only a single slot between A1
and A2, the constraints are linked directly to these two ac-
tivities (see Figure 2). However, determination of the prede-
cessor and successor activities for these constraints is more
complex when there are intervening, non-located activities.
In this case, a search is conducted through consecutive ac-
tivity pairs from A1 to A and from A to A2 (with A inserted
in the slot being evaluated). The search is terminated either
when both constraints are successfully posted (in which case
feasibility has been confirmed) or there are no more activity
pairs to be checked (in which case the slot is not viable).
Once determination has been made, any temporarily posted
constraints are retracted.

When unscheduling a located activity A, the timeline is
modified in an inverse fashion. Travel activities to and from

A are unscheduled and direct travel between newly adjacent
located activities is substituted.

A special heuristic is utilized to handle the scheduling
of located activities with enabling interdependencies, where
the enabled activity can only be started after the enabling
activity has been successfully completed. For such pairs of
activities, selection of slots that minimize △tr independently
(as described above) is myopic and can result in suboptimal
solutions. Consider again the sequence of scheduled activ-
ities from Figure 2. Suppose that A enables an activity to
be executed at location D (e.g., the agent needs to pick up
a patient at location W1 and drop her at the hospital at
location D). Also, suppose that △tr when traveling from
Site1 to W1 and then to Site2 is shorter than the △tr
when going from Site2 to W1 and then to Site3. Mini-
mizing △tr to insert A independently misses the fact that
the latter sequence of travel (from Site2 to W1 and then to
Site3) becomes advantageous if the agent needs to execute
another activity (drop the patient at site D) on its way from
W1 to Site3. Accordingly, in the case of located activities
with enabling interdependencies, the heuristic searches si-
multaneously over all sets of feasible slot assignments and
minimizes the joint △tr.

4.2 Arbitrating Task Assignments
While the above scheduling mechanism serves to mini-

mize travel on an agent’s timeline, it does not address the
coordination issue of deciding which agent or agents should
execute a task in the case where a task may be done by
different subsets of agents. For example, in the natural dis-
aster domain, suppose that three different agents can repair
a power failure at a site. The challenge is in deciding which
of these agents should actually attempt the repair. Exclud-
ing the need for redundancy, the goal in this case is to select
the single agent that is the least constrained by scheduling
the task and yields the most quality. The C-Node Schedul-
ing coordination mechanism solves this problem by having
all agents use the shared policy of first locally scheduling
themselves for the task and then collectively selecting the
one that maximizes a domain-specific objective function.

In C-Node Scheduling, a task that can be done by differ-
ent subsets of agents is called a C-Node and is represented
as a supertask with its children primitive tasks being each
agent’s copy of that task. When a C-Node warrants schedul-
ing, i.e., is brought up by the quality propagator, each agent



that owns a child of the C-Node, i.e., can execute it, sched-
ules its best option, where best is determined by a given
objective function. Those scheduling decisions along with
their corresponding metrics necessary for computing the ob-
jective function value of those decisions are shared among
the agents through the DSM. Each agent then computes
the best overall child and unschedules its own child if it
is not the winner.2 In the case of non-located activities,
the objective function is simply the quality earned, mean-
ing the agent that schedules the highest quality activity is
selected. For located activities, the objective function has
to balance △tr and quality. For example, if executing the
highest quality child requires substantial travel, it might be
better to forgo that one in favor of one with slightly less qual-
ity but significantly reduced travel, i.e., leaving more room
on the timelines for other quality-accruing activities. The
objective function for located activities combines △tr and
quality by using domain-specific equivalency classes among
quality ranges, such that qualities that differ within a certain
amount are considered equal and △tr becomes the differen-
tiator. Included in these objective functions are a series of
tie breaking criteria used to guarantee a unique winner for
any C-node competition. Figure 3 shows a C-Node Schedul-
ing example where two agents can do the same repair task
but only one is required.
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Figure 3: C-Node Scheduling Example

Safeguards are introduced to prevent a couple of delete-
rious effects that can result from C-Node Scheduling being
repeatedly invoked through multiple reschedulings as exe-
cution unfolds. The first effect occurs when an agent be-
gins traveling towards a located activity. It is possible that,
while that agent is traveling to the location of the activity, it
might lose the C-Node and then travel to the location for no
purpose. To avoid this spurious travel, C-Node Scheduling
immediately locks the winner of the C-Node once an agent

