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Abstract

The saliency of regions or objects in an image can

be significantly boosted if they recur in multiple images.

Leveraging this idea, cosegmentation jointly segments com-

mon regions from multiple images. In this paper, we pro-

pose CoSand, a distributed cosegmentation approach for

a highly variable large-scale image collection. The seg-

mentation task is modeled by temperature maximization on

anisotropic heat diffusion, of which the temperature max-

imization with finite K heat sources corresponds to a K-

way segmentation that maximizes the segmentation confi-

dence of every pixel in an image. We show that our method

takes advantage of a strong theoretic property in that the

temperature under linear anisotropic diffusion is a submod-

ular function; therefore, a greedy algorithm guarantees at

least a constant factor approximation to the optimal solu-

tion for temperature maximization. Our theoretic result is

successfully applied to scalable cosegmentation as well as

diversity ranking and single-image segmentation. We evalu-

ate CoSand on MSRC and ImageNet datasets, and show its

competence both in competitive performance over previous

work, and in much superior scalability.

1. Introduction

Cosegmentation refers to a procedure that simultane-

ously segments common regions from multiple images

[6, 7, 13, 15]; leveraging an intuition that the saliency of

regions or objects in an image can be significantly boosted

if they recur in multiple images. Cosegmentation has a wide

potential in web-scale applications. For example, it can

guide an interactive image editing by suggesting popular

regions in the image database [1, 13], or summarize per-

sonal photo collections by automatically segmenting highly

co-occurring object instances such as persons or dogs [7].

Despite of the promising appeal of cosegmentation, very

few algorithms are applicable to web-scale applications,

which require cosegmentation to be not only scalable but

also adaptable to heterogeneous images with high vari-

ability in content and complexity. In this paper, we ad-

dress these problems with a new cosegmentation frame-

work, which builds on a solid theoretical ground of submod-

ular optimization, and is readily applicable to large-scale

image collection with high variability. Our approach is eas-

ily parallelizable; most computations occur independently

on individual images, and then an integration step quickly

merges all outputs from individual images into a coherent

cosegmentation result. We quantitatively show that our ap-

proach outperforms state-of-the-arts methods [6, 7] on the

MSRC datasets [17]. We also evaluate the scalability of our

method on the challenging ImageNet [4]. The magnitude of

the dataset sizes in our experiments exceeds those of previ-

ous work by an order of magnitude.

The compelling performance and scalability of our ap-

proach stem from a novel optimization formulation on

the anisotropic diffusion (which inspires the name of

our algorithm, CoSand, standing for Co-Segmentation via

anisotropic diffusion). The optimization problem underly-

ing CoSand can be summarized in a single sentence as fol-

lows; Given a system under heat diffusion and finite K heat

sources, where should one place all the sources in order to

maximize the temperature of the system? In terms of image

segmentation, the optimization corresponds to finding the

K segment centers that maximize the segmentation confi-

dence of every pixel in the image1. (e.g. the ideal segmen-

tation is that every pixel has confidence one to be clustered

with one of K segment centers). This idea is extended to the

cosegmentation problem by constraining the source place-

ments in multiple images to be coupled. This diffusion the-

oretic optimization framework takes advantage of a strong

theoretical property that inspires an efficient computational

1We use the following terminological correspondences between tem-

perature maximization and image segmentation: temperature≡ segmenta-

tion confidence, heat sources≡ segment centers, conductance or diffusivity

≡ similarity between feature vectors of pixels.



algorithm. We prove in our paper that, the temperature,

which is to be optimized in our problem, is a submodular

function if the system is under linear anisotropic diffusion.

A well-known beneficial property of submodular functions

is that one can achieve at least a constant factor of the opti-

mal solution by a simple greedy algorithm, which iteratively

chooses K locations that maximize marginal temperature

gain. Such a greedy solution is particularly promising for

cosegmentation tasks on large-scale image collections.

1.1. Relations to Previous work

Submodular optimization: In recent years, submodular

optimization has emerged as a useful optimization tool in a

variety of machine learning problems such as active learn-

ing, structure learning, clustering, and ranking [8, 9]. The

submodular function is characterized as a diminishing re-

turn property that states that, the marginal gain of adding

an element to a smaller subset of S is higher than that of

adding it to a larger subset of S. Some typical submodular

functions explored in machine learning include a cut func-

tion in a graph and the entropy and the information gain of

Gaussian random variables [8].

To the best of our knowledge, our work is the first to

address submodular optimization on diffusion in physics2.

