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Distributed CSI Acquisition and Coordinated

Precoding for TDD Multicell MIMO Systems
Rasmus Brandt∗, Student Member, IEEE, and Mats Bengtsson, Senior Member, IEEE

Abstract—Several distributed coordinated precoding methods
exist in the downlink multicell MIMO literature, many of which
assume perfect knowledge of received signal covariance and local
effective channels. In this work, we let the notion of channel state
information (CSI) encompass this knowledge of covariances and
effective channels. We analyze what local CSI is required in the
WMMSE algorithm for distributed coordinated precoding, and
study how this required CSI can be obtained in a distributed
fashion. Based on pilot-assisted channel estimation, we propose
three CSI acquisition methods with different tradeoffs between
feedback and signaling, backhaul use, and computational com-
plexity. One of the proposed methods is fully distributed, meaning
that it only depends on over-the-air signaling but requires no
backhaul, and results in a fully distributed joint system when
coupled with the WMMSE algorithm. Naïvely applying the
WMMSE algorithm together with the fully distributed CSI
acquisition results in catastrophic performance however, and
therefore we propose a robustified WMMSE algorithm based
on the well known diagonal loading framework. By enforcing
properties of the WMMSE solutions with perfect CSI onto the
problem with imperfect CSI, the resulting diagonally loaded
spatial filters are shown to perform significantly better than
the naïve filters. The proposed robust and distributed system
is evaluated using numerical simulations, and shown to perform
well compared with benchmarks. Under centralized CSI acquisi-
tion, the proposed algorithm performs on par with other existing
centralized robust WMMSE algorithms. When evaluated in a
large scale fading environment, the performance of the proposed
system is promising.

I. INTRODUCTION

M
ULTIPLE-ANTENNA coordinated precoding is a

promising technique for improving spectral efficiency

in multicell multiple-input multiple-output (MIMO) networks,

by serving several spatially separated users simultaneously in

the same time/frequency resource block [1], [2]. The cascade

of physical channels and precoders are the effective channels

experienced by the receivers. By suitably selecting the pre-

coders, the downlink weighted sum rate of the network can

be maximized. The requirements for practical implementation

of coordinated precoding include channel estimation [3]–[5],

robustness against channel estimation errors [6]–[10], and suf-

ficiently low complexity; preferably achieved using distributed

methods [11]–[14].

In the multicell MIMO literature, there are several examples

of distributed coordinated precoding methods; see e.g. [11] and
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references therein. These methods typically require informa-

tion about the received signal covariance and local effective

channels at the involved nodes, and it is often assumed

that this information is perfectly known. In this work, we

denote the information about the received signal covariance

and effective channels as channel state information (CSI). We

take a systems perspective and propose methods for estimating

and acquiring the necessary CSI at the involved nodes in

a distributed fashion. The resource allocation is based on

the WMMSE algorithm1 [12] for distributed weighted sum

rate optimization, because of its low per-iteration complexity

and tractable form. Due to poor performance when naïvely

applying the WMMSE algorithm, we also propose some ro-

bustifying procedures, leading to a robust and fully distributed

joint coordinated precoding and CSI acquisition system.

As the first step in the system design, we succinctly de-

scribe what information, in terms of weights and CSI, that

is needed for the nodes of the network to perform their

part in the WMMSE algorithm. There is a multitude of

conceivable methods to obtain the necessary information at the

nodes, e.g. using various combinations of channel estimation,

feedback, signaling, backhaul, etc. We propose three methods

for acquiring the necessary CSI. Based on channel estimation

through pilot transmissions, feedback, signaling, and backhaul

use, the proposed CSI acquisition methods correspond to

different tradeoffs between these techniques. In particular, one

of the proposed CSI acquisition methods is fully distributed,

in the sense that the nodes of the network solely cooperate by

means of over-the-air signaling, thus requiring no backhaul.

A key component of the proposed CSI acquisition methods

is the estimation of the effective channels. It is based on

synchronous pilot transmission in the downlink, enabling the

receiving user equipments (UEs) to estimate both desired

and interfering effective channels [4]. Assuming time-division

duplex (TDD) operation and perfectly calibrated transceivers

[15], [16], similar channel estimation can be performed in the

uplink at the receiving base stations (BSs). This is contrary

to frequency-division duplex operation, where the BSs obtain

their required information by feedback and backhaul signaling.

When combining the fully distributed CSI acquisition with the

WMMSE algorithm, the joint system is fully distributed.

Naïvely applying the original WMMSE algorithm together

with the proposed fully distributed CSI acquisition method

leads to catastrophic performance however. This is because

the original algorithm was not developed to be robust against

1The algorithm takes this name since it is a Weighted Minimization of the
Mean Squared Error (WMMSE).
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imperfect CSI. We therefore propose a robustified WMMSE

algorithm which retains the distributedness of the original

algorithm, contrary to state of the art [7]–[10]. We formu-

late a worst-case WMMSE problem, and solve an upper

bounded version of the problem. The resulting precoders are

diagonally loaded, a technique which is well known for its

robustifying effect on beamformers [17]–[23]. The optimal

amount of diagonal loading is determined by the worst-case

channel estimation errors, whose statistics are unfortunately

unavailable in the proposed CSI acquisition setup. Instead, we

propose a practical method for implicitly selecting the amount

of diagonal loading for the precoders. At the UEs, we show

an inherent property of the (spatial) receive filters and mean

squared error (MSE) weights obtained from the WMMSE

algorithm with perfect CSI. When this property is enforced

onto the filters with imperfect CSI, the resulting receive filters

are also diagonally loaded. The robust MSE weights have

smaller eigenvalues than the non-robust MSE weights. This

can be interpreted as the receivers requesting lower data rates

when there are large discrepancies in their estimated CSI.

A. Related Work

In [4], a reciprocal channel was exploited to directly es-

timate the filters maximizing the signal-to-interference-and-

noise ratio, requiring no other signaling. Similar work was

performed in [24], where non-linear filters also were studied.

Focusing on the reciprocity, and using the receive filters as

transmit filters in the uplink, [25] performed extensive simu-

lations for a beam selection approach. Our proposed effective

channel estimation is similar to their ‘busy burst’ methodology.

For the single-stream multiple-input single-output (MISO)

interference channel, an analytical method for finding the rate-

maximizing zero-forcing beamformers was derived in [13].

Saliently, the method does not require cross-link CSI, and was

consequently shown to be highly robust against CSI imper-

fections. In [14], decentralized algorithms based on WMMSE

ideas were proposed, achieving faster convergence than the

original WMMSE algorithm in [12], in addition to signaling

strategies for obtaining the necessary CSI. TDD reciprocity

was assumed, and the UEs used combinations of inter-cell

and intra-cell effective channel pilot transmissions. Contrary

to our work, perfect channel estimation was assumed, and their

decentralized algorithms still require some BS backhaul.

Weighted sum rate maximization by means of weighted

MMSE minimization was originally proposed for multiuser

MIMO systems in [26], where the MSE weights were used

to equate the Karush-Kuhn-Tucker (KKT) conditions of the

weighted MMSE problem to the KKT conditions of the

weighted sum rate problem. This same method was directly

applied to multicell MIMO systems in [7], [27], but it was not

until [12] that a rigorous connection to the multicell weighted

sum rate problem was presented. An earlier work is [6],

where the weighted MMSE optimization problem was solved

using the same technique, but without explicitly providing

the rigorous connection to the weighted sum rate problem. In

[6], a robust WMMSE algorithm was also suggested for the

case of norm bounded channel uncertainty arising from limited

quantized feedback. Other robustified versions of the WMMSE

algorithm, where the contribution of the downlink channel

estimation errors in the involved covariance matrices was

averaged out, were proposed in [7], [8]. The same approach

was taken in [9], where it was mentioned that this corresponds

to optimizing a lower bound on the achieved performance, and

in [10] where the lower bound was explicitly derived. The

filters were in effect robustified by diagonal loading, where

the diagonal loading factors were determined by the downlink

channel estimation performance. The work in [7]–[10] was

mainly focused on proposing robust WMMSE methods and

thus the actual CSI acquisition was not conclusively studied,

contrary to this paper. The major assumption in the system

model of [7]–[10] is that downlink channel estimation is

performed at the UEs, and that the downlink channel estimates

are fed back to the BSs. In this work we are interested in

TDD channel estimation and although the algorithms in [7]–

[10] could be applied in such a setting, doing so leads to some

idiosyncrasies that will be detailed in Sec. IV-E. Due to the

system model in [7]–[10], the nodes of the network require

feedback of all filters in all iterations of the algorithm, leading

to a large amount of feedback which would typically be

implemented using a centralized CSI acquisition infrastructure.

In this paper, contrary to [7]–[10], we incorporate a detailed

analysis of the CSI acquisition component of the system,

leading up to a robust and distributed coordinated precoding

system.

B. Contributions

The major contributions of this work are as follows.

• We succinctly describe the required information for the

network nodes to perform one WMMSE iteration. We

propose three CSI acquisition methods which provide

the necessary information. The methods have varying

levels of distributedness and signaling needs. One of the

proposed methods is fully distributed, meaning that it can

be implemented entirely by over-the-air signaling.

• For resilient performance against channel estimation

errors, we propose a robustified, but still distributed,

WMMSE algorithm to be applied together with the

proposed CSI acquisition schemes. The robustness is due

to diagonal loading, and the level of diagonal loading

for the precoders is determined implicitly by a practical

procedure.