2We refer to the agent that owns the child that is selected
to be scheduled as the winner of the C-Node.

commences its travel to the location of the C-Node.
The second detrimental effect occurs when, due to par-

ticular states on the timelines of different agents, cycling
behavior can occur in C-Node Scheduling. This cycling hap-
pens, in part, due to the use of an STN. Since reservations
are not locked on the timeline, it is possible for a scheduled
activity to move later on the timeline when another activ-
ity is scheduled as long as no hard constraints are violated.
If the activity slides later, the agent may lose the C-Node
due to one of the tie breakers being the earliest start time
of the scheduled task. But, unscheduling the activity frees
up room on the timeline, allowing the task to once again
be scheduled at the earlier time. This cycle will continue
until one of the agents actually starts executing either the
travel to the activity or the activity itself. To suppress this
effect, we imposed a limit on how often an agent can lose
to another agent for a specific C-Node before it no longer
competes. Since new opportunities may arise over execu-
tion, periodically the limits are cleared, so that the C-Node
Scheduling can search the full space, again.

4.3 Synchronizing Tasks of Multiple Agents
One particularly difficult coordination element is synchro-

nizing agents to start interdependent activities within some
acceptable time delta. For example, consider again the nat-
ural disaster domain in which a repair for a power utility
at a site requires two agents working in unison. If the two
agents do not work together, then quality cannot be accrued
for the overall synchronized task.

The Sync Activator mechanism achieves this coordination
using a contract-net protocol approach [9] for scheduling the
synchronization for these activities. When, in local schedul-
ing, a synchronized task is determined to be worthwhile,
the agent that is assigned the responsibility for the task,
i.e., the auctioneer, makes an announcement to all the rele-
vant agents soliciting bids from each agent that can do part
of the synchronized task. A bid summarizes the cost in
terms of quality and △tr for an agent to schedule its part of
the synchronized task within a given window of time. Each
agent generates a bid by hypothetically scheduling with the
constraints stated in the announcement and calculating the
costs from the resulting schedule. The auctioneer compares
the bids and selects the best set of bids that satisfy the con-
straints of the synchronized task. Like C-Node scheduling,
“best” is determined by a domain-specific objective function.
Once a set of bids is accepted, then the involved agents
schedule their corresponding activities, constraining them
such that they cannot move on the timelines beyond the
acceptable start-time delta.

One issue that arises with scheduling these synchronized
activities is that constraining them on the timeline intro-
duces rigidity to the STN. In highly dynamic and uncer-
tain environments, that rigidity can affect scheduling down-
stream activities in that they have to be placed around the
synchronized activities. If execution realities differ from
scheduling assumptions, e.g., durations for activities are longer,
then the synchronized starts can fail, meaning no quality is
earned for the synchronized tasks nor for activities that do
not get scheduled due to the scheduled synchronized activ-
ities. We addressed this issue in the following two ways.
First, we limit the synchronized scheduling to only schedule
activities within a limited horizon. If the synchronized activ-
ities cannot be scheduled within that horizon, then they are
tried again in a subsequent scheduling session. Second, we



allow synchronized activities to be removed from the time-
line if execution realities make the synchronization impossi-
ble, i.e., the hard constraints of the activities are violated.
The synchronization coordination can be tried again in a
subsequent scheduling should that task still be considered
important.

5. PERFORMANCE EVALUATION

5.1 Experimental Design
A meaningful multi-agent evaluation depends heavily on

the creation of a test suite unbiased by a particular agent
design. We report here on evaluations based on a large suite
of real-time simulation problems generated and run by an
impartial third-party evaluation group. These problems,
which reflect a progression in problem scope over the life-
time of the Coordinators program, define large agent team
scenarios that feature both located and non-located tasks,
incorporate network level communication latency and reflect
a range of dynamics and inter-agent dependencies.

The need to run a statistically significant suite of tests for
each team and problem feature of interest required adop-
tion of short activity durations (5 - 15 sec) to keep overall
problem duration manageable. As a consequence, for those
problems with high levels of dynamics (e.g. modeling mis-
sions whose goals evolve significantly) mission change events
may occur at intervals on the order of a few seconds.