Cosegmentation: Cosegmentation is the problem of

jointly segmenting each of M images into K different re-

gions [6, 7, 11, 13, 15]. Table 1 summarizes the compar-

ison of our work and other unsupervised cosegmentation

methods. In summary, our approach is unique in terms

of M and K. Most previous work has dealt with binary

figure-ground segmentation (K=2) of small sized image

sets (mostly M=2 but M≤30 in [7]). On the other hand,

our algorithm is able to perform segmentation of a large-

scale dataset with any arbitrary K. We tested with M≥103

images in our experiments, but a more scalable setup is also

applicable. The optimization methods for cosegmentation

in most previous work, except [7], are based on the graph-

cut algorithm. Hence, it is not straightforward and efficient

for them to be extended to arbitrary K-way cuts. In theory,

the method of [7] can perform cosegmentation with K>2,

but it was not evaluated in the paper. On the other hand, our

algorithm can attain a constant factor approximation to the

optimum with any arbitrary K. The computation time is at

worst linear with K.

In addition, our approach also supports the automatic

selection of K and robustness against a wrong choice of

K. They will be presented in experiments in Section 4,

which also reveals that CoSand is compelling in segmen-

tation quality over the state-of-the-art techniques [6, 7] in

MSRC [17] and ImageNet [4] datasets.

2Diffusion is a heavily overloaded term that is used with different mean-

ings in diverse fields. Here it refers to diffusion in physics that is described

by a partial differential equation such as heat diffusion or electric current.

Work Models / Algorithms M K

Ours Diffusion/ Submodularity ≥103 Any

[7] Discriminative clustering ≤30 2

[11] MRF+ Rank-1 global / Iterative opt. ≤20 2

[6] MRF+Reward global / Graph Cuts 2 2

[13] MRF+L1 global / Trust Region GC 2 2

[15] Boykov-Jolly / Dual Decomposition 2 2

Table 1. Comparison with other unsupervised cosegmentation

methods. Models and optimization algorithms are summarized.

Let M and K denote the number of images and the number of

segments, respectively. Most previous work has mainly focused

on binary figure-ground segmentation of small-sized image sets.

Anisotropic diffusion: The heat diffusion framework

that is represented by a partial differential equation has been

a successful technique in image processing and computer

vision. Notable examples include image segmentation [18],

optical flow estimation [2], and image smoothing [16]. In

these applications, the temperature corresponds to various

objectives, which are the clustering confidence in segmen-

tation, the optical flow in motion analysis, or the RGB value

in image smoothing. In this paper, we focus on image seg-

mentation, but our optimization is also easily extendible to

those problems such as large-scale edge-preserving image

smoothing or layered motion segmentation in video.

1.2. Summary of Contributions

The main contributions of this paper are as follows:

(1) We propose a diffusion-based optimization frame-

work that is applicable to a wide range of computer vision

problems. In this paper, we show that our optimization leads

to an effective solution to diversity ranking, single-image

segmentation, and cosegmentation.

(2) We prove that the temperature of a linear anisotropic

diffusion system, which corresponds to many important ob-

jectives in computer vision tasks, including the cosegmen-

tation score concerned in this paper, is a submodular func-

tion. This is a new result that widens the applicability of

submodular optimization in computer vision research.

(3) We present CoSand, a distributed cosegmentation ex-

ploiting the submodularity of our diffusion-inspired seg-

mental objective. As compared in Table 1, our approach has

some unique benefits including compelling performance

over previous methods, superior scalability, and a desirable

ability of automatically deciding the number of segments.

2. Submodularity and Diffusion

2.1. Optimization on Anisotropic Diffusion

We begin with a general theory of anisotropic diffu-

sion [16]. Let Ω denote the domain of a system and x be

a point in Ω ∈ R
d (x ∈ Ω). Since we are usually interested

in discrete systems (e.g. images or graphs), let us assume



that Ω is a discrete set of points3. The u(x, t) is the tem-

perature at position x at time t and D(x) is a d×d positive

symmetric tensor called the diffusion tensor. The linearity

of diffusion indicates that D is not a function of u or ▽u.

The anisotropy means that the flux −D(x)▽u(x, t) and the

gradient ▽u(x, t) are not parallel in an image domain. The

diffusion equation of such a system is as follows:

∂u(x, t)

∂t
= div

`

D(x)▽u(x, t)
´

. (1)

Our optimization problem is that of maximizing the sum

of temperature of the system that is under anisotropic diffu-

sion by choosing the locations of K heat sources. Formally,

max

Z

x∈Ω

u(x, t)dx (2)

s.t.
∂u(x, t)

∂t
= div

`

D(x)▽u(x, t)
´

u(g) = 0, u(s) = 1 for s ∈ S ⊂ Ω, |S| ≤ K

where we assume that the temperature of environment (i.e.

outside of the system Ω) is zero (i.e. u(g) = 0), and the

source temperature is one at any time (i.e. u(s) = 1)4.