• We identify and explore new inherent properties of the

WMMSE algorithm. When the properties are explicitly

enforced onto solutions with imperfect CSI, the resulting

receive filters are diagonally loaded.

• Performance is evaluated numerically, and it is shown that

the proposed fully distributed system performs excellently

compared with the naïve WMMSE algorithm with fully

distributed CSI acquisition. With centralized CSI acqui-

sition, the proposed robust WMMSE algorithm performs

on par with existing robust WMMSE algorithms, which

however require centralized CSI acquisition.
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C. Notation

The operations (·)⇤, (·)H, (·)T are complex conjugate,

Hermitian transpose, and regular transpose, respectively. The

operators Tr (·), k·k2, k·kF are the matrix trace, Euclidean

norm and Frobenius matrix norm, respectively. We denote the

partial ordering of positive (negative) semidefinite matrices as

⌫ (�). The mth largest eigenvalue (singular value) of Q is

denoted λm(Q) (sm(Q)). The zero-mean and covariance Q

complex symmetric Gaussian distribution is CN (0,Q), and

E (·) denotes expectation. Estimated quantities are denoted

with a hat ba and uplink quantities with an arrow  �a . The

Kronecker delta is δi,j .

II. DISTRIBUTED WEIGHTED SUM RATE OPTIMIZATION

FOR THE MULTICELL MIMO DOWNLINK

Our system model is a multicell system with Kt BSs, each

serving Kc UEs, for a total of Kr = KtKc UEs. We index the

BSs as i 2 {1, . . . ,Kt}. The kth served UE of BS i is indexed

by the pair of indices (i, k). For compactness, we will often

write this pair of indices as ik. The system is operating using

coordinated precoding, i.e. each UE is only served data from

one BS and the signals from the other BSs constitute inter-

cell interference2. When Kc � 2, intra-cell interference is also

observed. The BSs are equipped with Mt antennas each, the

UEs have Mr antennas and are served Nd data streams each3.

Communication takes place both in the downlink and in the

uplink. We focus on optimizing performance in the downlink,

since that typically experiences heavier traffic loads than the

uplink. The presented method could equally well be applied

in the uplink however. In the downlink, the multiuser in-

teraction is described by the interfering broadcast channel.

Denote a realization of the flat-fading MIMO channel between

BS j and UE ik as Hikj and let each user’s data signal

xik ⇠ CN (0, INd
) be linearly precoded by Vik 2 C

Mt⇥Nd .

The received signal at UE ik is then

yik = HikiVikxik +
X

(j,l) 6=(i,k)

HikjVjlxjl + zik , (1)

where the last term is a white Gaussian noise term

zik ⇠ CN
�
0,σ2

r IMr

�
. The signals {xik} and {zik} are

i.i.d. over users. Given these assumptions, the received

interference plus noise covariance matrix for UE ik is

Φ
i+n
ik

=
P

(j,l) 6=(i,k) HikjVjlV
H

jl
HH

ikj
+ σ2

rI.

Assuming that the decoders in the UE terminals treat

interference as additive noise, the achievable downlink data

rate for UE ik is

Rik = log det
⇣
I+VH

ik
HH

iki

�
Φ

i+n
ik

��1
HikiVik

⌘
. (2)

Note that (2) is non-convex in {Vik}, since the precoders

appear inside Φ
i+n
ik

. This non-convex dependence on the pre-

coders describes the coupling between users, and will be the

key challenge in the optimization to come.

2Since the focus of this paper is the distributed implementation of multicell
processing, we do not investigate joint transmission, where several BSs jointly
serve the UEs with data. Such joint transmission requires significant backhaul
between BSs, and is not amenable to fully distributed implementation.

3The system model can easily be extended to scenarios where the BSs serve
different number of UEs each and scenarios where the nodes have different
number of antennas.

One main assumption in this work is that there is a per-

fectly reciprocal uplink channel available. That is, the channel

in the uplink from UE jl to BS i is
 �
Hjli = HT

jli
. Let

 �x ⇤
ik
⇠ CN

⇣
0,
 �
Ξ ik

⌘
be the transmitted signal from UE ik in

the uplink. The uplink is described by the interfering multiple

access channel, and the received signal for BS i is then

 �y ⇤
i =

KcX

k=1

HT

iki
 �x ⇤

ik
+

KtX

j 6=i

KcX

l=1

HT

jli
 �x ⇤

jl
+ �z ⇤

i , (3)

where �z ⇤
i ⇠ CN

�
0,σ2

t IMt

�
. For convenience, we work with

the complex conjugate version of the received signal. That is,

the model we will use for the uplink is:

 �y i =
� �y ⇤

i

�⇤
=

KcX

k=1

HH

iki
 �x ik +

KtX

j 6=i

KcX

l=1

HH

jli
 �x jl +

 �z i. (4)

With the uplink model in (4), the channel estimation in

Sec. III can be tailored to the needs of the weighted sum rate

optimization, which we detail in the next section.

A. Weighted Sum Rate Optimization

Since the CSI acquisition to be proposed is tailored for

the WMMSE algorithm [12], we now briefly summarize the

algorithm, as well as introduce some necessary notation.

By assigning the UEs data rate weights αik 2 [0, 1] , 8 ik,

the weighted sum rate is formulated as
P

(i,k) αikRik . This

formulation describes the ultimate performance of the system,

but is just one way of forming a system-level utility from

the user rates [2]. The data rate weights αik can be selected

corresponding to user priority, e.g. to achieve a proportionally

fair solution [28]. In the following, we will assume that the

weights are selected at the BSs.

Let Pi be the sum power constraint for BS i. With the

precoders {Vik} as optimization variables, the weighted sum

rate optimization problem is:

maximize
{Vik

}

X

(i,k)

αikRik

subject to

KcX

k=1

Tr
�
VikV

H

ik

�
 Pi, i = 1, . . . ,Kt.

(5)

Due to the non-convexity of (2), this is a non-convex opti-

mization problem. At least when Mr = 1, the problem is also

NP-hard [29]. We can therefore only reasonably strive to find

a locally optimal solution.

By introducing additional optimization variables {Wik}
(acting like MSE weights), it was shown in [12] that (5) has

the same global solutions as the following weighted MMSE

optimization problem:

minimize
{Aik

},{Vik
}

{Wik
�0}

X

(i,k)

αik (Tr (WikEik)� log det (Wik))

subject to

KcX

k=1

Tr
�
VikV

H

ik

�
 Pi, i = 1, . . . ,Kt.

(6)
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TABLE I
SUMMARY OF CSI QUANTITY SHORTHANDS

Downlink Fik = HikiVik

Φik = FikF
H

ik
+Φ

i+n
ik

Φ
i+n
ik

=
P

(j,l) 6=(i,k) HikjVjlV
H

jl
HH

ikj
+ σ

2
rI

Uplink Gik = HH

iki
Uik

Γi = Γ
s+i
i =

P
(j,l) H

H

jli
UjlU

H

jl
HH

jli

TABLE II
QUANTITIES THAT MUST BE SIGNALED IN ORDER FOR EACH NODE TO

PERFORM ONE ITERATION OF THE WMMSE ALGORITHM

Covariance matrix Effective channel(s) Weight(s)†

UE ik Φik Fik αik

BS i Γi {Gik}
Kc
k=1 {W

1/2
ik

}Kc
k=1

† Note that the user priorities {αik}
Kc
k=1 are selected, and thus fully

known, at the serving BSs.

The {Aik} are linear receive filters, and

Eik = E

⇣�
xik �AH

ik
yik

� �
xik �AH

ik
yik

�H⌘

= I�AH

ik
HikiVik �VH

ik
HH

iki
Aik +AH

ik
ΦikAik

(7)

is the MSE matrix for UE ik. Further,

Φik = HikiVikV
H

ik
HH

iki
+ Φ

i+n
ik

is the received signal and

interference plus noise covariance matrix for UE ik.

The optimization problem in (6) is still non-convex over the

joint set {Aik ,Wik ,Vik}, but the key benefit of (6) over (5)

is that it is independently convex in the blocks of variables

{Aik}, {Wik}, and {Vik}, when the remaining blocks are

kept fixed. Further, a stationary point can be found through

alternating minimization4 [30, Ch. 2.7] over the blocks [12].

There is a one-to-one correspondence between the stationary

points of (5) and the stationary points of (6) [12], and since

(6) optimizes a locally tight lower bound of (5), alternating

minimization of (6) will also converge to a stationary point of

(5) [31].

1) WMMSE Algorithm for Distributed Weighted Sum Rate

Optimization: First, by fixing {Wik ,Vik} in (6), it can easily

be shown that the problem decouples over the UEs. The

solution is the well known MMSE receiver

Aik = Φ
�1
ik

HikiVik , 8 ik. (8)

Next, by fixing {Aik ,Vik}, the problem again decouples over

the UEs. UE ik should therefore solve minWik
Tr (WikEik)�

log det (Wik), and the solutions are

Wik = E�1
ik

=
�
I�VH

ik
HH

iki
Φ

�1
ik

HikiVik

��1
, 8 ik, (9)

where the last equality comes from plugging in Aik from (8).

Finally, it remains to solve (6) for {Vik}, while keeping

the UE variables {Aik ,Wik} fixed. The problem decouples

over the BSs, and it can be shown that the remaining problem

4This technique is also known as block coordinate descent or block

nonlinear Gauss-Seidel in the literature.

