
Distributed Cube Materialization
on Holistic Measures∗

Arnab Nandi†, Cong Yu‡, Phil Bohannon�, Raghu Ramakrishnan�

†University of Michigan, Ann Arbor, MI ‡Google Research, New York, NY �Yahoo! Research, Santa Clara, CA
arnab@umich.edu, congyu@google.com, {plb, ramakris}@yahoo-inc.com

Abstract—Cube computation over massive datasets is critical

for many important analyses done in the real world. Unlike com-

monly studied algebraic measures such as SUM that are amenable

to parallel computation, efficient cube computation of holistic

measures such as TOP-K is non-trivial and often impossible with

current methods. In this paper we detail real-world challenges in

cube materialization tasks on Web-scale datasets. Specifically, we

identify an important subset of holistic measures and introduce

MR-Cube, a MapReduce based framework for efficient cube com-

putation on these measures. We provide extensive experimental

analyses over both real and synthetic data. We demonstrate that,

unlike existing techniques which cannot scale to the 100 million

tuple mark for our datasets, MR-Cube successfully and efficiently

computes cubes with holistic measures over billion-tuple datasets.

I. INTRODUCTION

Data cube analysis [12] is a powerful tool for analyzing mul-
tidimensional data. For example, consider a data warehouse
that maintains sales information as:
�city, state, country, day, month, year, sales�

where (city, state, country) are attributes of the location
dimension and (day,month, year) are attributes of the tem-
poral dimension. Cube analysis provides the users with a con-
venient way to discover insights from the data by computing
aggregate measures (e.g., total sales) over all possible groups
defined by the two dimensions (e.g., overall sales for “New
York, NY, USA” during “March 2010”). Many studies have
been devoted to designing techniques for efficiently computing
the cube [2], [3], [5], [10], [13], [14], [18], [22].

There are two main limitations in the existing techniques
that have so far prevented cube analysis being extended to
an even broader usage such as analyzing Web query logs.
First, they are designed for a single machine or clusters with
small number of nodes. Given the rate at which data are being
accumulated (e.g., terabytes per day) at many companies, it is
increasingly difficult to process data with a single (or a few)
machine(s). Second, many of the established techniques take
advantage of the measure being algebraic [12] and use this
property to avoid processing groups with a large number of
tuples. Intuitively, a measure is algebraic if the measure of
a super-group can be easily computed from its sub-groups.
(E.g. SUM(a+b) = SUM(a) + SUM(b); Sec. II provides
a formal definition.) This allows parallelized aggregation of
data subsets whose results are then post-processed to derive
the final result. Many important analyses over logs, however,

∗Work done while AN & CY were at Yahoo! Research New York.

CUBE ON location(ip), topic(query)
FROM ‘log.table’ as (user, ip, query)
GENERATE reach(user), volume(user)
HAVING reach(user) > 5

reach(user) := COUNT(DISTINCT(user))
volume(user) := COUNT(user)
location(ip) maps ip to [Country, State, City]
topic(query) maps query to [Topic, Category, Subcategory]

Fig. 1. Typical cubing task on a web search query log, used to identify high-
impact web search queries (for details, see Sec. III.) Data, dimensions and
measures are given as input. Unlike volume, reach is holistic, and hence will
typically fail or take an unreasonable amount of time to compute with existing
methods due to data size and skew, further discussed in Sec. IV. MR-Cube
efficiently computes this cube using MapReduce, as shown in Sec. VI.

involve computing holistic (i.e., non-algebraic) measures

such as the distinct number of users or the top-k most frequent
queries. An example of such a query is provided in Fig. 1 (we
will revisit this example in detail in Sec. III.)

Increasingly, such large scale data are being maintained in
clusters with thousands of machines and analyzed using the
MapReduce [9] programming paradigm. Extending existing
cube computation techniques to this new paradigm, while also
accommodating for holistic measures, however, is non-trivial.

The first issue is how to effectively distribute the data such
that no single machine is overwhelmed with an amount of
work that is beyond its capacity. With algebraic measures,
this is relatively straight forward because the measure for a
large super-group (e.g., number of queries in “US” during
“2010”) can be computed from the measures of a set of
small sub-groups (e.g., number of queries in “NY, US”
during “March 2010”). For holistic measures, however,
the measure of a group can only be computed directly
from the group itself. For example, to compute the distinct
number of users who were from “USA” and issued a query
during “March 2010,” the list of unique users must be
maintained. For groups with a large number of tuples, the
memory requirement for maintaining such intermediate data
can become overwhelming. We address this challenge by
identifying an important subset of holistic measures, partially
algebraic measures, and introducing a value partition
mechanism such that the data load on each machine can be
controlled. We design and implement sampling algorithms
to efficiently detect groups where such value partition is
required. The second issue is how to effectively distribute the

Arnab Nandi
To appear in ICDE'11. Please do not distribute.

Arnab Nandi

computation such that we strike a good balance between the
amount of intermediate data being produced and the pruning
of unnecessary data. We design and implement algorithms
to partition the cube lattice into batch areas and effectively
distribute the computation across available machines.

Main Contributions: To the best of our knowledge, our
work is the first comprehensive study on cube materialization
for holistic measures using the MapReduce paradigm. In
addition to describing real world challenges associated with
holistic cube computation using MapReduce for Web-scale
datasets, we make the following main contributions:

• We formally introduce partially algebraic measures, an
important subset of holistic measures that are MapReduce
friendly.

• We propose two techniques, value partitioning and batch
area identification that effectively leverage the MapReduce
framework to distribute the data and computation workload.

• We propose a two-phase cube materialization algorithm
MR-Cube that employs these techniques to successfully
cube billion-tuple sized datasets.

Extensive experimental analyses over real data demonstrate
that MR-Cube significantly outperforms existing techniques
in terms of efficiency and scalability.

II. PRELIMINARIES

We begin by introducing the basic formalisms used in the
rest of the paper, most of which follow the original notions
described in [12] for Data Cube and [9] for MapReduce. We
explain each concept through a running example, which is
based on a real log analysis task. The same example will also
apply to the data set in our experiments.

As shown in Fig. 2, the raw data is maintained as a set of
tuples and each tuple has a set of raw attributes, such as ip
and query.

!"# $%&# '!"# !(#)'&*+#

!"#!
!"$!
!"%!
!&!

'(#$'%!
'(#$'%!
'(#$')!

&!

*#!
*$!
*#!
&!

+),(-,..,%!
%),$,.),$#!
+),(-,),$%!

&!

/0123"!
/0123"!

4/523!6)'!
&!

Fig. 2. Raw dataset, as maintained on disk.

For many analyses, it is more desirable to map some raw
attributes into a fixed number of derived attributes through a
mapping function. For example, ip can be mapped to city,
state, and country. Similarly, query can be mapped to
sub-category, category, and topic. We assume such
mappings are accomplished by functions that are provided
by the user. Fig. 3 illustrates the derived tuples after the raw
attributes have been mapped.