For physical analogy, you may imagine a metal plate in

open air, and its temperature is to be maximized with K
point heat sources. Without loss of generality, we explic-

itly decompose the heat flux at every point into two parts

- a flux within the system and a dissipation flux to out of

the system. Let z(x) be a positive scalar diffusivity to

the environment at x, and then the dissipation heat loss is

−z(x)(u(x)−u(g)). If z(x) = 0 for ∀x ∈ Ω, the system is

insulated. From now on, we assume that −D(x)▽u(x, t)
solely contributes to the diffusion within the system.

In order to efficiently solve the optimization of Eq.(2)

for arbitrary K, we first prove that the temperature under

the linear anisotropic diffusion is submodular.

Theorem 1 (Submodularity on Anisotropic Diffusion).

Suppose that the system undergoes linear anisotropic diffu-

sion. Let u(x, t;S) be the temperature at position x at time

t when identical heat sources are attached to S(⊂ Ω). Then,

the following statements hold for ∀x ∈ Ω,∀t ∈ [0,∞].

(T1) u(x, t; ∅) = 0
(T2) u(x, t;S) is nondecreasing and submodular.

Proof. The proof is shown in the supplementary material.

Let U(t;S)=
∫

x∈Ω
u(x, t;S)dx be the temperature sum of

the system at t. Intuitively, U(t,S) is also submodular since

it is the sum of submodular functions [8]. Theorem 2 below

states that a simple greedy algorithm achieves a near opti-

mal solution for the maximization of a submodular function.

3It is not difficult to obtain the corresponding results of following argu-

ments for the continuous (i.e. Ω and t: continuous) and semi-discrete (i.e.

Ω: discrete, t: continuous) cases [16].
4Here we consider only Dirichlet boundary conditions.

Theorem 2 ([12]). Let u be a submodular, nondecreasing

set function and u(∅)=0. Then, the greedy algorithm

finds a set SG such that u(SG) ≥ C·max|S|≤K u(S) where

C = (1−1/e) ≈ 0.632.

2.2. Examples: Diversity ranking and clustering

For better understanding of the above diffusion formula-

tion, let us first examine a simple case − diversity ranking in

a graph. Diversity ranking [19] aims to re-rank items to re-

duce redundancy while maintaining their centrality, which

is highly relevant to the goal of segmentation. Intuitively, in

order to maximize the temperature of the system with lim-

ited sources, the sources should be located in the center-of-

gravity regions that are densely connected to other elements

with high conductivity. Simultaneously, the sources should

be sufficiently distant from one another to have a broad and

balanced coverage of the system. In the next section, we

extend this idea into the cosegmentation problem.

Suppose the following; (1) The system Ω is a graph

G = (V, E). (2) We are interested in the steady state (i.e.

when t→∞), thus we can drop t in our notation. (3) The

diffusivity (i.e. conductance) is defined by Gaussian simi-

larity between the features of vertices:

dxy =

(

exp(−β||g(x) − g(y)||2), if (x, y) ∈ E

0 otherwise
(3)

where g(x) is the feature vector at node x ∈ V . (4) The

dissipation conductance at a vertex x is constant in time,

denoted by zx. That is, each node x is connected to an

environment node g with conductance of zx. With these

assumptions, diffusion reduces to the famous random walk

model [5] or Gaussian random fields [20]. The optimization

problem in Eq.(2) grounds to a more specific form below5:

max
X

x∈V

u(x) (4)

s.t. u(x) =
1

ax

X

(x,y)∈E

dyxu(y) for ax =
X

(x,y)∈E

dyx + zx

u(g) = 0, u(s) = 1 for s ∈ S ⊂ V, |S| ≤ K

where ax is the degree of x. In terms of random walks, the

optimization of Eq.(4) corresponds to selecting K nodes as

absorbing nodes to maximize the sum of absorbing proba-

bilities of a random walker in a given network G. In terms

of linear electric circuits, the first constraint of Eq.(4) is the

Kirchhoff equation, and the problem is locating K voltage

sources to maximize the electric potential of the circuit.

Since the objective u(x;S) is submodular, we can obtain

a near-optimal solution by a greedy algorithm, which starts

with an empty S and iteratively adds the item sk that max-

imizes the marginal temperature gain, U(Sk-1∪ {sk}) −

5Refer to [5, 18] for the derivation from Eq.(2) to Eq.(4).