Algorithm 1 WMMSE Algorithm [12] (Perfect CSI)

1: repeat

At UEs:

2: Wik =
�
I� FH

ik
Φ

�1
ik

Fik

��1

3: Aik = Φ
�1
ik

Fik , Uik =
p
αikAikW

1/2
ik

At BSs:

4: Find µi which satisfies
PKc

k=1 Tr
�
VikV

H

ik

�
 Pi

5: Bik = (Γi + µiI)
�1

Gik , Vik =
p
αikBikW

1/2
ik

6: until convergence criterion met, or fixed number of iters.

for BS i is a quadratically constrained quadratic program with

optimization variables {Vik}
Kc

k=1. The solution is [12]

Vik = αik (Γi + µiI)
�1

HH

iki
AikWik , 8 ik, (10)

where Γi = Γ
s+i
i =

P
(j,l) αjlH

H

jli
AjlWjlA

H

jl
Hjli is a signal

plus interference covariance matrix for BS i in the uplink.

If
PKc

k=1 Tr
�
VikV

H

ik

�
 Pi is satisfied for µi = 0, the sum

power constraint for BS i is inactive and the problem is solved.

Otherwise, µi > 0 is found such that
PKc

k=1 Tr
�
VikV

H

ik

�
= Pi

holds. This can be done efficiently using e.g. bisection [12].

When the precoders have been found, a new iteration is com-

menced by again optimizing over {Aik}. With each update

of {Aik}, {Wik} or {Vik}, the objective value in (6) cannot

increase. The iterations thus continue until convergence, or for

a fixed number of iterations.

2) Required Local Information for the WMMSE Iterations:

In order to clarify what information the CSI acquisition

schemes should provide, we introduce some shorthands for

the quantities involved in the WMMSE algorithm. For UE ik,

we define a weighted receive filter as Uik =
p
αikAikW

1/2
ik

and denote the effective downlink channel as Fik = HikiVik .

The receive filter can then be written as Aik = Φ
�1
ik

Fik .

Symmetrically, in the uplink for UE ik, the precoder is

Vik =
p
αikBikW

1/2
ik

and the effective uplink channel is

Gik = HH

iki
Uik . Finally, the component precoder is Bik =

(Γi + µiI)
�1

Gik . We summarize the shorthands in Table I,

and the WMMSE algorithm written using these shorthands in

Algorithm 1.

The WMMSE algorithm operates in two phases: one in

which the UEs form their receive filters and weights, and one

in which the BSs form the precoders for their served UEs.

The optimization steps at the UEs and BSs are completely

decoupled, and as summarized in Table II, the nodes only

require local CSI and local weights. Hence, the WMMSE

algorithm is an example of distributed resource allocation.

In Sec. III, we will describe how the nodes can exploit the

channel reciprocity to obtain local CSI in a distributed fashion.

III. DISTRIBUTED CSI ACQUISITION

According to Table II, the UEs require knowledge about

the effective channel Fik from their serving BSs, as well

as the signal and interference plus noise covariance matrix

Φik . The BSs need to know the effective uplink channels

{Gik}
Kc

k=1 to the UEs they serve, the corresponding MSE

weights {W
1/2
ik

}Kc

k=1, and the uplink signal plus interference

covariance matrix Γi. Several methods for obtaining the
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BS 1 BS 1

UE 11 UE 11UE 12 UE 12 UE ikUE ik UE KtKc
UE KtKc... ... ... ...

... ... ... ...

BS i BS iBS Kt BS Kt

UEs estimateFik
andΦik

BSs estimate {Gik
}Kc

k=1
andΓiBSs transmit

KcX

k=1

Vik
Pik

D
o
w
n
li
n
k
tr
a
in
in
g

U
p
li
n
k
tr
a
in
in
g

UEs transmit Uik

←−

P ik

Fig. 1. CSI estimation in one subframe (cf. Fig. 2). In each subframe, the downlink channels are estimated using pilots from the BSs. Later, the uplink pilots
are estimated using pilots from the UEs. Additionally, the UEs feed back Wik to their serving BS using an out-of-band feedback link.

Downlink pilots Downlink data

Optimization @ UEs

Subframe n+1

Downlink pilots Downlink data Uplink pilots Uplink data

Optimization @ UEs

Subframe n

Guard
time

Optimization @ BSs

Uplink pilots Uplink data

Subframe n-1

Optimization @ BSs

Fig. 2. Schematic drawing of subframes.

required CSI5 at the nodes can be imagined, using various

combinations of channel estimation, feedback, signaling and

backhaul. In this section, we will propose three CSI acquisition

methods, with different tradeoffs between these aspects.

The channel estimation in the proposed methods exploits

the reciprocity of the network, and uses pilot transmissions in

both uplink and downlink. As the effective channels change

between iterations in the WMMSE algorithm, we propose

to perform a training phase between one iteration and the

next. A schematic drawing of the subframe structure that we

envision can be seen in Fig. 2. The subframe is split between

pilot transmission and data transmission, in both the uplink

and downlink. Data transmission thus takes place between the

filter updates of the algorithm. The ratio between uplink and

downlink data transmission lengths could be flexibly allocated

[32]. Before the iterative algorithm has converged, the data

rates that are achievable in the downlink data transmission

phase may be low, but not negligible, as shown by the

numerical results in Sec. V-A1. An illustration of the channel

estimation in one subframe is shown in Fig. 1.

In block fading channels, the coherence interval should be

sufficiently long such that the iterative algorithm can perform

enough iterations to reach good performance. The deployment

scenario will determine the coherence time of the channel, and

the details of the frame structure will determine the number

of subframes that can be transmitted within one coherence

interval. As a brief example, under a block fading channel

with carrier frequency fc = 2GHz and UE speed v = 3 km/h,

the coherence time can be modeled as Tc = 1
2fc

c
v = 90ms

[33]. For future 5G systems, the TDD switching periodicity

is planned to be 1 ms or less [32], [34], leading to at least

5We remind the reader that our notion of ‘CSI’ encompasses knowledge of
the effective channels and the covariance matrices; see Tables I and II.

90 uplink-downlink iterations in one coherence interval when

the UEs are slowly moving. In continuous fading channels, the

proposed algorithm would possibly instead be able to track the

channel variations, assuming that they are slow enough. In the

rest of the paper, we make the assumption that the channel is

changing slowly enough for the iterative algorithm to reach

adequate performance.

We now detail the different CSI acquisition methods, which

all rely on pilot-assisted channel estimation. When a statistical

characterization of the channel is available, the MMSE channel

estimator [5] is typically used. Here we estimate the effective

channels, which are updated in each WMMSE iteration based

on the current channel conditions. Obtaining a statistical

characterization of the effective channel is thus complicated.

In the estimation, we therefore regard the effective channels

as deterministic but unknown. Under this perspective from

classical estimation theory, it is easy to find the minimum

variance unbiased (MVU) estimator.

A. Fully Distributed CSI Acquisition

First, we seek to estimate the effective downlink channel

Fik = HikiVik using synchronous pilot transmissions. In the

downlink training phase, the BSs transmit orthogonal pilot

sequences6 Pik 2 C
Nd⇥Np,d per user, such that PikP

H

jl
=

Np,dINd
δik,jl . In order to fulfill the orthogonality requirement,

Np,d � KrNd. The received signal Yik 2 C
Mr⇥Np,d at UE

ik is then

Yik = HikiVikPik +
X

(j,l) 6=(i,k)

HikjVjlPjl + Zik . (11)

6The framework can be extended to allow for non-orthogonal pilots, but
then a pilot allocation scheme must be set up to minimize the problem of pilot
contamination [35]. Furthermore, the resource allocation step should take the
pilot contamination into account.
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Notice that the power allocated to the pilots is the same as the

power allocated to the data symbols in (1). This will enable

distributed and unbiased estimation of Φik . This type of pilot

transmissions, intended to estimate the effective channels, are

called ‘UE-specific reference signals’ in the LTE standard [36].

Assuming that UE ik knows its designated pilot Pik , this

is a deterministic parameter estimation problem in Gaussian

noise. The MVU estimator of the effective channel Fik 2
C

Mr⇥Nd is then [5]:

bFik =
1

Np,d
YikP

H

ik
= HikiVik +

1

Np,d
ZikP

H

ik
. (12)

The MVU estimator is an unbiased, efficient and asymptot-

ically consistent (in Np,d) estimator of Fik . In addition to

knowing Fik , UE ik also needs knowledge of Φik 2 C
Mr⇥Mr .

This can be achieved by applying the sample covariance

estimator:

bΦik =
1

Np,d
YikY

H

ik

=
X

(j,l)

�
HikjVjlV

H

jl
HH

ikj

�
+

1

Np,d
ZikZ

H

ik

+
1

Np,d

X

(j,l)

�
HikjVjlPjlZ

H

ik
+ ZikP

H

jl
VH

jl
HH

ikj

�
.

(13)

Since the only stochastic component of Yik is Zik , the

estimator in (13) is unbiased.

The uplink estimation is performed in a similar man-

ner as the downlink estimation. Now the UEs each trans-

mit a signal
 �
Xik = γUik

 �
P ik , where

 �
P ik 2 C

Nd⇥Np,u

are orthogonal pilots, such that
 �
P ik

 �
PH

jl
= Np,uINd

δik,jl .