Dimension attributes & Cube lattice

The term dimension attributes refers to the set of attributes
that the user wants to analyze. Based on those attributes,
a cube lattice can be formed representing all possible
grouping(s) of the attributes. For example, Fig. 4 illustrates

!"# $%&# '!"# ()*+,-# .+/+&# (!+-# +01!(# (/+&20,-#.'3(/+#

!"#
!$#
!%#
#&#

'("$'%#
'("$'%#
'("$')#

&#

*"#
*$#
*"#
&#

+,-#
+,-#
+,-#
&#

./01/234#
5!6#789:#
./01/234#

&#

-44#-9;89#
57<#

=!>98/>#
&#

,18??/42#
,18??/42#
,18??/42#

&#

@184!#
@184!#
<3A!93#

&#

,A39>#
,A39>#
,BC#
&#

!"# #$%&'#

Fig. 3. Derived dataset, by converting ip and query using classifiers.

a cube lattice (only a fraction of the lattice is displayed
in detail) where the dimension attributes include the six
attributes derived from ip and query.

!"#"$"

!%&'()$" <state> <category>

<topic,category> <city,category> <state,topic>
Full lattice

Fig. 4. Cube Lattice using a flat set of 6 dimensions, yielding 64
cube regions. 7 are shown in detail. Note that only 3 of the 7 depicted
regions are valid: < ∗ >, < topic, category > and < topic >.

Cube group & cube region

Each node in the lattice represents one possible
grouping/aggregation. For example, the node
�∗, ∗, ∗, topic, category, ∗� (displayed in short form
as �topic, category�) represents all groups formed by
aggregating (i.e., groupby) on topic and category. Each
group in turn contains a set of tuples satisfying the same
aggregation value. In this paper, we use the term cube region

to denote a node in the lattice and the term cube group to
denote an actual group belonging to the cube region. For
example, tuples with id e1 and e2 both belong to the group

�∗, ∗, ∗, Shopping, Phone, ∗�, which belongs to the region

�∗, ∗, ∗, topic, category, ∗�1. (A cube group is considered
to belong to a cube region if the former is generated by the
aggregation condition of the latter.) In another words, a cube
region is defined by the grouping attributes while a cube
group is defined by the values of those attributes.

Each edge in the lattice represents a parent/child rela-
tionship between two regions, where the grouping condition
of the child region (i.e., the one pointed to by the arrow)
contains exactly one more attribute than that of the parent
region. A parent/child relationship can be similarly defined
between cube groups. For example, the group represent-
ing the tuples of �∗,Michigan, USA, Shopping, Phone, ∗�
is a child of the group representing the tuples of
�∗, ∗, USA, Shopping, Phone, ∗�.

An important observation is that not all regions represent
valid aggregation conditions. For example, the region
�∗, ∗, city, ∗, category, ∗� groups tuples by the same city
(and category), regardless of countries and states. This means,
tuples from Delhi, NCR, India will be grouped together with
tuples from Delhi, Michigan, USA—a scenario that is usually
unintended by the user. This problem is caused by the inherent

1We overload the use of symbol “*” here: it denotes both not grouping by
this attribute for cube region and any value of this attribute for cube group.

!"#$%&'(!"#$

)%*%+(!"%#$

!,%'(!&%%%#$

$$!
"#
$%

"&
'

-".,/(!&%#$

!*%+0"&'(!&%%#$

)#1!*%2(!&%%%#$

''(
)*

+,
'-"

./
#'

'()*(+,-$

.--$./01/$

23.$

64.97.55.3(

4$

567$81/9$

58:$

34.2.54.21(

;$

;$

<,=,-$

;$

;$

>*1-6$

3?,/@$

3*1==(-+$

,34"$+(

4$

:,?6/,$

3AB$

Nikon D40(

;$

;$

Fig. 5. 6 attributes forming 2 dimension hierarchies query topic
and location, with cardinalities and example values for each.

hierarchical relationships among the attributes. As illustrated
in Fig. 5, city, state, country form a dimension

hierarchy, with city at the finest level and country at
the broadest level. A region that groups on city needs to
group on state and country as well to become valid.
Indeed, while there are 8 possible aggregation conditions for
the three attributes, only 4 are valid: �country, state, city�,
�country, state, ∗�, �country, ∗, ∗�, �∗, ∗, ∗�. By grouping
attributes into hierarchies and eliminating invalid cube regions
from the lattice in Fig. 4, we can obtain a more compact
hierarchical cube lattice as shown in Fig. 6. Note that the
idea of a hierarchical cube lattice is not novel; it is in fact
similar in spirit to the descriptions in original data cube
paper [12]. Here, the cube region �state, topic� corresponds
to the original cube region �∗, state, country, ∗, ∗, topic�2.
Hierarchical cubes are often significantly smaller than their
counterpart flat cubes.

!"#$"#"%"

!"#$"&'()*"%"

!"#$"*+&"%"

!"*',-&./$"#"%"

!"*',-&./$"&'()*"%" !"0&+&1$"#"%"

!"*',-&./$"*+&"%" !"0&+&1$"&'()*"%"

!"0&+&1$"*+&"%"

!"*)&/$"0,2*+&"%"

!"*)&/$"#"%"

!"*)&/$"&'()*"%"

!"*)&/$"*+&"%"!"0&+&1$"0,2*+&"%"

!"*',-&./$"0,2*+&"%"

!"#$"0,2*+&"%"

Fig. 6. Cube Lattice when considering 6 attributes in 2 dimension
hierarchies. All cube regions are valid.

Cubing Task and Measures

Given the hierarchical cube, the task of cube computation is
to compute given measures for all valid cube groups, where
a measure is computed by an aggregation function based on
all the tuples within the group. Example measures include
SUM and TOP-K. Typically, measures are characterized by
the following two properties.

Algebraic & Holistic: Given a group G and any mutually
exclusive partition of G, {Gi | i = 1...k} (i.e.,

�k
i=1(Gi) = G

2I.e., we use �state� as a shorthand for �∗,state,country�.

and ∀ij, i �= j, Gi
�

Gj = ∅), a measure M is algebraic if
∃ F,G such that M(G) = F(H(G1), . . . , H(Gk)), where
function H returns an n-tuple and n is a constant for all |Gi|.
It is important to note that G can be partitioned in multiple
ways and the same F and G apply to all possible partitions.
A measure M is holistic if no such functions F and G exist
for all possible partitions. Examples of algebraic functions
are SUM and STD_DEV, and examples of holistic functions
are TOP-K, MODE and MEDIAN.

Monotonic: A numerical measure is monotonic if for
any pair of cube groups such that Gc is a child of
Gp, M(Gc) ≥ M(Gp) (monotonically decreasing) or
M(Gc) ≤ M(Gp) (monotonically increasing). Examples of
monotonic measures are REACH and COUNT.

MapReduce

MapReduce is a shared-nothing parallel data processing
paradigm that is designed for analyzing large amounts of
data on commodity hardware. Hadoop is an open-source
implementation of this framework. A typical MapReduce job
involves three basic phases, which are illustrated in Fig. 7.

abc!

abb!

bcd!

a:1!
b:1  
c:1!

a:1!
b:2!

b:1!
c:1  
d:1!

a:1!
a:1!
b:1!
b:2!
b:1!
c:1!
c:1!
d:1!

a:{1,1}!

b:{1,2,1}!

c:{1,1}!

d:{1}!

a: 2!

b: 4!

c: 2!

d: 1!