Figure 1. Two toy examples of diversity ranking. The data points are randomly generated from three Gaussian distributions in (a) and three

co-centric circles in (g). In (b)-(e) and (h)-(k), the marginal temperature gain of each point U(S ∪ {x}) − U(S) is shown along z-axis.

sk(∈ S) are iteratively selected by solving Eq.(5). Once a point is selected, the marginal gains of its neighbors largely drop because they

already get high temperatures. In (f)(l),final three clusters are shown. The clustering from S will be discussed in Algorithm 1.

U(Sk-1), as shown in Eq.(5). The details of the greedy al-

gorithm will be discussed in Section 3.

sk = argmax
x∈V

U(Sk-1 ∪ {x}) − U(Sk-1) (5)

where U(Sk) =
X

x∈V

u(x;Sk)

The dissipation conductance z is a parameter to control

trade-off between centrality and diversity. With a larger z,

the heat loss to the environment is larger as well, and only

the neighbors within a shorter range of a source will get

high temperatures. Hence, a point to be closer to the already

ranked set Sk-1 is likely to be chosen as a next sk.

Fig.1 shows two toy examples of diversity ranking and

clustering. Here, the location of a point is used as the feature

g(i)=[x y]T to compute the similarity of Eq.(3). There-

fore, a closer point pair (i, j) has a larger diffusivity dij . In

the first example of three Gaussian distributions (Fig.1.(a)-

(f)), our intuition tells that the center point in the largest

blob should be selected as the first item s1, and it actually

has the highest marginal gain in Fig.1.(b). In the next itera-

tion, since the points near s1 already have high temperature,

the second choice to maximize the marginal gain should be

not only distant enough from s1 (diversity) but also densely

linked by other points with high diffusivity dij (centrality),

which is s2 in Fig.1.(c). In sum, sk is chosen as the most

central but distant enough from already selected items Sk-1.

In the second example of three co-centric circles

(Fig.1.(g)-(l)), one interesting behavior is that among the

points in each circle, the point at the opposite side of the

circle to the selected point has the highest marginal gain.

Thus, if the fourth s4 is chosen in Fig.1.(k), it is the ex-

act opposite of s3 in the circle. That is, the largest circle in

Fig.1.(l) will be divided as two exact half circles with K=4.

This algorithm may seem to be similar to the Grasshop-

per algorithm [19], a greedy algorithm for diversity ranking.

However, the objective function is different, and our main

contribution over [19] is that our method is not ad-hoc, but a

constant-factor approximation based on the submodularity.

3. Large-scale CoSegmentation

In this section, we present our scalable cosegmentation

algorithm. Bellow, we begin with the segmentation of a sin-

gle image to illustrate the basic behavior of the algorithm.

3.1. Segmentation of a Single Image

The segmentation of a single image aims to find K seg-

ment centers to maximize the sum of segmentation confi-

dence of every pixel in an image. This can be achieved via

the following procedure.

Building the intra-image graph of an image: For faster

computational speed, we first extract superpixels from an

image as shown Fig.2.(b). Any edge-preserving superpixel

methods can be applied, but TurboPixels [10] is used in

our implementation. Then we build the intra-image graph

Gi = (Vi, Ei,Di) where the vertex set Vi is the set of su-

perpixels and the edge set Ei connects all pairs of adjacent

superpixels. Let Ni denote the number of superpixels of an

image i. In each superpixel, 3-D CIE Lab color and 4-D tex-

ture features6 are extracted. The diffusivity Di is computed

by Gaussian similarity in Eq.(3) on the features of super-

pixels. The adjacency matrix Gi of Gi is a sparse Ni×Ni

matrix, in which the number of nonzero elements of each

superpixel is the same with the number of its neighbors. In

most cases, it is less than 10.

Construction of evaluation set: In the diversity rank-

ing discussed earlier, we compute the marginal gain at ev-

ery datapoint to find the maximum (Fig.1). However, this

search is inefficient since the actual distinctive regions in

6http://www.robots.ox.ac.uk/∼vgg/research/texclass/.



Figure 2. An example of segmenting a single image. (a) An input image. (b) 1000 super-pixels and colored evaluation locations L. (c)

Image segmentation with red boundaries. (d)-(g) Color-coded segmentation outputs by ranging K from 2 to 8. As K increases, the

following regions are detected in turn: {sky, tree, wall (center), roof (left), windows (left), building (left), and trash container}.

an image are usually much fewer than Ni. For example,

in Fig.2, there are a lot of sky superpixels and there is lit-

tle difference in the segmentation results no matter which

sky superpixel is chosen as a segment center. Thus, we

first run agglomerative clustering on Gi to find out the set

of evaluation points Li. (|Li| ≤ 100 in our experiments).

The marginal gain is only computed at Li. That is, seg-

ment centers are limited to be placed in a subset of Li. (i.e.