As will be shown by Proposition 1 in Sec. IV-D,

kUikk
2
F = αik ||AikW

1/2
ik

||2F  αikNd/σ
2
r . In order

to maximize the uplink estimation SNR, the scaling factor

γ is set as7 γ =
p
Prσ2

r/Nd, where Pr is the maximum

transmit power of the UEs. The UE quantities Pr and σ2
r

are assumed to be known at the BSs, such that they have

perfect a priori knowledge of γ. For this setup, assuming

synchronized pilot transmissions from the UEs, the received

signal
 �
Yi 2 C

Mt⇥Np,u at BS i during the uplink training

phase is

 �
Yi = γ

KcX

k=1

HH

iki
Uik

 �
P ik + γ

KtX

j 6=i

KcX

l=1

HH

jli
Ujl

 �
P jl +

 �
Z i.

(14)

The MVU estimator of the uplink effective channel Gik 2
C

Mt⇥Nd is

bGik =
1

γNp,u

 �
Yi
 �
PH

ik
= HH

iki
Uik +

1

γNp,u

 �
Z i
 �
PH

ik
. (15)

Furthermore, the signal and interference plus scaled noise

covariance matrix Γ
s+i+n
i 2 C

Mt⇥Mt is estimated using the

sample covariance:

bΓs+i+n
i =

1

γ2

1

Np,u

 �
Yi
 �
YH

i . (16)

7Note that the UE dependent factor αik in
��Uik

��2
F

should not be removed
by the scaling, since then Γi cannot be estimated in a fully distributed fashion.
If αik < 1, the full transmit power of UE ik cannot be used.

The WMMSE algorithm however needs an estimate of Γi =
Γ

s+i
i , without the noise covariance component of Γ

s+i+n
i . In

Sec. IV-C, we resolve this issue by modifying the WMMSE

algorithm.

When forming the precoder in (10), the productp
αikH

H

iki
AikWik = GikW

1/2
ik

is needed. Instead of inde-

pendently estimating this quantity in a second uplink esti-

mation phase, we let UE ik feed back Wik to its serving

BS i. Together with (15), BS i can then form bGikW
1/2
ik

and use that in (10). The point of this procedure is to avoid

signal cancelation [37], where a small mismatch between the

estimate of GikW
1/2
ik

and the estimate of Γi can have a

large detrimental impact on performance. If Gik and Γi are

estimated using the same pilot transmissions, as in (15) and

(16), the covariance matrix can be decomposed as bΓs+i+n
i =

bΓi+n
i + bGik

bGH

ik
. Because of this structure, there is no mismatch

between bGikW
1/2
ik

and bΓi, and signal cancelation does not

occur [37].

It can be shown that Rik = log det (Wik). Feedback of

the eigenvalues of Wik therefore constitutes a rate request for

each data stream of UE ik, describing what rate that stream can

handle under the current network conditions. This information

is already fed back to the serving BS in a practical system.

Recall that αik is fixed and known at BS i, and does therefore

not need to be fed back.

Remark 1. The CSI acquisition proposed in this section is

fully distributed over BSs and UEs, in the sense that only

over-the-air signaling is required. UE ik feeds back Wik to its

serving BS, but the BSs do not need to share any information

over a BS backhaul.

B. CSI Acquisition with Global Sharing of Individual Scaling

Parameters

As noted in the previous section, and proved in Sec. IV-D,

kUikk
2
F  αikNd/σ

2
r . The scaling factor γ was set based

on this to maximize the uplink transmit power. However,

unless the inequality is met with equality and αik = 1,

the transmit power constraint of that particular UE is not

met. Correspondingly, the uplink estimation SNR suffers for

that UE. If the requirement of fully distributed estimation of

the uplink covariance matrix is dropped, and by introducing

individual scaling factors for the UEs, the maximum uplink

transmit power can always be used.

In this section, we keep the downlink estimation the same as

in Sec. III-A, but modify the uplink estimation to maximize

the transmit power used. The BSs will then need access to

a backhaul network, where information about the individual

scaling parameters can be shared.

Letting
 �
Xik =

p
Pr

kUikkF

Uik

 �
P ik , the effective uplink trans-

mit power is maximized for UE ik. The received signal at BS

i is then

 �
Yi =

p
Pr

X

(j,l)

1

kUjlkF

HH

jli
Ujl

 �
P jl +

 �
Z i. (17)

We now assume that the individual scaling factors kUikkF are

fed back from the UEs to their serving BSs, and then globally
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TABLE III
FEEDBACK AND ESTIMATION NEEDED FOR THE DIFFERENT CSI ACQUISITION METHODS.

Method Estimated at
UE ik

BS i feedback to
served UE ik

Estimated at
BS i

UE ik feedback to
serving BS i

Shared information over
BS backhaul

Fully distributed (Sec. III-A) Φik , Fik αik
⇧

Γi, {Gik} Wik —

Globally shared individual scale
factors (Sec. III-B)

Φik , Fik αik
⇧ {Gjli}

��Uik

��
F
, Wik {

��Ujl

��
F
}

Globally shared filters (Sec. III-C) {Hikj}
†

αik
⇧, {Vjl} {Hjli}

† Uik ,Wik {Ujl}, {Wjl}, {Vjl}

⇧ The user priorities only need to be fed back if/when they are changed.
† The estimated quantities for the methods in Sec. III-A and Sec. III-B depend on the transmit and receive filters, and must therefore be re-estimated in every

subframe. The estimated quantities for the method in Sec. III-C do not change within one coherence block, and can therefore be improved upon in every
subframe.

shared over a BS backhaul. BS i can then estimate the effective

channels from UE jl as

bGjli =
kUjlkFp
PrNp,u

 �
Yi
 �
PH

jl
= HH

ikj
Ujl +

kUjlkFp
PrNp,u

 �
Z i
 �
PH

jl
.

(18)

Since the scaled pilots effectively all have the same

weight, the sample covariance estimator of Γi in (16)

cannot be used. Instead, we rely on the biased estima-

tor bΓs+i+n
i =

P
(j,l)

bGjli
bGH

jli
. The bias is determined

by the factors kUikkF /
p
Pr and the pilots {

 �
P jl}. Since

kUikk
2
F  αikNd/σ

2
r , the scaling factors could be quantized

over
⇥
0,
p
αikNd/σr

⇤
, 8 ik.

This estimation scheme is similar to one proposed in [14],

where a scaled version of Aik was used as the uplink precoder.

The MSE weights Wik can then be directly estimated at the

serving BSs, and do not need to be fed back. However, in order

for the BSs to estimate bΓs+i+n
i in that estimation scheme, they

must exchange the MSE weights for their corresponding UEs

over the backhaul. In essence, reduced over-the-air feedback

has been traded for more backhaul use.

Remark 2. The CSI acquisition proposed in this section is

fully distributed over the UEs, but not over the BSs. Each BS

needs knowledge of the individual scaling factors for all UEs,

information which is shared over a BS backhaul.

C. CSI Acquisition with Global Sharing of Precoders, Receive

Filters and MSE Weights

Lastly, we present an CSI acquisition scheme which re-

lies even further on feedback, signaling and backhaul. We

present this method since the state-of-the-art robust WMMSE

algorithms in [7]–[10] require this type of CSI acquisition.

In this scheme, only the underlying channels are estimated

exploiting the reciprocity, and the filters and MSE weights

must be signaled between all nodes.

In the downlink training, Pj 2 C
Mt⇥Np,d are orthogonal

pilots sent from BS j such that PiP
H

j = Np,dIMtδi,j . The

received signal at UE ik is then

Yik =

r
Pi

KcMt
HikiPi +

X

(j,l) 6=(i,k)

r
Pj

KcMt
HikjPj + Zik .

(19)

This type of pilot transmissions are called ‘cell-specific ref-

erence signals’ in the LTE standard [36]. For the case of

TABLE IV
TOTAL ESTIMATION COMPLEXITY, PER ITERATION AND UE.

Method Approximate number of flops

Sec. III-A (MrNd +M2
r )Np,d +MtNdNp,u +M2

t Np,u/Kc

Sec. III-B (MrNd +M2
r )Np,d + (MtNdNp,u +M2

t Nd +M2
t )Kt

Sec. III-C MrMtKt(Np,d +Np,u) + (MrMtNd +M2
rNd +

M2
r )Kr + (MrMtNd +M2

t Nd +M2
t )Kt +Mr

Rayleigh fading, vec (Hikj) ⇠ CN (0, I), the MMSE estimator

[5] is

bHikj =

p
Pj/ (KcMt)

Np,d
Pj

KcMt
+ σ2

r

YikP
H

j . (20)

Assuming that the noise variance σ2
r is known, and that all

precoders {Vjl} have been fed back to UE ik, it can form

bFik = bHikiVik ,
bΦik =

X

(j,l)

bHikjVjlV
H

jl
bHH

ikj
+ σ2

rI. (21)

With the subframe structure in Fig. 2, consecutive training

phases can be used to monotonically improve the channel

estimates in one coherence block of the channel. This can

be done using iterative techniques, see e.g. [38, Ch. 12.6].

In the uplink, assuming feedback of receive filters and MSE

weights, which are shared among all BSs, bGik and bΓi are

formed in a similar fashion as in (21).

Remark 3. The CSI acquisition proposed in this section is

centralized. It requires significant signaling of filters among

BSs and UEs in every subframe. In terms of estimating the

underlying channels {Hikj}, it is however distributed over

the BSs and UEs.

D. Feedback Requirements, Computational Complexity and

Quantized MSE Weight Feedback

We compare the feedback requirements of the proposed

estimation schemes in Table III. The estimation matrix

operation complexities [39] are shown in Table IV. The

MrMtKt(Np,d + Np,u) term in the Sec. III-C estimation

method flop count dominates all other terms when the number

of pilots is large. This effect is illustrated in Fig. 8 of

Sec. V-A3, where the complexities of the estimators are

visually compared with the correspondingly achieved sum

rates.
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In the CSI acquisition proposed in Sec. III-A and Sec. III-B,

feedback of the MSE weights to the serving BS is required.