Map! Shuffle! Reduce!

Fig. 7. Example MapReduce job for counting the occurrences of
each character in the input strings.

During the Map phase, the input data is distributed across
the mapper machines, where each machine then processes
a subset of the data in parallel and produces one or more
�key, value� pairs for each data record. Next, during the
Shuffle phase, those �key, value� pairs are repartitioned (and
sorted within each partition) so that values corresponding to
the same key are grouped together into {v1, v2, ...}. Finally,
during the Reduce phase, each reducer machine processes a
subset of the �key, {v1, v2, ...}� pairs in parallel and writes
the final results to the distributed file system. The map and
reduce tasks are defined by the user while the shuffle is
accomplished by the system. Fault-tolerance is inherent to a
MapReduce system, which detects failed map or reduce tasks
and reschedules the tasks to other nodes in the cluster.

III. EXAMPLE ANALYSIS TASKS

This paper aims to address challenges with the following
core task: given a large amount of data, a holistic measure
and dimension hierarchies, efficiently compute the measure
of all cube groups that satisfy the pruning condition (if
any), using the MapReduce infrastructure. In this section,
we provide two real-world analysis tasks, for which cube
computation is the core first step. They are representative

of the typical tasks that analysts demand and will be used
throughout this paper. They both involve holistic measures:
reach for the former and top-k for the latter. The schema,
data and lattice for both tasks are the same as our running
example in Sec. II.

Example 1 (Coverage Analysis): Given the location and
topic hierarchies, compute volume and reach of all cube
groups whose reach is at least 5. Highlight those cube groups
whose reach is unusually high compared with their volume.
Here, measure volume is defined as the number of search
tuples in the group, while reach is defined as the number of
unique users issuing those searches.✷

This analysis is inspired by the need to identify query
topics that are issued relatively infrequently by the users,
but cover a large number of users: these queries are often
missed by traditional frequency based analyses because of
their relative low volume, even though those query topics can
in fact have an impact on a very large user population. A SQL-
style specification corresponding to the cubing task for this
analysis is shown in Fig. 1, while the dimension hierarchies
and hierarchical cube lattice are shown in Fig. 5 and Fig. 6
respectively.

Example 2 (Top-k Query Analysis): Given the location
and topic hierarchies, compute top-5 frequent queries for
all cube groups. Highlight those cube groups that share less
than 3 top queries with their parent groups.✷

This analysis aims to discover location bias for various
query topics. For example, the top political queries in Austin

can be very different from those in Texas in general, which
in turn can be different from those in the entire USA.

We note again that cube computation is only part of both
analysis tasks, albeit an essential part. Highlighting the desired
cube groups occurs above the cube computation layer and is
beyond the scope of this work. We provide some discussion
on how to efficiently identify interesting groups in Sec. VIII.

IV. CHALLENGES

Typically, the CUBE operation can be expressed in high-
level MapReduce languages (e.g., Pig [19]) as a disjunction
of groupby queries. A query optimizer would then (in the
ideal case) combine all the queries into a single MapReduce
job. Algo. 1 represents this combined cube computation.
Intuitively, this naive algorithm divides the full cubing task
into a collection of aggregation tasks, one for each cube group,
and distributes them for computation using the MapReduce
framework. In particular, the function R(e) extracts, from the
tuple e, the values of the groupby attributes specified by the
cube region R.

For example, given the cube lattice in Fig. 6, the search
tuple e1 = �091203, u1, 64.97.55.3, iPhone� is mapped to
16 groups (one per region in the cube), including the smallest
group �Ann Arbor, Smart� and the broadest group �∗, ∗�.
Each reducer then computes the measures for its assigned
groups by applying the measure function. Measure-specific
optimization can be incorporated into the naive algorithm to

reduce amount of intermediate data. As an example, for cov-
erage analysis (Example 1), to compute the measure reach,
we only need the attribute uid. Therefore the mapper can emit
just e.uid instead of the full tuple.

Algorithm 1 Naive Algorithm
MAP(e)
1 # e is a tuple in the data
2 let C be the Cube Lattice
3 for each Region R in C

4 do k = R(e);
5 EMIT k ⇒ e

REDUCE/COMBINE(k, {e1, e2, ...})
1 let M be the measure function
2 EMIT k ⇒ M({e1, e2, ...})

It should be noted that despite its simplicity, the Naive
algorithm fares quite well for small datasets. As we will see in
Sec. VI, it outperforms its competitors for such datasets due
to the extremely low overhead costs. However, as the scale
of data increases, we encounter two key challenges that cause
this algorithm to perform poorly and eventually fail: size of
intermediate data and size of large groups. We briefly describe
these challenges next.

A. Size of Intermediate Data
The first challenge arises from the large size of intermediate

data being generated from the map phase, which measures at
|C| × |D|, where |C| is the number of regions in the cube
lattice and |D| is the size of the input data. Since |C| increases
exponentially with both the number and depth of dimensions
to be explored, the naive approach can quickly lead to the
system running out of disk space during the map phase or
struggling through the shuffle (i.e., sort) phase.

B. Size of Large Groups
The second challenge arises from cube groups belonging

to cube regions at the bottom part of the cube lattice, such
as �USA, Shopping� or even �∗, ∗� (i.e., the cube group
containing all tuples). The reducer that is assigned the latter
group essentially has to compute the measure for the entire
dataset, which is usually large enough to cause the reducer to
take significantly longer time to finish than others or even fail.
As the size of the data increases, the number of such groups
also increases. We call such groups reducer-unfriendly. A
cube region with a significant percentage of reducer-unfriendly
groups is called reducer-unfriendly region.

For algebraic measures, this challenge can addressed by
not processing those groups directly: we can first compute
measures only for those smaller, reducer-friendly, groups, then
combine those measures to produce the measure for the larger,
reducer-unfriendly, groups. Such measures are also amenable
to mapper-side aggregation which further decreases the load on
the shuffle and reduce phases. For holistic measures, however,
measures for larger groups can not be assembled from their
smaller child groups, and mapper-side aggregation is also not
possible. Hence, we need a different approach.

V. THE MR-CUBE APPROACH

We propose the MR-Cube approach that addresses the
challenges of large scale cube computation with holistic
measures. The complexity of the cubing task depends on
two aspects: data size, which impacts both intermediate data
size and the size of large groups, and cube lattice size,
which impacts intermediate data size and is controlled by the
number/depth of dimensions. We deal with those complexities
in a two-pronged attack: data partitioning and cube lattice
partitioning. Specifically, our goal is to divide the computation
into pieces such that no reducer has to deal with extremely
large data groups, and the overall intermediate data size is
controlled. A pictorial representation of the overall MR-Cube
process is shown in Fig. 8, for easy reference to the details in
this section.