Si ⊂ Li ⊂ Vi in the third constraint of Eq.(6)). Fig.2.(b)

shows an example of Li as colored superpixels.

Basic behavior of segmentation: In summary, our seg-

mentation algorithm greedily selects the largest and most

coherent regions. As shown in Fig.2.(d), the sky is first

chosen with K=2. As K increases, the regions of the tree,

the house in the center, and the building in the left are cho-

sen in the decreasing order of their sizes and coherence in

Fig.2.(d)-(g). This desirable trend comes from the greedy

nature of our algorithm. This behavior is quite helpful for

automatic selection of K. We can keep increasing K until

the detected segment is not significant any more (i.e. tem-

perature increase by adding a new source is not significant

any more). As iteration goes, we re-use the previous results

of a lower K, which significantly reduce the computation

time (e.g. the lazy greedy approach in [9]).

3.2. Scalable Cosegmentation

The input of cosegmentation is an image set I and the

number of segments K. The optimization formulation for

cosegmentation in Eq.(6) is an extension of that of the di-

versity ranking (Eq.(4)).

max
X

i∈I

X

x∈Vi

ui(x) (6)

s.t. ui(x) =
1

ax

X

(x,y)∈Ei

dyxui(y) for ax =
X

(x,y)∈Ei

dyx + zx

ui(g) = 0, ui(sik) =
1

|N (i)|

X

j∈N (i)

f(g(sik),g(sjk))

where sik ∈ Si ⊂ Li ⊂ Vi, |Si| ≤ K, for ∀i ∈ I.

The objective in Eq.(6) is the sum of temperature (i.e.

segmentation confidence) of every image in the dataset.

Thus, it encourages each image to be segmented as K
largest and most coherent regions that are nevertheless

content-wise diverse with respect to one another. In or-

der to enforce inter-image similarity between chosen clus-

ters, the second constraint of Eq.(6) is introduced. The

f(g(sik),g(sjk)) is an increasing function of the feature

affinity between the k-th sources of an image i (sik) and an

image j (sjk). More visually similar the features of sik and

sjk are, a higher value f(g(sik),g(sjk)) has. It is intuitive

that the system temperature is linear with the source tem-

perature. (e.g. if the source temperature is halved, then the

temperatures of all points in the system are halved as well).

Hence, the second constraint pushes the k-th source place-

ment of image i to be similar to its corresponding place-

ment in other images of N (i), which is the image set of i
to be jointly cosegmented. If N (i) = I\i, then each im-

age is cosegmented with respect to all the other images in

I. Meanwhile, the affinity function f controls how strongly

the inter-image similarity is imposed. If f(g(sik),g(sjk))
is constant, the optimization of Eq.(6) reduces to indepen-

dent segmentation of each image. Otherwise, if it is a

fast increasing function, the inter-image similarity is highly

weighted. We use the Gaussian similarity in Eq.(3) for f .

Algorithm 1 presents the greedy algorithm to solve

Eq.(6). Note that Algorithm 1 is easily parallelizable. All

steps except step 5 can be computed individually in each im-

age. The computation complexity of step 5 is O(|I||N |)7.

Once we obtain K source placement Si for each im-

age, the segmentation is straightforward. Here we use the

method of [5], which is summarized in step 7-8 of Algo-

rithm 1. It first calculates (Ni−K)×K matrix X in which

X(j, k) is the probability that a random walker starting at

an unselected j-th point (i.e. xj ∈ Vi\Si) reaches the k-th

source points. Then, we cluster the superpixels that share

the same source point as the most probable destination.

Fig.3 shows an example of our cosegmentation on three

MSRC cow images with K=4. Since our algorithm can

handle arbitrary K, the brown and black cows and the river

in the first image can be detected as individual clusters.

Optimality: The constant factor approximation of our

algorithm is guaranteed if the element with the maximum

marginal gain is chosen in each round (step 5). In diversity

7 In our Matlab implementation, the main independent computation,

step 3-4, took about 2 second per image of 1,000 superpixels. Step 5 took

about 6-8 minutes for 1000 images with full dependency (i.e. |I|=1000,

|N |=999). The other steps took much less than 1 second per image.



Algorithm 1: CoSand Cosegmentation.

Input: (1) Intra-image matrix Gi for all Ii∈ I. (2) Number of

segments K. (3) Evaluation set size |L|.
Output: Cluster centers Si and segmented images for Ii∈ I.

1: foreach Ii ∈ I do Si ← ∅ end

2: foreach Ii ∈ I do Li ← AggloClust(Gi, |L|) end

while |Si| ≤ K do

foreach Ii ∈ I do

foreach lj ∈ Li do
3: Solve u = Liu where Li is the Laplacian of

Gi and u is an Ni×1 vector with the constraints

of u({Si∪ lj}) = 1 and u(g) = 0.