In order to be practical, the MSE weights should be quantized

and fed back. Since the MSE matrix Wik is Hermitian, it

can be quantized by quantizing its eigenvalue decomposition.

The eigenvectors can be quantized using e.g. Grassmannian

subspace packing [40]. Recalling that s1(·) denotes the largest

singular value, we have the following helpful lemma for the

quantization of the eigenvalues:

Lemma 1. The eigenvalues of the MSE weights are bounded

as 1  λn (Wik)  1 +
Pis

2

1
(Hiki)

σ2
r

, 8 ik, n.

Proof: The proof is given in Appendix A.

The square roots of the eigenvalues of Wik can therefore

be quantized by finding8 a suitable scalar quantizer over the

interval in Lemma 1. After UE ik has fed back the quantized

eigenvectors and the quantized square roots of the eigenvalues,

the serving BS can then form the reconstructed square root of

the MSE weight cW1/2
ik

.

As mentioned in Sec. III-A, Rik = log det (Wik) =P
n log (λn (Wik)) can be seen as the data rate (summed

over data streams) for UE ik. Quantizing λn (Wik) therefore

corresponds to making a set of discrete rates available to the

UE, corresponding to e.g. a set of different modulation and

coding schemes.

IV. INHERENT AND ENFORCED

ROBUSTNESS OF WMMSE SOLUTIONS

In this section, we propose some modifications to the

original WMMSE algorithm that lead to an algorithm which

is robustified against CSI estimation errors.

A. Naïve WMMSE Algorithm with Estimated CSI

It is straightforward to naïvely feed the WMMSE algorithm

the estimated CSI from one of the presented CSI acquisition

methods. An example of the resulting performance can be

seen in Fig. 3. The simulation settings are described in detail

in Sec. V-A. It is clear that the naïve application of the

WMMSE algorithm works moderately well for the centralized

CSI acquisition schemes, but the performance for the fully dis-

tributed CSI acquisition scheme catastrophically deteriorates

at high SNR. Thus, some form of robustification against CSI

estimation errors is necessary.

B. General Worst-Case Robustness WMMSE Problem

One approach to robustifying the optimization problem in

(6) is to minimize the objective function under the worst-case

error conditions:

min.
{Aik

}

{Wik
�0}

{Vik
}

max
{uncertainty}

X

(i,k)

αik (Tr (WikEik)� log det (Wik))

subject to

KcX

k=1

Tr
�
VikV

H

ik

�
 Pi, i = 1, . . . ,Kt.

(22)

8The details of designing such a quantizer is outside the scope of this paper.
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Fig. 3. Sum rate performance when naïvely applying the WMMSE algorithm
together with the CSI acquisition schemes. The scenario was a Kt = 3,
Kc = 2, Mt = 4, Mr = 2 interfering broadcast channel with Nd = 1.
The channels were i.i.d. Rayleigh fading, and the uplink SNR was set
as SNRu = Pr/σ2

t = 10 dB for all links. Note that SNRd = Pt/σ2
r

affects both the power constraint in the WMMSE algorithm, as well as the
estimation performance in the downlink estimation, since the downlink pilots
are precoded with the same precoders as used in the data transmission.

The proposed CSI acquisition methods provide estimates both

of the downlink effective channels, as well as of the uplink ef-

fective channels. Due to the definition of these effective chan-

nels, the general uncertainty set in (22) cannot be explicitly

defined in terms of the uplink and downlink estimation errors

simultaneously. For example, one of the terms in the objective

function of (22) is WikA
H

ik
HikiVik = W

1/2
ik

GH

ik
Vik =

WikA
H

ik
Fik , which cannot be written in terms of Gik and Fik

simultaneously. In the forthcoming alternating minimization,

we will therefore solve (22) with the CSI uncertainty relating

to the particular block of variables for which (22) is solved

for. That is, for the precoders the CSI uncertainty at the BSs

will be considered, whereas for the receive filters and MSE

weights, the CSI uncertainty at the UEs will be considered.

We now detail the alternating minimization solutions for the

three blocks of (22).

C. Precoder Robustness

First we fix {Aik ,Wik} and solve (22) with respect to

the precoders {Vik}. The optimization problem can then be

interpreted as a local optimization problem at each BS, given

that the CSI uncertainty in (22) comes from the uplink channel

estimation phase. We let the estimation errors for BS i be eΓi =
Γi� bΓs+i

i and eGik = Gik� bGik , k = 1, . . . ,Kc. For the local

uncertainty set, we assume that the errors are norm bounded

as

���eΓi

���
F
 ε

(BS)
i and

��� eGikW
1/2
ik

���
F
 ξ

(BS)
ik

, k = 1, . . . ,Kc.

Note that ξ
(BS)
ik

depends on Wik , which is fixed. The local

worst-case optimization problem for BS i is then:

minimize
{Vik

}
max

keΓik
F
ε

(BS)
i���eGik

W
1/2
ik

���
F
ξ

(BS)
ik

KcX

k=1

Tr
⇣
VH

ik

⇣
bΓs+i
i + eΓi

⌘
Vik

⌘

� 2
p
αikRe

✓
Tr

✓
W

1/2
ik

⇣
bGik + eGik

⌘H
Vik

◆◆

subject to

KcX

k=1

Tr
�
VikV

H

ik

�
 Pi, i = 1, . . . ,Kt.

(23)
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The solution to the inner optimization problem of (23) can be

found by extending the results of [22], [23] to the multiuser

matrix case. By upper bounding the optimal value of the inner

optimization problem using the triangle inequality9 and the

submultiplicativity of the Frobenius norm, the (pessimistic)

robust optimal precoder for UE ik is

Vrob
ik

=
p
αik

 
bΓs+i
i +

 
ε

(BS)
i +

ξ
(BS)
ik���Vrob
ik

���
F

+ µi

!
I

!�1

bGikW
1/2
ik

.

(24)

As before, µi is the Lagrange multiplier for the sum power

constraint. Note that the robust precoder in (24) is diagonally

loaded by a constant factor ε
(BS)
i , a data dependent factor

ξ
(BS)
ik

/
��Vrob

ik

��
F
, and the Lagrange multiplier µi. Diagonal load-

ing is well known to robustify beamformers in various settings,

and a large body of literature has studied its robustifying

effects; see e.g. [17]–[23].

In order to construct the robust precoder in (24), the

parameters ε
(BS)
i and ξ

(BS)
ik

must be known. For the fully

distributed CSI estimation in Sec. III-A, the effective channel

error eGik follows a zero-mean Gaussian distribution with

known covariance, and ξ
(BS)
ik

can thus be selected such that��� eGikW
1/2
ik

���
F
 ξ

(BS)
ik

holds with some probability. The

statistics of the covariance error eΓi however depend on the

filters {Uik}, which are unknown at BS i. Since the optimal

amount of diagonal loading is unknown, we therefore propose

to disregard ε
(BS)
i and ξ

(BS)
ik

, and let the factor µi handle all

the diagonal loading. To compensate for the missing ε
(BS)
i and

ξ
(BS)
ik

, we implicitly amplify µi using a scaling procedure.

1) Implicitly Selecting the Diagonal Loading Parameter:

When applying diagonal loading for robustness, a heuristic

often used in the literature [23] is to select a fixed loading

level around 10 dB over the noise level. Instead, we propose

a data dependent method for selecting the diagonal loading

parameter implicitly. We note that, given estimates bΓs+i+n
i , bGik

and fed back Wik , the precoders in the WMMSE algorithm

are formed like

Vik =
p
αik

⇣
bΓs+i+n
i + µiI

⌘�1 bGikW
1/2
ik

. (25)

The form of (25) and (24) are similar, and it can therefore be

concluded that µi alone acts as the diagonal loading for the

naïve WMMSE precoder. The factor µi therefore robustifies

the solution, and the amount of diagonal loading is determined

by bΓs+i+n
i , bGikW

1/2
ik

and Pi.

In order to artificially amplify the factor µi, we now

introduce a scaling procedure. We let 0  ρ  1 be a scaling

factor, and modify the WMMSE algorithm as follows:

1) In the precoder optimization at BS i (step 4 in Al-

gorithm 1), let the sum power constraint be ρPi. The

resulting precoders from (25) are denoted {V
(ρ)
ik

}, and

will have equal or higher diagonal loading level than

the original precoder in (25), since µi is nonincreasing

in the sum power constraint value.

9This relaxes the problem such that eΓi is the worst for each UE simultane-
ously. This is equivalent to replacing the existing covariance constraint with���eΓik

���
F
≤ ε

(BS)
i , k = 1, . . . ,Kc, and changing the objective accordingly.
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Fig. 4. Sum rate performance when varying ρ, for Pt = 1000 and
σ
2
r = 1 and varying SNRu. The solid markers represent the performance

for ρ = min(
Pr/�

2

t
Pt/�2

r
, 1). The scenario is the same as in Fig. 3.

2) Form scaled precoders V
opt
ik

= 1p
ρ
V

(ρ)
ik

, and use these

for downlink pilot and data transmission. This scaling

ensures that the correct transmit power is used.

3) At the UEs, perform the estimation given the precoders

{Vik}, giving {bF(ρ)
ik

} and {bΦ(ρ)
ik

}.