A. Partially Algebraic Measures
We begin by identifying a subset of holistic measures that

are easy to compute in parallel than an arbitrary holistic
measure. We call them partially algebraic measures. This
notion is inspired by common ad-hoc practices for computing
a single holistic measure from an extremely large number of
data tuples. For example, to compute the measure reach (i.e.,
unique number of users) of billions of search tuples, a known
practical approach is to first group the tuples by the user id
(uid) and then count the number of such groups produced.
It is as if the holistic measure has become algebraic for the
attribute uid. Formally, we have:

Definition 1 (Partially Algebraic Measure):
Given a cube group G, an attribute a, and any mutually
exclusive partitions of G, {Gi|i = 1...k} (i.e.,

�k
i (Gi) = G

and ∀ij, i �= j, Gi
�

Gj = ∅), such that Gi.a
�

Gj.a = ∅. An
aggregate measure M is partially algebraic on a if ∃ F,H,
s.t. M(G) = F(H(G1), . . . , H(Gk)) where H returns an n-
tuple and n is constant regardless of all |Gi|. We call a the
algebraic attribute of M.

Unlike traditional algebraic measures (see Sec. II), which
can be computed from any mutually exclusive sub-groups
(Gi

�
Gj = ∅), partially algebraic measures can be computed

from only those sub-groups that are not only mutually ex-
clusive on the full tuple, but also mutually exclusive after
projecting on the algebraic attribute (Gi.a

�
Gj.a = ∅).

For example, consider reach, which is a holistic measure
that is partially algebraic on attribute uid, and the large
group �USA, ∗�, which contains all searches initiated within
USA. If the partitioning is done arbitrarily, the measure of
the whole group can not be computed from the smaller
sub-groups, since uids can be shared across different sub-
groups. However, if we split the whole group into sub-groups
based on the uid (i.e., each sub-group can be considered as
�USA, ∗, hash(uid)� where hash(uid) hashes the uid), we
can then compute the reach of �USA, ∗� by summing up the
reach for those sub-groups.

We note that Definition 1 can be extended to measures
computed based on multiple attributes. Again, consider a cube
analysis task with location and topic hierarchies. To compute

!"
#$

%&

'()*+,&-$(*.&/01&
!"#$%&'()*+,-.+/()
0"$%1)2)

2345678!'6!5267$9:;;&&

&/0+)<0"7+0$"%*.=>%)%(=+9%.;&
&-$(*.7%0#9+=+)%(10*.=>$?+)%@;&

!"#$%$&'"#()
*)+#%(,$#)

')A#B(&
-../0%1/.))
+%23#4,&#)

C
)#
&

20
A
?9
"(

&
',
$D

(&
E(

:$
+(
&

C
EF
2$

?(
&

G""0%)%(:&
/)H+(&

G
")
B.
>9
>&

3-*"$4
5-%..+/#)
,+67&/$')
&/)5+#8)
5%+,$##&/9)

8I&

G
11
*(
1)
%(
&

5,6#))
+%0#$"%7"8%1/.)
)+%23#4,&#)
9-7:/$"0';)<=)

Fig. 8. Overview of the MR-Cube system: A user specifies di-
mension hierarchies and a measure. An annotated cube lattice is
constructed using a data sample to estimate region cardinalities:
reducer-unfriendly regions (Sec. IV) are value partitioned (Sec. V-B).
Regions are then combined into batch areas (Sec. V-C). In Cube
Materialization (Alg. 2), tuples are mapped to each batch area.
Reducers evaluate the measure for each batch area. Partitioned
measures are merged in a post-processing step. The cube is loaded
into a DB for future exploration. �

top-k (query, user) pairs per cube group, the sub-groups needs
to be partitioned on both uid and query, i.e., a Composite
Partially Algebraic Measure.

Many holistic measures turn out to be partially algebraic,
including the above mentioned reach and top-k frequent
queries. To detect if a holistic measure M is partially algebraic,
we adopt the following detection principle: if there exists an
aggregation A based on attribute a and an algebraic measure
M

�, such that M(D) = M
�(A(D)), where D is the original

data, then M is partially algebraic on attribute a. For the
measure reach, the aggregation is ‘groupby uid’ and the
algebraic measure is count.

In this work, we assume the algebraic attribute is either
provided by the analyst or detected by the system for a few
frequently used measures. Automatically deciding whether a
holistic measure is also partially algebraic and then detecting
its algebraic measure is by itself an interesting and hard

problem. We leave this as part of our future work.
We call this technique of partitioning large groups based

on the algebraic attribute value partitioning, and the ratio
by which a group is partitioned the partition factor. In the
next section, we describe how value partitioning leverages
the algebraic attribute of a partially algebraic measure to
efficiently compute the cube over a large amount of data.
We note that our work is the first to focus on this practically
important subset of holistic measures.

B. Value Partitioning
An easy way to accomplish value partitioning is to run

the naive algorithm, but further partition each cube group
based on the algebraic attribute. However, such an approach is
problematic. The number of map keys being produced is now
the product of the number of groups and the partition factor
(instead of just the former in Algo. 1). This can put a signifi-
cant burden on the shuffle phase. Further, many of the original
groups contain a manageable number of tuples and partitioning
those groups is entirely unnecessary. Even for large, reducer-
unfriendly, groups, some will require partitioning into many
sub-groups (i.e., large partition factor), while others will only
need to be partitioned into a few sub-groups.

Therefore, we want to perform value partitioning only on
groups that are likely to be reducer-unfriendly and dynamically
adjust the partition factor. One approach is to detect reducer-
unfriendly groups on the fly and perform partitioning once
they are detected. This is, however, undesirable because it
requires us to maintain information about groups visited so far
at each mapper, which can be overwhelming for the mapper.
Another approach is to scan the data and compile a list of
potentially reducer-unfriendly groups, for which the mapper
will perform partitioning. This is again undesirable because
checking against the potentially large list slows down the
mapper. We observe that different regions in the cube lattice
have different reducer-unfriendliness depending on their size.
Intuitively, regions at the bottom of the cube lattice, that
contain few groups (e.g., �∗, ∗� or �country, ∗�), are most
likely to contain groups that are reducer-unfriendly, while
regions containing many groups have mostly reducer-friendly
groups.

As a result, we adopt a sampling approach where we
estimate the reducer-unfriendliness of each cube region based
on the number of groups it is estimated to have, and perform
partitioning for all groups within the list of cube regions (a
small list) that are estimated to be reducer unfriendly.

This sampling is accomplished by performing cube compu-
tation using the naive algorithm on a small random subset
of data, with count as the measure. For each discovered
group, this gives us the number of tuples in the sample it
contains. Based on Proposition 1, we declare a group G to
be reducer-unfriendly if we observe more than 0.75rN tuples
of G in the sample, where N is the sample size and r = c

|D|
denotes the maximum number of tuples a single reducer can
handle (c) as a percentage of the overall data size (|D|). (See
Proposition 1.) We declare a region to be reducer-unfriendly if
it contains at least one reducer-unfriendly group. In addition,
let the sample count of the largest reducer-unfriendly group in

reducer-
friendly

reducer-unfriendly !"#$"#!"#$%&'("%"

!"#$"&'()*$"#$%&)"%"

!"#$"*+&$"#$%&)"%"

!"*',-&./$"#$"#$%&'("%"

!"*',-&./$"&'()*"%" !"0&+&1$"#"%"

!"*',-&./$"*+&"%" !"0&+&1$"&'()*"%"

!"0&+&1$"*+&"%"

!"*)&/$"0,2*+&"%"

!"*)&/$"#"%"

!"*)&/$"&'()*"%"

!"*)&/$"*+&"%"!"0&+&1$"0,2*+&"%"

!"*',-&./$"0,2*+&"%"

!"#$"0,2*+&"%"

Fig. 9. Value partitioned lattice. The cube lattice is divided
into reducer-friendly and reducer-unfriendly areas. Each reducer-
unfriendly region is then value partitioned using a partitioning factor
estimated from sampling.

the region be s, we annotate the region with the appropriate
partition factor, an integer that is closest to s

rN
3. Fig. 9

illustrates the cube lattice of Fig. 6 after it is annotated by the
sampling process: the lattice is divided into reducer-friendly
and reducer-unfriendly parts and for each reducer-unfriendly
region, a partition factor is assigned.