4: Obtain the gain ∆Ui(lj)=|u|1 (l-1 norm of u).

end

end

5: Solve the energy maximization by belief propagation

E(l)=
P

i∈I ∆Ui(li)
`

1
|N (i)|

P

j∈N (i) f(g(li),g(lj))
´

.

{s1, · · · , sI} ← argmaxl1,··· ,lI
E(l).

6: foreach Ii ∈ I do Si ← Si ∪ si end
end

foreach Ii ∈ I do
7: Compute (Ni−K)×K matrix X by solving LuX

= −BT Is where if we let Xi = Vi\Si, Lu = Li(Xi, Xi),
B = Li(Si,Xi), and Is is a K×K identity matrix.

8: A superpixel vj(∈Vi) is clustered cj= argmaxk X(j, k).

end

Figure 3. An example of cosegmentation on MSRC cow images

(M=3, K=4). (a) Input images. (b) Likelihood of each segment

from white (high) to black (low). (c) Color-coded cosegmentation

outputs. (d) The 3rd and 4th segments from input images.

ranking and single-image segmentation, we compute the ex-

act solution for this step. However, we use belief propaga-

tion, which is an approximate maximization, for a large-

scale cosegmentation with full dependency. In most cases,

this relaxed solution is good enough to obtain a high-quality

segmentation result.

A more scalable setting: In practice, a large-scale im-

age set is likely to contain various noisy information as well.

If heterogeneous images are cosegmented, then the results

would be worsen than those of individual image segmen-

tation. Thus, one can first decompose I into disjoint sets

I = I1 ∪ · · · ∪ IO so that each subset Io consists of similar

images. Then, Algorithm 1 can be applied to each Io sep-

arately. This decomposition can be done by the proposed

diversity ranking and clustering of Eq.(4) on the similarity

graph of I, which can be constructed by applying Gaussian

similarity to image descriptors (e.g. dense SIFT or GIST).

4. Experiments

We evaluate our approach with two different experi-

ments: (1) figure-ground segmentation with a pair of im-

ages (M=2 and K=2), and (2) scalability tests with a large

number of images (M∼1000). The figure-ground tests are

performed to quantitatively compare our method with other

state-of-the-art cosegmentation techniques that are only ap-

plicable in this setting. The scalability tests evaluate how

well our algorithm works with real-world data.

Our Matlab toolbox including diversity ranking, single-

image segmentation, and cosegmentation, can be found at

http://www.cs.cmu.edu/∼gunhee.

4.1. Evaluation on Figureground Cosegmentation

In the figure-ground tests, we use MSRC dataset [17],

which provides 30 pixel-wise labeled images per object.

Two recent cosegmentation methods, [6] and [7], are com-

pared using their implementation with the default parameter

setting8. We run [6], [7], and our method on randomly gen-

erated 100 pairs in each class.

Unlike the others, the method of [6] requires priori la-

bels of foreground (fg) and background (bg) RGB colors.

In order to obtain labels, we fist identify the fg and bg re-

gions of each image from the ground truth. Then, we apply

K-means to the RGB space of fg and bg pixels to compute

three cluster centers each, which are used as labels (i.e. total

6 fg and 6 bg RGB labels in each pair). These labels can be

regarded as strong supervision, but they were used because

the performance of [6] was highly sensitive to the labels.

Since our method is not designed to aim at figure-ground

segmentation, we add an additional step to generate the bi-

nary segmentation results. Our approach iteratively chooses

large and coherent regions across input images in a bottom-

up way. Thus, if the foreground object consists of several

distinct regions, it is likely to segment them into multiple

regions. For binary segmentation, we first safely coseg-

ment a pair of images with a large K (K=8 in our ex-

periments). Then, we apply Normalized cuts to the sim-

ilarity graph of eight pairs of cosegments to obtain two

balanced and discriminative partitions. We observed that

our approach showed excellent performance for detecting a

moderate number of cosegments but the final figure-ground

segmentation accuracy was dependent on this binarization.

Table 2 summarizes the segmentation accuracies on the

random test pairs of MSRC dataset. The accuracy is mea-

sured by the intersection-over-union metric that is a stan-

dard in PASCAL challenges (i.e. For each image, Ac =

8Codes are available at [6]: http://www.biostat.wisc.edu/∼vsingh/, [7]:

http://www.di.ens.fr/∼joulin/.

http://www.cs.cmu.edu/~gunhee
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). We observed that our method outperformed both

[6] and [7] in most objects of the MSRC dataset. Our algo-

rithm was also significantly faster than both competitors;

it took less than 10 seconds for a pair of images with a

[320×213] dimension, 750 superpixels, and K=8.