All evaluation problems were randomly generated using a
scenario generator that can be configured to produce prob-
lems reflecting an assortment of user-specified characteris-
tics. Evaluations were conducted in an external lab with
each agent and the MASS simulator running on dedicated
machines. Before execution begins MASS provides agents
with their local, subjective view of the problem and an ini-
tial schedule of activities that was generated by a centralized
solver with a global view of the mission. As the scenario un-
folds the agents send commands to the simulator specifying
the activities they want to initiate and the simulator sam-
ples duration and outcome quality (0 for failed activities)
from the distributions in the objective C TAEMS model.
The simulator will also send agents their subjective view of
changes to the mission at intervals specified in the objective
view but hidden from the agent teams.

The phase 3 Coordinators final evaluation was composed
of two test suites: 1) Problems designed to be small enough
to be solvable by an optimal, centralized solver and 2) A
range of much larger problems on which teams were com-
pared against each other. The evaluation team solved the
“optimal problems” using an MDP-based solver. Although
the ‘optimal’ test suite was restricted to small problems,
this assessment provided an upper bound to test the agent
systems against. In addition to the much larger scale of
the principal test suite problems, they also featured commu-
nications latency simulation and dynamics such as mission
change events that were precluded from the optimal prob-
lems. Since optimal scores are infeasible for these problems,
our agent is compared against the dispatching approach de-
veloped by the other phase 3 team, referred to as criticality-
sensitive coordination[8]. Rather than plan ahead, measures
of the criticality of various tasks eligible for execution are in-
stead computed from information that is dynamically and
continuously communicated between agents, and used to de-
cide what activity to execute next whenever the agent is idle.

The test suite problems were created in four or five classes,

Problem Description Scheduling Agent/Opt.
Class

OptSynch sync tasks, 98.5%
(32 probs) no NLE chains
OptMovement located tasks 98.1%
(32 probs) emphasize travel
OptContingency NLE targets depend 100.0%
(32 probs) on source outcome
OptBlend mix of NLE, 98.7%
(32 probs) movement, sync
Overall 98.8%

Table 1: Scheduling agent performance on optimals.

where each class was designed to reveal agent performance
on certain features of interest in the problem space. We
describe these classes in presenting evaluation results in the
next section.

5.2 Results
The four problem classes of the optimal test suite are

briefly described in Table 1. Careful reasoning about move-
ment to achieve the optimal score is mainly required in the
OptMovement class. OptSynch emphasizes simple high-level
tasks under which multiple agents must start their activities
simultaneously for the task to accrue quality. OptContin-
gency emphasizes ”contingency” structures; enables NLEs
having multiple target tasks, only one of which is enabled
based on outcome of the source-side task. OptBlend prob-
lems mix a variety of problem space features, including some
movement aspects. Our agent scored an average of 99% of
the optimal value across the 128 problems in the four cat-
egories of the test suite, easily meeting the Coordinators
program goal of 90% of optimal.

Turning now to the large scale test suite scenarios, the 158
trials fall into 5 classes as outlined in Table 2. All five cat-
egories include problem instances that pose a range of both
movement complexity challenges and induced communica-
tions latency. SmallTests features simple versions of spe-
cialized task structures for which early decisions in a task
chain can greatly reduce the quality accrued much later. The
Contingency class features much more complex versions of
the NLE outcome structures described above for the opti-
mals. RandomDynamic scenarios have a high concentration
of unexpected events and changes in mission and task con-
straints. Mixture30AG scenarios contain a blend of many
different features from the problem space, including a fair
amount of dynamics. Synchronization focuses on more com-
plex versions of the OptSynch features in which a high-level
task requires agents to synchronize the start of activities for
multiple subtasks in order to accrue task quality.

As Table 2 suggests, in an environment where agents are
both mobile and spatially distributed our advance planning
pays off in maximizing reward by minimizing travel. In all
but one problem class the scheduling approach dominates
the criticality-sensitive dispatching by an overall average of
20%. The single category for which the dispatching ap-
proach outperforms, SmallTests, is not surprising in that
the role of locations is minimal for these problems.

Recalling that problem classes include problem instances
featuring a range of both movement challenges and commu-
nications latencies, it is informative to compare performance
across these variables. Figure 4 plots the relative perfor-
mance of the two approaches as both the travel demands



Problem Description Criticality STN-Based
Class Sensitive Scheduling

Coord.