Proposition 1: Let |D| denote the total number of tuples
in the data, c denote the reducer limit (i.e., the maximum
number of tuples a reducer can handle), and r = c

|D| . Let N

denote the sample size. If a cube group G contains less than
0.75rN tuples in the sample, then the probability of G being a
reducer-unfriendly group (i.e., containing more than c tuples)
ProbUF(G) ≤ 5% if N >

100
r .

Proof: We can derive the probabilities based on Chernoff
Bound [6]. Consider cube group G which contains c tuples
(t1, t2, ...tn), where c is the reducer limit and r = c

|D| .
The random sampling process can be viewed as a series of
Bernoulli trials on each tuple in G with Pr[ti = 1] = N

|D| ,
where N is the sample size. The expected number of tuples in
G appearing in the sample is E[G] = cN

|D| = rN. Let X denote
the number of tuples in G appearing in the sample. According
to the general case Chernoff Bound [6], for any δ > 0, we
have:

Pr[X < (1 − δ)rN] < e
−rN δ2

2

Let δ = 0.25, we have: Pr[X < 0.75rN] < e
−0.031rN. If

N >
100
r , then Pr[X < 0.75rN] < 5%. This means if G

contains at least c tuples, the probability of observing less
than 0.75rN tuples in G in the sample is less than 5% if the
sample size is large enough (i.e., >

100
r). Conversely, if we

observe less 0.75rN tuples in G, then the probability of G

containing more than c tuples (ProbUF(G)) is less than 5%
if the sample size is large enough. ✷

A reducer in our setting can easily handle 1M tuples.
Therefore, for data with 1B tuples, the sample size N can be as
small as 100K and easily manageable by the naive algorithm.
In practice, we increase N to 2M, which allows us to have a

3Intuitively, 1
r is the partition factor required for groups containing all the

tuples, and s
N is the relaxation factor for groups with a subset of the tuples.

much more accurate estimation or handle up to 20B tuples.
Finally, we note that extreme data skew can occur in some

datasets, which will cause value partitioning to be applied to
most of the cube regions. Addressing this issue is part of our
future work and we discuss some initial thoughts in Sec. VIII.

C. Batch Areas
Given the annotated cube lattice, we can again directly apply

the naive algorithm, process each cube group independently
with the added safeguard that partitions the groups that belong
to a reducer-unfriendly region. This partially alleviates the
problem of large intermediate data size. However, each tuple
is still duplicated at least |C| times. Furthermore, another sig-
nificant drawback of the naive approach is its incompatibility
with pruning for monotonic measures, i.e., each cube group is
processed independent of its parent group, we can no longer
prune a group’s children based on the HAVING conditions
such as those specified in Fig. 1.

To address those problems, we propose to combine regions
into batch areas. Each batch area represents a collection
of regions that share a common ancestor region. Mappers
can now emit one key-value pair per batch for each data
tuple; thus drastically reducing the amount of intermediate
data. Reducers, on the other hand, instead of simply applying
the measure function, execute a traditional cube computation
algorithm over the set of tuples using the batch area as the local
cube lattice. A batch area typically contains multiple regions
with parent/child relationships, groups can therefore be pruned
based on monotonic measures, assuming a pruning condition
is specified, and the cube computation algorithm adopted can
take advantage of that. One such algorithm is the Bottom Up
Cubing Algorithm (BUC) [3], which we adopt4. Since the
core cubing algorithm being executed on a single reducer
is self-contained, BUC can be replaced with an algorithm
of choice if needed. We also note here that if a group has
been value partitioned, then monotonicity-based pruning can
no longer apply since the measure for the entire group may
satisfy the HAVING conditions even though the measure for
each individual partition may not.

Forming batch areas for reducer-unfriendly regions is
straightforward: we simply combine regions based on their
partition factors. Forming batch areas for reducer-friendly
regions however, requires some thought.

A key determinant of intermediate data size is the overall
number of derived attributes to be retained for the reduce
phase. As an example, for batch area b5 in Fig. 10, three
derived attributes (city, state, topic) need to be maintained
for each tuple. The lower the number of total derived attributes
need to maintained, the smaller the size of the intermediate
data. Furthermore, we would like to encourage that batch areas
have uniform completion times, since any skew can impact
the full utilization of reducers. Based on these observations,
we formulate the batch areas identification problem as the
following:

4While there are other more recent algorithms such as Star-Cubing [28],
they require the measure to be algebraic and are therefore not applicable for
our analysis tasks.

Definition 2 (Batch Areas Identification): Given the set
of reducer-friendly regions C

� in the cube lattice and let
(Ri ≺ Rj) indicating the parent-child relationship (Rj being
the parent) between two regions in the whole cube lattice,
assign each R ∈ C

� into one of the mutually exclusive set of
batch areas (B1, B2, ..., Bk) such that the following constraints
are satisfied:
• ∀R ∈ C

� with at least one parent region in C
�, R ∈ Bi ⇒

∃R ��
, R ≺ R

��
, R

�� ∈ Bi;
• ∀R1, R2 ∈ C

�
, R1 ≺ R

�
1, R2 ≺ R

�
2, R

�
1, R

�
2 /∈ C

�, R1 ∈
Bi ⇒ R2 ∈ Bj, i �= j;

• ∀ij, i �= j, |(|Bi| − |Bj|)| ≤ 2

Intuitively, the three constraints state that: i) a region with
at least one parent that is also reducer-friendly must belong
to a batch area that contains at least one of its parents; ii) no
two regions whose parents are reducer-unfriendly can belong
to the same batch area; iii) the difference in the number of
regions of two batch areas can not be more than 2, a heuristic
used to balance the workload of each batch area.

Since each batch area will effectively require an independent
projection of the dataset, they directly impact the size of
intermediate data, and hence overall performance, as discussed
in Sec. IV-A. Thus, it is important to construct batch areas that
minimize the amount of intermediate data generated.

A viable set of batch areas can be derived greedily by
considering the lowermost reducer-friendly regions as initial
batch areas, and then walking up the lattice adding each region
to the least populated batch area, given the constraints. For
typical lattices, it is feasible pick the solution with the lowest
total cost, i.e., min(

�
i cost(Bi)) by exhaustive enumeration.

The cost function reflects the amount of intermediate data
per batch area, and is defined as the count of set of attributes
required by that batch area. For larger lattices, the search space
for an ideal set of batch areas is exponential to the size of
the lattice; simulated annealing can be used to generate an
acceptably good solution.