4.2. Evaluation on Scalable Cosegmentation

For scalability tests, we use ImageNet9 [4]. We compute

segmentation accuracies by using its bounding box anno-

tations. The bounding boxes may not be a perfect ground

truth for segmentation evaluation, but in practice it is diffi-

cult to obtain pixel-wise labels for large-scale datasets.

We compare our algorithm to MNcut [3] and the method

of [14], which are publicly available10. As a baseline, the

MNcut [3] independently segments each image with K=2

and the fg and bg are assigned so that the segmentation ac-

curacy is maximized. For [14], we apply the algorithm sev-

eral times by changing the number of topics from two to

eight, and the best results are reported. Note that most pre-

vious cosegmentation methods including [6] and [7] cannot

run well with a large number of images. ([7] reported that

their algorithm took between 4 and 9 hours for 30 images).

For ImageNet tests, we select 50 synsets that provide

bounding box labels. We randomly select up to 1000 im-

ages per synset. Since the ImageNet images are too diverse

to be jointly cosegmented at once, we first split each synset

into 100 disjoint sets I = I1 ∪ · · · ∪ I100 by our diversity

ranking and clustering. Then, our cosegmentation is sep-

arately applied into each Io. This decomposition is much

more favorable to the performance. We tested a single si-

multaneous cosegmentation with 1,000 images with full de-

pendency, but both accuracy and speed were much worse.

Fig.5.(a) shows an example of synset decomposition. A

single synset has several different aspects, which were suc-

cessfully detected by our diversity ranking and clustering.

Table 3 shows the segmentation accuracies for 13 selected

synsets. Our algorithm significantly outperformed the two

competitors by more than 10%. Our algorithm took 60-70

minutes for 1,000 images on a single machine. Note that

this computation time can be significantly reduced by par-

allelization as discussed in section 3.2.

Fig.4 and Fig.5.(b) show some examples of cosegmenta-

tion on the MSRC and ImageNet datasets. We made two in-

teresting observations here: (i) Our method can easily seg-

ment multiple instances in the images. (ii) Our algorithm is

robust against an incorrect selection of K. In the duck ex-

ample of the second column of Fig.4, the best choice of K
would be four, but a faulty guess with K=8 did little harm.

The four significant segments are successfully detected (e.g.

9http://www.image-net.org/challenges/LSVRC/2010.
10Codes are available at [3]: http://www.seas.upenn.edu/∼timothee,

[14]: http://www.cs.washington.edu/homes/bcr/projects/mult seg discovery/

Class (%) Our method Hochbaum et al.[6] Julin et al.[7]

Aeroplane 37.6 ± 10.6 25.6 ± 9.9 26.5 ± 7.9

Bike 68.4 ± 12.6 66.8 ± 13.9 58.4 ± 11.6

Bird 57.0 ± 18.2 30.4 ± 19.3 50.3 ± 19.2

Car 57.7 ± 9.4 55.8 ± 16.6 52.5 ± 13.3

Cat 73.1 ± 12.2 75.9 ± 16.9 65.6 ± 13.9

Chair 64.4 ± 12.6 62.2 ± 21.8 61.6 ± 15.4

Cow 66.1 ± 18.5 72.4 ± 11.9 67.3 ± 11.9

Dog 55.5 ± 3.9 47.7 ± 18.9 48.3 ± 22.9

Face 78.5 ± 11.4 72.1 ± 18.4 60.9 ± 12.0

Flowers 75.6 ± 2.2 70.0 ± 14.44 71.6 ± 16.4

Sheep 69.2 ± 16.6 43.7 ± 19.3 70.5 ± 16.1

Sign 68.7 ± 12.9 58.8 ± 17.9 64.1 ± 17.5

Tree 67.6 ± 1.1 60.2 ± 13.0 60.8 ± 13.1

Table 2. Accuracies of figure-ground segmentation tests for 100

random pairs of images per object from the MSRC dataset.