SmallTests -specialized constructs 100.0 87.7
- 33 trials minimal movement
- 22 agents
Contingency Many contingent 84.3 94.7
- 33 trials NLEs, fewer tasks
- 30 agents
Random Dynamic Many mission changes, 76.7 100.0
- 33 trials fewer NLEs
- 20 agents
Mixture30AG Blend of features 52.9 74.6
- 27 trials
- 30 agents
Synchronization Multiple sync tasks 43.1 100.0
- 32 trials Many tasks & NLEs
- 30 agents

Overall 71.4 91.4

Table 2: Comparative performance in Coordinators

Phase 3 lab evaluation. Score of approach a over n

trials is computed by 100 ×
Pn

t=1
Quality(a,t)

MaxQuality(t)
/n

Movement Complexity 
None Low Medium High 

Figure 4: Impact of communication latency.

increase due to task dispersal and communications degrade.
The problems are categorized here by the evaluation team
into one of four movement complexity classes and four dif-
ferent latency classes, ranging from no latency to 15 sec-
onds. Not surprisingly, the performance of both multi-agent
teams generally degrades as latency increases, though by
minor amounts for scenarios in which reasoning over travel
is not critical. The more interesting performance differen-
tial surfaces as the necessity to reason over travel escalates.
Here, not only does the scheduling approach dominate, but
the benefit of planning ahead is seen to increase as problems
feature a more challenging geographic task dispersal.

6. EXTENDING TO FIELD EXERCISES
A second major challenge established for Phase 3 of the

Coordinators program was to evaluate the agent in a field
test exercise, designed to resemble the disaster rescue sce-
nario outlined at the outset of this paper. Three mock disas-
ter rescue scenarios were designed over a layout of 17 phys-
ical sites in a suburban park in the Washington DC area.
Particular sites were designated as potential damage sites, a
hospital, a clinic (initially not operational) and warehouses
(containing infra-structure repair kits). In each scenario
run, a team of 8 human agents with heterogeneous capabili-
ties (e.g., gas specialist, survey specialist, ambulance, etc.),

Figure 5: The field test agent.

were charged with surveying sites, transporting discovered
casualties to operational medical facilities and fixing dis-
covered infra-structure problems. Points were accrued for
successfully resolving any discovery (i.e., casualty rescues,
restoration of services). A 90 minute time limit was im-
posed on each run, creating an oversubscribed problem and
forcing the agent teams to make choices about which tasks
to perform. Each scenario was run twice, once with a team
equipped with our ”Coordinator Agents” and once with a
second team equipped only with radios. The radio team
was allowed to coordinate through normal voice communi-
cation over the radios and to centralize planning through a
human commander, while the ”Coordinators” team was, es-
sentially, effectors, only performing tasks prescribed by our
agents. The goal was to score higher than the radio team.

Significant extensions to our agent were required to ad-
dress this field test problem. The agent’s ability to reason
with locations was augmented to handle additional aspects
of state (e.g. agent carrying state, service operating status at
sites), to make travel-efficient kit sourcing decisions, and to
track locations of repair kits. A dynamic plan instantiation
capability was developed for generating casualty transport
and service repair task structures in response to discovered
problems. A user interface was designed and implemented
for conveying current tasks to the agent’s human user, and
for accepting user observed results of executed actions. Ex-
tensive efficiency and robustness improvements were made
to the agent’s communication infra-structure to enable op-
eration with cell modems. Figure 5 shows a snapshot of the
final field test agent.

During actual field trials with our extended agent, we were
only partially successful, achieving a score that exceeded
that of the radio team in only the first of three scenarios
that were run. Key to the success of our initial run was our
ability to supply the agent with a well designed initial plan,
specified in terms of an initial itinerary for each agent and
a complex set of agent preferences and priorities with re-
spect to repair and casualty transport roles at various sites.
Exercise rules allowed us to see the scenarios 72 hours in
advance of the first run. However, due to the primitive na-
ture of available tools for specifying team strategy, all of our
effort in this 72 hour period went into the first scenario. Af-
ter the field test, comparable plans were developed for the
2nd and 3rd scenarios, and used to run repeated simulations



Scenarios Radio Agent Description
Team Team

Exercise-3 6100 6150 At field test
Exercise-5 6925 7725 Post test simulations

(ave. of 3 runs)
Exercise-6 4575 4650 Post test simulations

(ave. of 3 runs)

Table 3: Field test scenario results

.

of each of these latter two scenarios (assuming a rather ex-
treme 20% variance in task durations). In the end, we were
able to achieve a level of performance comparable to that of
the radio team (see Figure 3).