4) Scale the estimates as bΦik = ρbΦ(ρ)
ik

, bFik =
p
ρbF(ρ)

ik
,

and use {bΦik} and {bFik} to form receive filters and

MSE weights. This scaling is necessary in order for the

WMMSE algorithm at the UEs to be aware of what the

original precoders V
(ρ)
ik

were.

The same scaling ρ is used at all BSs, and therefore the signal-

to-interference ratios of the cross-links are not affected. In

Fig. 4, we plot the impact of selecting different ρ. A simple

selection that appears to work well is ρ = min
⇣

Pr/σ
2

t

Pt/σ2
r
, 1
⌘

.

2) Removing the Noise Component of bΓs+i+n
i : Comparing

(25) with (10), it can be noted that the covariance matrix

should be bΓs+i
i , and not bΓs+i+n

i . The noise portion of bΓs+i+n
i

will on average be
σ2

t

γ2 I, but simply subtracting that might

make the resulting matrix indefinite. Instead, we modify µi

to allow for negative values; this is the same as seeing

µi as the difference of a non-negative Lagrange multiplier

with an estimate of the noise power. Specifically, we allow

µi � �min
⇣

σ2

t

γ2 ,λMt

⇣
bΓs+i+n
i

⌘
� ζ
⌘

where ζ is some constant

value determining how close to singular bΓs+i+n
i + µiI can be.

D. Receive Filter and MSE Weight Robustness

With similar notation and assumptions as in (23), the local

worst-case optimization problem for the receive filter at UE

ik is

min.
{Aik

}
max

keΦikkF
ε

(UE)
i���eFik

W
1/2
ik

���
F
ξ

(UE)
ik

Tr
⇣
Wik

⇣
I+AH

ik

⇣
bΦik + eΦik

⌘
Aik

⌘⌘

� 2Re

✓
Tr

✓
Wik

⇣
bFik + eFik

⌘H
Aik

◆◆
,

(26)

whose (pessimistic) solution [23] is

Arob
ik

=

 
bΦik +

 
ε

(UE)
i +

ξ
(UE)
ik���Arob

ik
W

1/2
ik

���
F

!
I

!�1

bFik . (27)
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Finally, the corresponding (pessimistic) robust MSE weight is

Wrob
ik

=

0
@I� bFH

ik

 
bΦik +

 
ε

(UE)
i +

ξ
(UE)
ik���Arob

ik
W

1/2
ik

���
F

!
I

!�1

bFik

1
A

�1

.

(28)

Again, the optimal level of diagonal loading is unknown. This

is because ε
(UE)
i depends on the statistics of the covariance

error eΦik = Φik� bΦik , which in turn depend on the unknown

precoders {Vik}. We therefore propose to indirectly apply

diagonal loading at the UEs instead, based on the following

observation:

Proposition 1. The receive filter Aik and MSE

weight Wik obtained in the UE side optimization

of the WMMSE algorithm with perfect CSI satisfies

||AikW
1/2
ik

||2F = Tr
⇣�

Φ
i+n
ik

��1 �Φ
�1
ik

⌘
 Nd/σ

2
r . If the

effective channel is fully contained in an interference-free

subspace of dimension Ns  Nd, then asymptotically

||AikW
1/2
ik

||2F ! Ns/σ
2
r as the SNR grows large.

Proof: The proof is given in Appendix B.

The first part of this proposition has an important con-

nection to the uplink training stage in the fully dis-

tributed estimation scheme (Sec. III-A). Since γUik =p
Prσ2

r/Nd
p
αikAikW

1/2
ik

is acting as the uplink training

stage precoder, ||AikW
1/2
ik

||2F determines the effective UE

transmit power, and hence the uplink estimation SNR. The

second part shows that ||AikW
1/2
ik

||2F also indicates whether

perfect interference alignment is achieved for UE ik.

1) Enforcing Proposition 1 onto WMMSE Solutions with

Imperfect CSI: Proposition 1 relates to perfect CSI, but the

inequality may not hold for the naïve solutions in (8) and

(9) with imperfect CSI. In order to robustify the algorithm,

we therefore explicitly impose the constraint on the UE side

optimization problem with imperfect CSI. The problems still

decouple over users, and the problem each UE should solve

is

minimize
Aik

,Wik
�0

Tr
⇣
Wik

⇣
I+AH

ik
bΦikAik

⌘⌘

� 2Re
⇣
Wik

bFH

ik
Aik

⌘
� log det (Wik)

subject to ||AikW
1/2
ik

||2F  Nd/σ
2
r .

(29)

Proposition 2. The solution to (29) is

A
opt
ik

=
⇣
bΦik + ν

opt
ik

I
⌘�1 bFik

W
opt
ik

=

✓
I� bFH

ik

⇣
bΦik + ν

opt
ik

I
⌘�1 bFik

◆�1

.

If ||Aopt
ik

�
W

opt
ik

�1/2
||2F  Nd/σ

2
r holds for ν

opt
ik

= 0, the con-

straint is not active and the solution has the same form as the

original solution in Sec. II-A1. Otherwise, ν
opt
ik

can be found by

bisection over
�
0,σ2

r

⇤
such that ||Aopt

ik

�
W

opt
ik

�1/2
||2F = Nd/σ

2
r .

Proof: The proof is given in Appendix C.

Interestingly, explicitly imposing Proposition 1 as a con-

straint in (29) corresponds to diagonal loading of the receive

filter A
opt
ik

, giving it the same form as Arob
ik

. Likewise, W
opt
ik

has
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Fig. 5. Sum rate performance when selectively applying the robustifying
measures in Sec. IV, together with the fully distributed CSI acquisition in
Sec. III-A. For comparison purposes, the scenario is the same as in Fig. 3.

the same form as Wrob
ik

. The important difference is that A
opt
ik

and W
opt
ik

do not depend on unknown parameters, whereas

Arob
ik

and Wrob
ik

do. Thus, A
opt
ik

and W
opt
ik

can be applied as

realizable proxies for the unrealizable Arob
ik

and Wrob
ik

in the

robust WMMSE algorithm to be proposed.

By increasing νik , the requested rate log det
�
W

opt
ik

�
is

decreased. A large νik would occur when there are obvious

discrepancies in the estimated CSI, such that ||AikW
1/2
ik

||2F 
Nd/σ

2
r is far from being fulfilled without the diagonal loading.

We visualize the robustifying effects in Fig. 5 for the same

simulation settings as in Fig. 3. The robustifying measures are

effective, and result in up to a factor 5 sum rate gain over the

naïve WMMSE algorithm.

E. Robustified WMMSE Algorithm

We now combine the diagonal loading robustifications in

Sec. IV-C and Sec. IV-D (i.e. V
opt
ik

, A
opt
ik

, and W
opt
ik

) to

form a RoBustified WMMSE algorithm (RB-WMMSE); see

Algorithm 2. This algorithm can be combined with any of

the channel estimation procedures outlined in Sec. III, and

the joint system is fully distributed if the CSI acquisition is

distributed.

The existing robust WMMSE algorithms in [7]–[10] also

gain their robustness from diagonal loading, obtained by

optimizing a lower bound on performance. Although not being

directly tailored for TDD channel estimation, these algorithms

can be applied together with the centralized CSI acquisition

method10 proposed in Sec. III-C. In doing so, an implicit

assumption on the channel estimation errors in the uplink

and downlink is made however. Since these algorithms only

have a notion of downlink channel estimation errors, they

are unaware of the uplink channel estimation errors in the

TDD channel estimation. Thus, the implicit assumption that

the channel estimation errors in the downlink and uplink are

identical is made. The performance of this approach is studied

in Sec. V-A2.

10The algorithms in [7]–[10] need the statistics of the CSI uncertainty,
which is very complicated to derive for the CSI acquisition methods in
Sec. III-A and Sec. III-B since those methods estimate the effective channels.
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Algorithm 2 RB-WMMSE Algorithm (Estimated CSI)

1: repeat

At UEs:

2: Pilot transmission from BSs: estimate bΦ(ρ)
ik

and bF(ρ)
ik

using one of the methods in Sec. III.

3: Rescale bΦik = ρbΦ(ρ)
ik

, bFik =
p
ρbF(ρ)

ik

4: Find νik to satisfy

���AikW
1/2
ik

���
2

F
 Nd/σ

2
r

5: Wik =

✓
I� bFH

ik

⇣
bΦik + νikI

⌘�1 bFik

◆�1

6: Aik =
⇣
bΦik + νikI

⌘�1 bFik , Uik =
p
αikAikW

1/2
ik

At BSs:

7: Pilot transmission from UEs: estimate bΓs+i+n
i and bGik

using one of the methods in Sec. III.

8: Obtain W
1/2
ik

through feedback.

9: Find µi � �min
⇣

σ2

t

γ2 ,λMt

⇣
bΓs+i+n
i

⌘
� ζ
⌘

to satisfy
PKc

k=1 Tr
⇣
V

(ρ)
ik

V
(ρ),H
ik

⌘
 ρPi

10: B
(ρ)
ik

=
⇣
bΓs+i+n
i + µiI

⌘�1 bGik , V
(ρ)
ik

=
p
αikB

(ρ)
ik

W
1/2
ik

11: Scale Vik = 1p
ρ
V

(ρ)
ik

12: until fixed number of iterations

V. PERFORMANCE EVALUATION

Performance of the proposed system is evaluated by means

of numerical simulations11. Two scenarios are studied:

1) A canonical interfering broadcast channel, without large

scale fading. This model is relevant in local environ-

ments where the inter-cell interference power levels are

on par with the desired power levels.