Class (in %) Our method MNcut [3] LDA [14]

Barn spider 48.6 ± 24.1 35.3 ± 13.0 32.4 ± 10.0

Hognose snake 55.3 ± 22.0 47.2 ± 17.0 44.7 ± 17.1

Coral 79.3 ± 20.1 66.4 ± 22.0 52.6 ± 14.7

St Bernard 68.2 ± 21.3 50.5 ± 13.7 45.7 ± 12.3

Basenji 58.8 ± 23.1 46.3 ± 15.8 42.2 ± 14.9

Tabby cat 67.2 ± 22.1 51.3 ± 16.6 49.6 ± 14.6

Jaguar 67.8 ± 21.0 50.2 ± 14.7 49.4 ± 14.5

Lion 63.6 ± 22.4 50.7 ± 17.7 47.6 ± 16.8

Starfish 50.2 ± 25.9 41.6 ± 18.7 40.1 ± 16.4

Polecat 58.3 ± 21.5 47.6 ± 15.7 44.7 ± 13.4

Badger 51.6 ± 24.6 43.0 ± 17.9 41.3 ± 16.3

Orangutan 61.3 ± 26.0 49.5 ± 19.8 48.0 ± 18.3

Guenon monkey 58.8 ± 24.8 47.8 ± 16.9 46.4 ± 16.2

Table 3. Accuracies of scalable cosegmentation tests for 13 se-

lected synsets from the ImageNet dataset.

three ducks and grass) and the other four overestimated seg-

ments were trivially selected as tiny dots.

5. Conclusion

In this paper, we proved that the temperature of the sys-

tem under linear anisotropic diffusion is submodular. Based

on this finding, we design a constant-factor greedy solution

to temperature maximization with limited sources. Our the-

oretic results were successfully applied to diversity ranking,

single-image segmentation, and scalable cosegmentation.
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Horn/Schunck: Combining Local and Global Optic Flow Meth-

ods. IJCV, 61(3):211–231, 2005. 2



Figure 4. Four cosegmentation examples on the MSRC dataset. (a) Pairs of input images. (b) Our cosegmentation results with K=8. The

cosegmented pairs are presented by the same colors. Some segments are too small to be shown. (c) Figure-ground segmentation results

that are induced from the eight pairs of cosegments.

Figure 5. Examples of scalable cosegmentation on the ImageNet dataset. (a) Decomposition of the Gorilla Synset by the proposed diversity

ranking and clustering. Three cluster centers and their three closest images are shown. (b) Examples of cosegmentation on green lizard,

siamang, ferret, and nymphalid butterfly. In each set, 20∼60 images are simultaneously cosegmented and five selected images are shown.

[3] T. Cour, F. Benezit, and J. Shi. Spectral Segmentation with Mul-

tiscale Graph Decomposition. In CVPR, 2005. 7

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Im-

ageNet: A Large-Scale Hierarchical Image Database. In CVPR,

2009. 1, 2, 7

[5] L. Grady. Random Walks for Image Segmentation. IEEE PAMI,

28:1768–1783, 2006. 3, 5

[6] D. S. Hochbaum and V. Singh. An Efficient Algorithm for Co-

segmentation. In ICCV, 2009. 1, 2, 6, 7

[7] A. Joulin, F. Bach, and J. Ponce. Discriminative Clustering for

Image co-segmentation. In CVPR, 2010. 1, 2, 6, 7

[8] A. Krause and C. Guestrin. Beyond Convexity: Submodularity

in Machine Learning. In ICML Tutorials, 2008. 2, 3

[9] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,

and N. Glance. Cost-effective Outbreak Detection in Networks.

In ACM KDD, 2007. 2, 5

[10] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson,

and K. Siddiqi. TurboPixels: Fast Superpixels Using Geometric

Flows. IEEE PAMI, 31(12):2290–2297, 2009. 4

[11] L. Mukherjee, V. Singh, and J. Peng. Scale Invariant Cosegmen-

tation for Image Groups. In CVPR, 2011. 2

[12] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis

of Approximations for Maximizing Submodular Set Functions.

Math. Prog., 14:265–294, 1978. 3

[13] C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmen-

tation of Image Pairs by Histogram Matching Incorporating a

Global Constraint into MRFs. In CVPR, 2006. 1, 2

[14] B. Russell, A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman.

Using Multiple Segmentations to Discover Objects and their Ex-

tent in Image Collections. In CVPR, 2006. 7

[15] S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation Re-

visited: Modes and Optimization. In ECCV, 2010. 1, 2

[16] J. Weickert. Anisotropic Diffusion in Image Processing. ECMI

Series, Teubner-Verlag, 1998. 2, 3

[17] J. Winn, A. Criminisi, and T. Minka. Object Categorization by

Learned Universal Visual Dictionary. In ICCV, 2005. 1, 2, 6

[18] J. Zhang, J. Zheng, and J. Cai. A Diffusion Approach to Seeded

Image Segmentation. In CVPR, 2010. 2, 3

[19] X. Zhu, A. B.Goldberg, J. V. Gael, and D. Andrzejewski. Im-

proving Diversity in Ranking using Absorbing Random Walks.

In HLT-NAACL, 2007. 3, 4

[20] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learn-

ing Using Gaussian Fields and Harmonic Functions. In ICML,

2003. 3