The combined process of identifying and value-partitioning
unfriendly regions followed by the partitioning of friendly
regions is referred to as ANNOTATE in Algo. 2. The lowest
cost annotated lattice is presented in Fig. 10.

reducer-
friendly

reducer-unfriendly !"#$"#!"#$%&'("%"

!"#$"&'()*$"#$%&)"%"

!"#$"*+&$"#$%&)"%"

!"*',-&./$"#$"#$%&'("%"

!"*',-&./$"&'()*"%" !"0&+&1$"#"%"

!"*',-&./$"*+&"%" !"0&+&1$"&'()*"%"

!"0&+&1$"*+&"%"

!"*)&/$"0,2*+&"%"

!"*)&/$"#"%"

!"*)&/$"&'()*"%"

!"*)&/$"*+&"%"!"0&+&1$"0,2*+&"%"

!"*',-&./$"0,2*+&"%"

!"#$"0,2*+&"%"

batch areas
(b1…5)

!"#

!$#

!%#

!&#

!'#

Fig. 10. Annotated Cube Lattice. Each color in the lattice indicates
a batch area, b1...b5. The reducer-friendly blocks are grouped into
three batch areas to exploit pruning and reduce intermediate data size.
Two of the reducer-unfriendly regions are value partitioned on uid
into 10 partitions.

!"#$!!%&&!!%'()'$!!*+,)&-!
!".$!!&/0$!!*+,)&-!!!!!!!!
!".$!!1-2')*2$!!&*3)&!!145! !6

%+
!

7,
"8

-!

9-
1"

0-
!

!"#"$%&'()&*+(+,)-(./"&'(
"0(-1+/,/)-2(3(*,4)-(,/+,5(

6,7&+%',/88"05()"$*10+9(
10('"54%'/")+5510.(

!:;*0,*<%&$=>?!!"#$!!%&&!!%'()'$!!+,)&-!
!:=$=>$!#!!!!!!!!!!?!!"#$!!"@%!

!:&-A!/)'3$=>?!!".$!!&/0$!!+,)&-!
!:=$=>$!.!!!!!!!!!!?!!".$!!"@%!

!:;*0,*<%&$=>?!!".$!!1-2')*2$!!0%;-'%!
!:=$=>$!.!!!!!!!!!!?!!".$!!"@%!

!:;*0,*<%&$=>?!!"#$!!%&&!!%'()'$!!+,)&-!

!:&-A!/)'3$=>?!!".$!!&/0$!!+,)&-!

!:=$=>$!.!!!!!!!!!!?!!".$!!"@%!

!:;*0,*<%&$=>?!!".$!!1-2')*2$!!0%;-'%!

!:=$=>$!.!!!!!!!!!!?!!".$!!"@%!

!:=$=>$!#!!!!!!!!!!?!!"#$!!"@%!

!:=$=>?!#!

!:=$=>?!#!

!:&-A!/)'3$!=>?!#!

!:&/0$!=>!!!!!!!!!!!!?!#!

!:&-A!/)'3$!0%;-'%>!?!#!

!:&/0$!0%;-'%>!!!!!!!!!!!!!?!#!

!:;*0,*<%&$!+,)&->!!!?!#!

!:;*0,*<%&$!0%;-'%>!?!#!

!:%&&!%'()'$!+,)&->!!?!#!

!:1-2')*2$!0%;-'%>!!!!!?!#!

!:;*0,*<%&$!=>!?!.!

!:%&&!%'()'$!=>?!#!

!:1-2')*2$!=>!!!!!?!#!

Fig. 11. Walkthrough for MR-Cube with reach as measure, as described in Sec. V-D. Both the Map and Reduce stages take the Annotated
Cube Lattice(Fig. 10) as a parameter. Walkthrough is shown only for batch areas b1 (denoted by red ◦ on tuples) & b5 (denoted by blue �).

D. Cube Materialization & Walkthrough
As shown in Algo. 2, an annotated lattice is generated and

then used to perform the main MR-CUBE-MAP-REDUCE.

Algorithm 2 MR-Cube Algorithm
ESTIMATE-MAP(e)
1 # e is a tuple in the data
2 let C be the Cube Lattice;
3 for each ci in C

4 do EMIT (ci, ci(e) ⇒ 1) # the group is the secondary key

ESTIMATE-REDUCE/COMBINE(�r,g�, {e1, e2, ...})
1 # �r, g� are the primary/secondary keys
2 MaxSize S ← {}
3 for each r, g

4 do S[r] ← MAX(S[r], |g|)
5 # |g| is the number of tuples {ei, ..., ej} ∈ g

6 return S

MR-CUBE-MAP(e)
1 # e is a tuple in the data
2 let Ca be the Annotated Cube Lattice
3 for each bi in Ca.batch areas
4 do s ← bi[0].partition factor
5 EMIT (e.SLICE(bi[0]) + e.id%s ⇒ e)
6 # value partitioning: ‘e.id % s’ is appended to primary key

MR-CUBE-REDUCE(k, V)
1 let Ca be the Annotated Cube Lattice
2 let M be the measure function
3 cube ← BUC(DIMENSIONS(Ca, k), V, M)
4 EMIT-ALL (k, cube)
5 if (MEMORY-EXCEPTION)
6 then D

� ← D
� ∪ (k, V)

MR-CUBE(Cube Lattice C, Dataset D, Measure M)
1 Dsample = SAMPLE(D)
2 RegionSizes R = ESTIMATE-MAPREDUCE(Dsample, C)
3 Ca = ANNOTATE(R,C) # value part. & batching
4 while (D)
5 do R ← R ∪ MR-CUBE-MAPREDUCE(Ca,M, D)
6 D ← D

� # retry failed groups D’ from MR-Cube-Reduce
7 Ca ← INCREASE-PARTITIONING(Ca)
8 Result ← MERGE(R) # post-aggregate value partitions
9 return Result

In Fig. 11 we present a walkthrough of MR-Cube over
our running example. Based on the sampling results, cube
regions �∗, ∗� and �country, ∗� have been deemed reducer-
unfriendly and require partitioning into 10 parts. We depict
materialization for 2 of the 5 batch areas, b1 and b5. For
each tuple in the dataset, the MR-CUBE-MAP emits key:value
pairs for each batch area, denoted by red ◦ (b1) and blue
� (b5). In required, keys are appended with a hash based
on value partitioning, e.g. the 2 in �∗, ∗�, 2 : u2, usa. The
shuffle phase then sorts them according to key, yielding 4

reducer tasks. Algorithm BUC is run on each reducer, and the
cube aggregates are generated. The value partitioned groups
representing �∗, ∗, 1� are merged during post-processing to
produce the final result for that group, �∗, ∗, 2�.

Note that if a reducer fails due to wrong estimation of
group size, all the data for that group is written back to the
disk and follow-up MapReduce jobs are then run with more
aggressive value partitioning, until the cube is completed. It
should be noted that in practice, a follow-up job is rarely, if
at all, needed.