2) A large scale 3-cell network, with path loss, shadow

fading, and small scale fading. This models a possible

large scale deployment scenario, where only cell-edge

users are significantly affected by inter-cell interference.

In both scenarios, we study a case with Kt = 3 BSs, each

serving Kc users with Nd = 1 data streams each. The number

of antennas were Mt = 4 and Mr = 2. The BSs transmit

power was Pi = Pt for all BSs, and the UEs transmit power

was Pr for all UEs. Unless otherwise stated, the RB-WMMSE

BS power scaling was set as ρ = min
⇣

Pr/σ
2

t

Pt/σ2
r
, 1
⌘

, based on the

findings in Fig. 4. For numerical stability, we let the constant

ζ = 10�10 such that λMt

⇣
bΓs+i+n
i + µiI

⌘
� 10�10, 8 i, in

the RB-WMMSE algorithm. The UE data rate weights were

αik = 1 for all UEs. Truncated discrete Fourier transform

(DFT) matrices of appropriate dimensions were used for the

pilot matrices Pik and Pi, as well as for the initial precoders.

As a baseline performance measure, we used single-user

eigenprecoding and waterfilling with channels estimated by the

MMSE estimator in Sec. III-C. With the single-user process-

ing, we show the performance under time-division multiple

access (TDMA), as well as under nonorthogonal concurrent

transmissions from all BSs simultaneously (‘uncoordinated

transmission’).

11In the spirit of reproducibility, we provide the full Matlab simulation
package as open source. It is available for download at [41].
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Fig. 6. Convergence comparison of the different methods for Kt = 3,Kc =
2,Mt = 4,Mr = 2, Nd = 1, SNRd = 20 dB and SNRu = 10 dB.

A. Canonical interfering broadcast channel

For the simulations with the canonical channel the channel

model was i.i.d. Rayleigh fading on all antenna-pairs in the

system such that [Hikj ]mn ⇠ CN (0, 1). This models a setting

where each interfering link on average is equally strong as the

desired channel. We assume a sufficiently long coherence in-

terval, such that the channels do not change between iterations.

We let each BS serve Kc = 2 UEs, a setting which is feasible

for interference alignment [42]. For fairness when comparing

estimation schemes, we let Np,d = KtMt and Np,u = KrMr.

The results were averaged over 1000 independent Monte Carlo

realizations.

1) Convergence: First, we investigate the average conver-

gence behaviour of the RB-WMMSE algorithm with SNRd =
Pt/σ

2
r = 20 dB and SNRu = Pr/σ

2
t = 10 dB. The results in

Fig. 6, indicate that the RB-WMMSE algorithm needs on the

order of 1000 iterations to converge, which is consistent with

the findings of [11]. We do however note that a significant

fraction of the final performance is achieved after just around

10 to 20 iterations. In the following, we therefore let the

algorithms iterate for 20 iterations.

2) Sum Rate vs. Signal-to-Noise Ratio: Next, we study the

sum rate when the downlink and uplink SNRs are varied.

Recall that the downlink SNR affects both the downlink data

transmission, as well as the downlink estimation performance

(cf. Sec. III-A). The uplink SNR only affects the uplink estima-

tion performance. We compare with MaxSINR [43], for which

we actively turn off two users in order not to overload the

algorithm. The results for the fully distributed CSI acquisition

(Sec. III-A) are shown in Fig. 7a. The RB-WMMSE algorithm

consistently performs better than MaxSINR, and better than

TDMA for sufficiently high uplink SNR. The results for the

CSI acquisition with global sharing of filters and MSE weights

(Sec. III-C) are shown in Fig. 7b. Here we also compare

with the lower bound optimization method of [7]–[10], which

requires this form of centralized CSI estimation. We relax

their requirement of downlink and uplink estimation errors

being identical (cf. Sec. IV-E). In Fig. 7b, it can be seen that

the RB-WMMSE algorithm exhibits similar performance as

the lower bound optimization method of [7]–[10]. The sum

rates in Fig. 7b are higher than the corresponding sum rates

in Fig. 7a. This is because the improved channel estimation

performance, due to the perfect feedback of filters, and that
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Fig. 7. Sum rate after the 20th iteration for Kt = 3,Kc = 2,Mt = 4,Mr = 2 canonical interfering broadcast channel with Nd = 1.
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iteration for Kt = 3,Kc = 2,Mt = 4,Mr = 2 canonical interfering
broadcast channel with Nd = 1, SNRd = 20 dB, and SNRu = 10 dB.

the estimates of the channels are improved in every iteration,

as described in Sec. III-C.

3) Sum Rate and Complexity vs. Flop Count: For the case

with SNRd = 20 dB, and SNRu = 10 dB, we vary the number

of pilots Np,d = Np,u and study the resulting performance

and complexity of the system. The results can be seen in

Fig. 8. The more complex CSI acquisition methods perform

slightly better in the sum rate sense. The centralized CSI

acquisition from Sec. III-C requires particularly many flops,

since it estimates all interfering channels.

4) Quantized MSE Weight Feedback: So far, the feed-

back of the MSE weights was assumed to be perfect. We

now study performance of the system, using quantized MSE

weights, while varying the number of feedback bits used.

For the case with fixed uplink SNRu = 30 dB, we vary the

SNRd and the number of quantization bits. Each UE had

an individual codebook with weights uniformly quantized onh
0, 10 log10

⇣
1 +

Pis
2

1
(Hiki)

σ2
r

⌘i
dB. The performance is shown

in Fig. 9. For higher downlink SNR, more bits are needed

for good performance. For high resolution quantization, the

performance is equal to that of perfect feedback.
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Fig. 9. Sum rate as a function of quantization accuracy for Kt = 3,Kc =
2,Mt = 4,Mr = 2 canonical interfering broadcast channel with Nd = 1
and SNRu = 30 dB.

B. Large scale 3-cell network

The results presented so far describe performance in a set-

ting where the desired signal and interfering signals had equal

average power levels. In realistic deployments, e.g. macrocell

setups, large scale fading such as path loss and shadow fading

are present however, leading to a more heterogeneous setting.

In order to investigate the performance for such a setting, we

study a scenario where the BSs are located at the vertices

of an equilateral triangle, and the antenna bore sights are

aimed towards the centre of the triangle (see Fig. 10). This

scenario models three interfering sectors in a larger hexagonal

macrocell deployment. In particular, we assume a setup where

fractional frequency reuse is combined with coordinated pre-

coding, such that cell centre and cell edge users are served

on orthogonal subbands [44]. Since the cell centre users

typically have very high signal-to-interference ratios (SIRs),

they can be served well using single cell techniques. The cell

edge users experience low SIRs however, and thus multicell

coordinated precoding is a fruitful transmission strategy for

these users. Since our focus is on coordinated precoding, our

simulations only study the performance of the cell edge users.

The simulation parameters (see Table V) can be described as

a simplified version of the 3GPP Case 1 [45], [46], where the
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Fig. 10. Cell layout for large scale 3-cell network, here displayed with
Kc = 2 UEs per cell.

small scale fading is i.i.d. Rayleigh fading, and where we only

study one subcarrier.

The purpose of the simulation study is to investigate the

impact on sum rate performance, when the number of cell edge

users per cell Kc is varied. For each of the two simulations

to be described, we generated 500 independent user drops

(including shadow fading), where the UEs were dropped

uniformly at random in the cell, but never farther than 50
m from the cell edge. For each user drop, 5 independent

small scale fading realizations were generated. We used the

fully distributed estimation method in Sec. III-A for channel

estimation in the RB-WMMSE algorithm and MaxSINR, and

we assumed perfect feedback for the MSE weights. In order

to have the same estimation performance regardless of Kc, we

fixed Np,d = Np,u = 3 · 10 · 1 = 30.

We used the same baseline methods as described in

Sec. V-A. For large Kc, all baseline methods would perform

poorly due to the high interference levels experienced at the

cell edge. We therefore coupled the baseline methods with a

user selection procedure that determined which UEs to serve.

Before describing the main results of the simulation study, we

first detail the user selection procedure performance.

1) Sum Rate vs. Number of Users Selected for Trans-

mission: In order to study how many users to select for

transmission for the baseline methods, we performed simu-

lations where Kc = 10 users were dropped per cell, and the

number of users selected for transmission was varied. The

user selection was based solely on the channel strength to the

serving BS. The results are plotted in Fig. 11a. It can be seen

that performance for MaxSINR is maximized when 2 users

are selected for transmission. For TDMA and uncoordinated

transmission, performance is maximized when only a single

user is selected for transmission in each cell. The performance

of the RB-WMMSE algorithm is the highest when 3 users are

selected for transmission in each cell, but performance only

TABLE V
SIMULATION PARAMETERS FOR LARGE SCALE 3-CELL NETWORK

(ADAPTED FROM 3GPP CASE 1 [45], [46])

Inter site distance 500 m

Max. distance, UE to cell edge 50 m

Path loss 15.3 + 37.6 log10(distance [m]) dB

Penetration loss 20 dB

BS antenna gain [47] −min

✓
12

⇣
✓

35�

⌘2
, 23

◆
dB

UE antenna gain 0 dB

Shadow fading Lognormal with std. dev. 8 dB

Small scale fading i.i.d. CN (0, 1)

Bandwidth? 15 kHz

BS transmit power? Pt = 18.2 dBm

UE receiver noise power? σ
2
r = −123.2 dBm (9 dB NF)

UE transmit power? Pr = −4.8 dBm

BS receiver noise power? σ
2
t = −127.2 dBm (5 dB NF)

? We only study one subcarrier in a 10 MHz system with 600 subcarriers.
The total transmit powers are thus P tot

t = 46 dBm and P tot
r = 23 dBm.

slightly drops as more users are selected. This is because the

RB-WMMSE algorithm, just like the WMMSE algorithm, is

able to implicitly perform user selection in the iterations. The

fact that the performance is almost constant when more than 3
users are selected for transmission in each cell suggests that the

RB-WMMSE algorithm is able to find a good local solution

to the weighted sum rate problem.