7. CONCLUSIONS AND FUTURE WORK
In this paper we have argued that, in domains where

agents are both mobile and spatially distributed and where
sequence-dependent setup activities such as agent travel are
required to perform target tasks, there is inherent leverage
in maintaining advance schedules and using them to drive
coordination. We described an approach to distributed co-
ordination of mobile agent teams based on this premise,
which couples an incremental STN-based agent scheduler
with inter-agent task allocation and synchronization mecha-
nisms that promote minimization of overall travel time, and
attempt to maximize the time that the agent team spends
executing value accruing tasks. We presented experimental
results that compared the performance of our agent with
that of an agent operating with an intelligent dispatching
strategy driven by task criticality metrics, which had pre-
viously been shown to significantly outperform an advance
scheduling approach on synthetic, stateless, quality maxi-
mization problems. Across a broad range of problems where
tasks are physically situated in the world and the cost of
agent travel must be considered, the comparative results are
reversed and our advance scheduling approach is shown to
dominate. Finally, we reported results obtained in a mock
disaster rescue field exercise to demonstrate the practical
viability of the approach.

Following the recent experience with the field test exercise,
our current research is focused in two directions. The first
concerns development of frameworks and mechanisms for
providing strategic guidance to collaborative agent teams.
In highly dynamic environments where there is considerable
latitude in potential task assignments to different agents,
and agents must react quickly to keep pace with execu-
tion, the combinatorics of the distributed search problem
can quickly lead the agent team toward subpar solutions
if not provided with appropriate global structure and con-
straints. Our vision is a high-level interface through which a
human can impart strategy and dynamically steer the agent
team. A second direction of current research is investiga-
tion of greater use of organizational structure and decision
centralization within our distributed schedule management
framework. In some sense, the goal of the Coordinators pro-
gram was to explore the limits of the extreme position where
all agents are restricted to local subjective views. However,
in many settings there is no reason not to exercise the ad-
vantage of more decision-making control.

Acknowledgements. This paper is based on work sup-
ported by the Department of Defense Advance Research
Projects Agency (DARPA) under Contract # FA8750-05-
C-0033. Any opinions findings and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of DARPA.

8. REFERENCES
[1] M. Boddy, B. Horling, J. Phelps, R. Goldman,

R. Vincent, A. Long, and R. Kohout. C taems
language specification v. 2.04, April 2007.

[2] A. Cesta and A. Oddi. Gaining efficiency and
flexibility in the simple temporal problem. In Proc.
3rd Int. Workshop on Temporal Representation and
Reasoning, Key West FL, May 1996.

[3] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence, 49:61–95, May 1991.

[4] K. Decker. TÆMS: A framework for environment
centered analysis & design of coordination
mechanisms. In G. O’Hare and N. Jennings, editors,
Foundations of Distributed Artificial Intelligence,
chapter 16, pages 429–448. Wiley Inter-Science, 1996.

[5] K. Decker and V. Lesser. Designing a family of
coordination algorithms. In Proceedings 1st
International Conference on Multi-Agent Systems,
pages 73–80, San Francisco CA, 1995.

[6] A. Gallagher and S. Smith. Recovering from
inconsistency in distributed simple temporal networks.
In Proceeding 21st International Conference of the
Florida Artificial Intelligence Research Society,
Coconut Grove, FL, May 2008.

[7] D. Goldberg, V. Cicirello, M. Dias, R. Simmons,
S. Smith, and A. Stentz. Market-based multi-robot
planning in a distributed layered architecture. In
Multi-Robot Systems: From Swarms to Intelligent
Automata- Volume 2, pages 27–38. Kluwer Academic
Publishers, 2003.

[8] R. Maheswaran and P. Szekely. Criticality metrics for
distributed plan and schedule management. In
Proceedings 18th International Joint Conference on
Automated Planning and Scheduling, Sydney
Australia, 2008.

[9] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transactions on Computers,
C-29(12):1104–1113, Dec. 1980.

[10] S. Smith, A. Gallagher, T. Zimmerman,
L. Barbulescu, and Z. Rubinstein. Distributed
management of flexible times schedules. In Proceedings
6th International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Honolulu, 2007.

[11] A. Wehowsky, S. Block, and B. Williams. Robust
distributed coordination of heterogeneous robots
through temporal plan networks. In ICAPS-05
Workshop on Multiagent Planning and Scheduling,
pages 67–72, 2005.

[12] R. Zlot and A. Stentz. Market-based multirobot
coordination for complex tasks. International Journal
of Robotics Research, 25(1):1–25, January 2006.