VI. EXPERIMENTAL EVALUATION

We perform the experimental evaluation on a production
Yahoo! Hadoop 0.20 cluster as described in [24]. Each node
has 2×Quad Core 2.5GHz Intel Xeon CPU, 8GB RAM,
4×1TB SATA HDD, and runs RHEL/AS 4 Linux. The heap
size for each mapper or reducer task is set to 4GB. All tasks are
implemented in Python and executed via Hadoop Streaming.
Similar to [1], we collect results only from successful runs,
where all nodes are available, operating correctly, and there
is no delay in allocating tasks. We report the average number
from three successful runs for each task.

A. Experimental Setup

1) Datasets: We adopt two datasets. The Real dataset
contains real life click streams obtained from query logs of
Yahoo! Search. We examined clicks to Amazon, Wikipedia
and IMDB on the search results. For each click tuple, we
retain the following information: uid, ip, query, url. We
establish three dimensions containing a total of six levels.
The location dimension contains three levels (from lowest to
highest, with cardinalities): city(74214) → state(2669) →
country(235) and is derived from ip

5. The time dimension
5Mapping is done using the free MaxMind GeoLite City database:

http://www.maxmind.com/app/geolitecity.

contains two levels: month(6) → day(42). The gender
dimension contains only one level, gender(3), and is derived
from the user’s profile information. This dataset in full con-
tains 516M click tuples for a size of 55GB. The number of
unique users and queries are in the range of tens of millions.

We also generate the synthetic Example dataset, which has
been our running example and contains 1B tuples. Attributes
and dimension hierarchies of this dataset are shown in Fig. 5.
The probability distributions used to spread the attribute values
across the tuples are: Normal distribution for , Zipf distribu-
tion for query, Gaussian distribution for city and Uniform
distribution for time. The parameters for the distributions are
chosen based on prior studies [26], [27]. The full dataset is
called Example-1B and amounts to 55GB on disk.

2) Cube Materialization Tasks: We focus on two cube
computation tasks shown in Sec. III: computing user reach

for the coverage analysis and computing top-k queries for
the top-k analysis. The first measure computes the number of
distinct users within the set of tuples for each cube group. It
is monotonic and holistic, but partially algebraic on uid. We
output a cube group only if its user reach is greater than 20.
The second measure, top-k queries, computes the top-5 most
popular queries. It is again holistic, but partially algebraic on
query. Since it is not a numerical measure, monotonicity does
not apply.

3) Baseline Algorithms: We compare our MR-Cube algo-
rithm against three baseline algorithms: the naive MapReduce
algorithm (Naive) described in Algo. 1 and adaptations of two
parallel algorithms proposed in Ng et al. [18], BPP and PT.
The latter two algorithms are designed for cube materialization
over flat dimension hierarchies using small PC clusters. To
ensure a reasonable comparison, we adjust these algorithms
to fit our MapReduce infrastructure.

MR-BPP: Adapted from BPP (Breadth-first Partitioned
Parallel Cube), a parallel algorithm designed for cube mate-
rialization over flat dimension hierarchies. It divides the cube
lattice into subtrees rooted at each dimension attribute. For
each subtree, it partitions the dataset according to the attribute
value and computes the measure (or intermediate results) for
each data partition in parallel. The overall measures are then
combined from those of individual partitions.

MR-PT: Adapted from PT (Partitioned Tree), a parallel
algorithm designed for cube materialization using PC clusters
with a small number of machines. It repeatedly partitions
the entire cube lattice in binary fashion until the number of
partitions matches the number of available machines. It then
computes the measures for all cube groups in each lattice
partition on a single machine. PT can be directly adapted to
our MapReduce setting: when the number of machines exceeds
the number of cube regions, each machine then only needs to
process a single cube region.

Since both original algorithms are designed for flat dimen-
sions, we convert our dataset into an acceptable format by
flattening our multi-level hierarchies. The task allocations step
(i.e., assigning cube computation tasks to machines) in both
algorithms are conducted during the map phase. During the

!"#

$%"#

%&"#

&'"#

(!"#

$# %# &# %"# $""#)$!#

!"
#
$%
&'
(%

)*+*%,"-$%&./#0$1%23%45$6+'7%"6%8"99"26'(%

Dataset: Real
Measure: Reach

*+,-..#

*+,./#

*+,0123#

45673#

!"#$

"%#$

%&#$

'(#$

!'"#$

!$ "$ %$!#$ "#$!##$)!($

!"
#
$%
&'
(

)*+*(,"-$(%./#0$1(23(45$6+&7("6(8"99"26&'(

!"#"$%#&'(%")'
*%"$+,%&'-./01'

*+,-..$

*+,./$

*+,0123$

45673$

Fig. 12. Running time over Real dataset, for measures reach and
top-k queries.

reduce phase, the BUC algorithm is then run on the tuples just
like in the original algorithms. We note here that, incidentally,
MR-BPP is similar to the algorithm proposed by You et al. [29]
and MR-PT is similar to the algorithm proposed by Sergey et
al. [23].

There are two more algorithms described in Ng et al [18],
namely RP (Replicated Parallel BUC) and ASL (Affinity
Skiplist). Algorithm RP is dominated by PT and is therefore
ignored here. Algorithm ASL processes each cube region in
parallel and uses a Skiplist to maintain intermediate results
for each cube group during the process. In this study, the
functionality of the Skiplist is provided by the MapReduce
framework itself, turning ASL into our naive algorithm; and
is thus also ignored.

B. Experimental Results
We focus on three main parameters that impact the perfor-

mance of the algorithms: data scale (number of tuples in the
dataset), parallelism (number of reducers) and hierarchies

(number and depth of the dimension hierarchies, which affect
the cube lattice size). During the map phase, the system
automatically partitions the input data into roughly 1M tuples
per mapper. As a result, the number of mappers is the same
for all algorithms with the same input data and we do not
examine its impact. We emphasize that, for MR-Cube, we
measure the total time including the sampling process and
batch areas generation, each of which take just under a minute
to complete for all runs. In addition to the experimental results
described here, we provide additional analysis and anecdotal
results over a real life cubing task in Sec. VI-C.

1) Impact of Data Scale: We first analyze the cubing time
over the Real datasets of different data scales for computing
user reach and top-k queries (where k is 5). The dimension
hierarchies adopted are location, domain, and gender, as

!"#

$""#

%""#

&""#

'""#

$(""#

!%""#

(&""#
$""""#

$""")# $"*# $""*# $"""*#

!"
#
$%
&'
(

)"*$(+,(-./.(%01#2$3(+,(45$6/&'(

!"#"$%#&'()"*+,%'
-%"$./%&'0%"12'

3!"$2%4',56%$'5*+,7''
8/"1%9.,'4%8/"4":;6'3$%%'#%)#<'

*+,-..#

*+,./#

*+,0123#

45673#

Fig. 13. Running time over Example dataset. Dashed lines indicate
use of graceful degradation.

described in Sec. VI-A1. This results in a cube lattice with
24 regions. The full dataset contains 516M tuples and datasets
of smaller scales are random subsets of the full dataset. The
parallelism is set to 128. Except the number of tuples, this
general setting is similar to those adopted in earlier studies [3],
[18] in terms of the product of the attribute cardinalities.