2) Sum Rate vs. Total Number of Users per Cell: We now

study system performance as a function of the total number of

users per cell Kc. Given the results in the previous section, we

select at most 2 users for transmission per cell for MaxSINR.

Similarly for TDMA and uncoordinated transmission, disre-

garding the obvious unfairness of such a strategy, we only

select 1 user per cell. For the RB-WMMSE and WMMSE

algorithms, we do not explicitly perform any user selection,

but rather let the algorithms perform their own implicit user

selection in the iterations. The results of the simulation can

be seen in Fig. 11b. For the baselines with user selection,

the improved performance with Kc is due to the increased

multiuser diversity. The RB-WMMSE algorithm is also able

to harness this increase in multiuser diversity. The large gap

between the perfect CSI case, and the RB-WMMSE algorithm

with fully distributed CSI acquisition (Sec. III-A) is due to

the low uplink SNR in this scenario12. The RB-WMMSE

algorithm performs slightly worse than the MaxSINR with

user selection, for large Kc. It has however been verified

that this gap can be closed by combining the RB-WMMSE

algorithm together with explicit user selection, serving at most

3 users per cell (cf. Fig. 11a). Here we however show the

results without explicit user selection, in order to display the

self-reliant performance of the algorithm. The uncoordinated

transmission strategy works fairly well in terms of sum rate,

12Along the cell edge, the average uplink SNR ranges between −4.9 dB
and −11.8 dB. The corresponding average downlink SNR ranges between
7.2 dB and 14.1 dB. Note that the average SNRs are determined both by the
distance to the BS, as well as the angle to the antenna bore sight.
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Fig. 11. Sum rate after the 20th iteration for the large scale scenario with fully distributed CSI acquisition (Sec. III-A).

but as noted earlier, corresponds to a highly unfair situation

where only one user is served per cell.

VI. CONCLUSIONS

Many distributed coordinated precoding algorithms have

been proposed in the literature, but few of these works study

the issue of robustness against imperfect CSI. The works that

do study this important issue can however not be coupled with

distributed CSI acquisition, thus leading to centralized CSI

acquisition requiring large amounts of BS backhaul usage. To

our knowledge, the present paper is the first that proposes a

robust, and yet still fully distributed, coordinated precoding

algorithm. In doing so, three CSI acquisition methods have

been proposed, and the corresponding requirements in terms of

channel estimation, feedback, and signaling have been illumi-

nated. The robustification of the algorithm comes from using

inherent properties of the WMMSE solutions and applying

a data dependent scaling procedure, leading to a realizable

algorithm which does not depend on unknown parameters of

the CSI uncertainty. Compared with the centralized state-of-

the-art methods, our system performs similarly, with the major

difference that our system can be implemented in a fully

distributed manner. When evaluated in a macrocell setup, the

proposed system also performs well.

APPENDIX

A. Proof of Lemma 1

For UE ik it holds that Φi+n
ik
⌫ σ2

rI, with equality if the UE

does not experience any interference. Thus, the MSE weight

for that UE satisfies

Wik = I+VH

ik
HH

iki

�
Φ

i+n
ik

��1
HikiVik (30)

� I+
1

σ2
r

VH

ik
HH

iki
HikiVik . (31)

Now introduce the spectral norm |||D|||2 = maxc
kDck

2

kck
2

=

s1 (D). Then, for all cik such that kcikk2 = 1, we have that

cHikV
H

ik
HH

iki
HikiVikcik  kVikcikk

2
2 · λ1

�
HH

iki
Hiki

�

= kVikcikk
2
2 · s

2
1 (Hiki)  |||Vik |||

2
2 · kcikk

2
2 · s

2
1 (Hiki)

= |||Vik |||
2
2 · s

2
1 (Hiki)  kVikk

2
F · s21 (Hiki)  Pis

2
1 (Hiki) .

(32)

Thus, λ1

�
VH

ik
HH

iki
HikiVik

�
 Pis

2
1 (Hiki), and the upper

bound then directly follows from (31). For the lower bound,

note that I � I+VH

ik
HH

iki

�
Φ

i+n
ik

��1
HikiVik = Wik . ⌅

B. Proof of Proposition 1

Decompose Φik = FikF
H

ik
+ Φ

i+n
ik

and let

Cik = FH

ik

�
Φ

i+n
ik

��1
Fik and Dik = FH

ik

�
Φ

i+n
ik

��2
Fik .

We have that Aik = Φ
�1
ik

Fik and Wik = I + Cik .

Plugging in, ||AikW
1/2
ik

||2F = Tr
�
AikWikA

H

ik

�
=

Tr
�
AH

ik
AikWik

�
= Tr

�
FH

ik
Φ

�2
ik

Fik (I+Cik)
�
. Applying

the matrix inversion lemma to Φ
�1
ik

, it can be shown that

FH

ik
Φ

�2
ik

Fik = (I+Cik)
�1

Dik (I+Cik)
�1

after simpli-

fications. Thus, ||AikW
1/2
ik

||2F = Tr
⇣
(I+Cik)

�1
Dik

⌘
=

Tr

✓�
Φ
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��1
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I+ FH

ik

�
Φ

i+n
ik

��1
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�
Φ

i+n
ik

��1
◆

.

Applying the matrix inversion lemma backwards, we then get

||AikW
1/2
ik

||2F = Tr
⇣�

Φ
i+n
ik

��1 �Φ
�1
ik

⌘
. Further,

���AikW
1/2
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���
2
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(b)

 max
rank(Πik)=Nd

Tr
⇣�

Φ
i+n
ik

��1
Πik

⌘

 Ndλ1

⇣�
Φ

i+n
ik

��1
⌘
=

Nd

λMr

�
Φi+n

ik

�  Nd

σ2
r

where Πik is a rank-Nd projection matrix. The inequal-

ity (a) is due to the trace being an increasing function

on the cone of positive definite matrices and the fact that

D
1/2
ik

(I+Cik)
�1

D
1/2
ik

� D
1/2
ik

C�1
ik

D
1/2
ik

. The inequality

(b) holds since eFik

⇣
eFH

ik
eFik

⌘�1 eFH

ik
is a rank-Nd projection

matrix.

Now assume there are Ns  Nd interference-free di-

mensions, and that the effective channel is fully contained

in those. Let the eigenvalues of Φik be {κs+i+n
m } and the

eigenvalues of Φi+n
ik

be {κi+n
m }. Let the eigenvalues be ordered

such that κs+i+n
m = κi+n

m for all m 2 {1, . . . ,Mr � Ns}.

Consequently, κs+i+n
m = κs

m + σ2
r and κi+n

m = σ2
r for all

m 2 {Mr � Ns + 1, . . . ,Mr}. Here, {κs
m} are the received

signal powers in the interference-free subspace. Then,

Tr
⇣�

Φ
i+n
ik

��1 �Φ
�1
ik
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MrX
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✓
1
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!

MrX
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1

σ2
r

=
Ns
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r

as the {κs
m} grow large with respect to σ2

r . ⌅

C. Proof of Proposition 2

It can be shown that all feasible points are regular, and

thus any minimizer of this non-convex problem satisfies

the KKT conditions [30, Ch. 3.3.1]. The expressions are

obtained by forming the Lagrangian Lik (Aik ,Wik , νik) =

Tr
⇣
Wik

⇣
I+AH

ik
bΦikAik

⌘⌘
� 2Re

⇣
Wik

bFH

ik
Aik

⌘
�

log det (Wik) + νik

⇣
Tr
�
AikWikA

H

ik

�
� Nd

σ2
r

⌘
, setting

the complex partial derivatives to zero, and applying the

matrix inversion lemma. It now remains to find the optimal

ν
opt
ik
� 0. If the constraint is satisfied for ν

opt
ik

= 0, the

problem is solved and the form is identical to the solution

in Sec. II-A1. Otherwise, let bΦik = LikΛikL
H

ik
and

bΦi+n
ik

= Li+n
ik
Λ

i+n
ik
L

i+n,H
ik

be eigenvalue decompositions. Then

as can be seen in (33), ||AikW
1/2
ik

||2F is decreasing in νik ,

and the ν
opt
ik

which satisfies the inequality constraint with

equality can be found by bisection. A natural starting point

for the lower value in the bisection is ν lower
ik

= 0. Using the

same argument as in the proof for Proposition 1, we have

that

���AikW
1/2
ik

���
2

F
 Nd

λMr

⇣
bΦi+n

ik
+νik

I

⌘ and we can enforce

||AikW
1/2
ik

||2F

���
νik

=ν
upper

ik

 Nd

σ2
r

with ν
upper
ik

= σ2
r . The optimal

ν
opt
ik

can now be found using bisection on (33), given the

bounds. With ν
opt
ik

found, the minimizer can be identified as

unique. The fact that (Aopt
ik
,Wopt

ik
) is indeed a minimizer is

clear, since each variable minimizes the objective function

when the other variable is kept fixed. ⌅
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