As shown in Fig. 12, MR-Cube scales much better than the
baseline algorithms. MR-BPP and MR-PT both fail to cube
after 4M tuples because they are not able to leverage the
full parallel power provided by MapReduce. Naive performs
better at small data scales because of its low overhead. It,
however, fails after the 20M tuples mark. MR-Cube is the
only algorithm that can successfully cube the full dataset.

Fig. 13 illustrates the running times for computing reach
for the Example datasets. The hierarchies being adopted are
location and query topic, as shown in Fig 5, for a cube lattice
of 16 regions. The full dataset contains 1B tuples and we
again randomly form the smaller datasets. For this particular
experiment, we incorporate graceful degradation: i.e., when a
cube group is too large to be computed, we allow the algorithm
to proceed by ignoring the offending group. This prevents
the algorithm from failing, but leads to the cube being only
partially materialized. As expected, Naive, MR-BPP, and MR-
PT cannot scale up to the full dataset, failing at 100M, 10M
and 50M tuples, respectively, if graceful degradation is not
used (solid lines). MR-Cube, however, scales well and fully
computes the cube within 20 minutes for the full dataset. Even
when graceful degradation is used (dashed lines), MR-Cube
still performs significantly better than the baseline algorithms.

Insights: MR-Cube performs worse than Naive at small data
scale, especially when computing the top-k queries. This is
because monotonic property can not apply here and hence
the BUC algorithm employed by MR-Cube cannot prune
efficiently. Also, in Figs. 12 and 13, using MR-Cube becomes
viable when the speedup accrued due to better value partition
and lattice partitioning outweighs the overhead involved in
the sampling process. Further, for MR-PT, its approach of
effectively copying the dataset to each reducer is clearly not
practical under MapReduce. It also does not take advantage
of any parallelism beyond the number of regions.

!"

#$!"

$%!"

&'!"

%(!"

'!!"

)$!"

!" $*!" *!!")*!" #!!!" #$*!" #*!!"

!"
#
$%
&'
(%

)*+*,,$,"'#%&-.#/$+%01%#*23"4$'(%

!"#"$%#&'()"*+,%-./0'
0%"$12%&'3%"45'

67"2",,%,8$*&'./9://9:;<9:./9'
;//9.//9':///'"=>':.//?'

+,-./01"

23451"

Fig. 14. Running time over Example dataset with varying parallelism.

!"#$ %"&$

'"'$

&"%$
#"!$

#$

&'#$

'!#$

(&#$

)%#$

!"#$%$&'()*#+,')-).)/0)12%,)%3$"45)

!"#$%&"'()"#*+(
,#-#'(./#012"345!(

&$
*$ '$

#$

+#$

,##$

,+#$

&##$

6"
7
#)
85
9)

*#+,')/0)!"#$%$&'"#5)
8!"#$%$&'"#5):);9)

&$

*$

'$

#$

+#$

,##$

,+#$

&##$

<=74#$)/0)!"#$%$&'"#5)
8*#+,'):);9)

Fig. 15. Running time over Example-10M dataset with different
hierarchy configurations.

2) Effect of Parallelism: Next, we analyze the impact
of increasing parallelism on the cube computation time in
Fig. 14 using the Example dataset with 50M tuples. We report
numbers for Naive and MR-Cube only: due to the overhead
of task setup for large jobs, the effect of parallelism can only
be appreciated with large datasets, at which both MR-PT and
MR-BPP fail. We observe that MR-Cube scales linearly up
to 200 nodes, after which the setup and runtime overhead of
the MapReduce infrastructure factors in and cancels out the
benefit from increasing parallelism.

3) Effect of Hierarchies: We further analyze the effect of
hierarchies on cube computation using the Example-10M

dataset. In the first two experiments in Fig. 15, we either fix
the depth and vary the number of hierarchies (middle panel)
or fix the number and vary the depth of the hierarchies (left
panel). Not surprisingly, increasing the depth has a more
gradual increase in runtime than the number of hierarchies. In
the third experiment (right panel), we fix the total number of
levels across all dimensions and vary the configuration: going
from 8 levels in a single hierarchy (8, 0) to 8 flat dimensions
(0, 8). The result indicates that having 8 flat dimensions is
a lot more costly for cube computation than having a single
8-level dimension hierarchy, which is not surprising since the
former produces a much larger cube lattice than the latter.

In summary, MR-Cube clearly outperforms currently
available distributed algorithms for cubing large data on
holistic measures. From an implementation standpoint, it is
advisable to provide both Naive and MR-Cube algorithms to
the user. In the case when the data is small, or the measure is
algebraic, the Naive algorithm is recommended. As the data
and lattice size increase, and when the measure is holistic,
the user can switch to MR-Cube.

Hier. Regions 192 Annotation M/R 1m 14s
Naive Regions 512 Cube Materialize 20m 3s
Head Regions 28 Post-process 4m 12s
Avg Map time 3m 21s Map Out Tuples 14B

Avg Shuffle Time 8m 29s Map Out Bytes 1.1TB
Avg Reducer Time 4m 12s Cube Size 216GB

Fig. 16. Performance statistics of the anecdotal analysis.

NY RI ME WI

Monday Sunday Sunday Monday
Tuesday Friday Monday Sunday
Friday Monday Tuesday Tuesday

Thursday Thursday Friday Friday
(a) Top 4 frequent days for female users clicking
on IMDB URLs, by U.S. state.

Jan Feb

Joanna Pacitti Joanna Pacitti
Lisa Bonet Tonya Harding Today

Martin Luther King Jr Eliza Dushku
Kim Kardashian Rihanna

Malia Obama Chris Brown
March April

Crystal Mckellar Swine Flu
Natasha Richardson Twitter

Watchmen Keshia Night Pullam
XBox 360 Ring Sabrina Lebeauf
Marcus Jordan Lady Gaga

May June

Montauk Monster Hyalinobatrachium pellucidum
Kris Allen David Carradine

Adam Lambert Dream Interpretations
Kate Gosselin Frank Lloyd Wright Houses

Derecho Storms Air France Flight 447
(b) Queries with highest reach on Wikipedia URLs, by Month

Fig. 17. Anecdotal Results from the search log analysis

C. Anecdotal Results

In this section, we present some anecdotal results from an
actual cube analysis task over a Yahoo! Search log sample with
500M items. The analysis involves 6 dimensions containing a
total of 9 individual attributes (including the attribute query

for individual queries) and computes the measures reach and
top-5 most frequent days. It is performed on a Hadoop 0.20

cluster with 2048 mappers and reducers. Fig. 16 illustrates
relevant performance statistics on the analysis. Some example
results are shown in Fig. 17.

We gained some further insights while performing this
cubing task. First, MR-Cube properly partitioned the cube
lattice and distributed the computational work load evenly
across all nodes. As a result, no single long-running reducer
held up the progress of the task. Second, due to the large
number of cube groups (resulting from the fact that one
of the dimension attributes, query, has millions of unique
values), the shuffle phase took longer than the map or reduce
phases. Third, as expected from our discussion in Sec. V-B,
our conservative estimation of partition factors avoided any
skew-based reducer failures. Finally, we noticed that skew in
the query attribute (e.g., queries like “amazon” or “imdb”

were issued by millions of unique users) leads to many regions
being value partitioned, but the average groups within those
regions were very small. Since partitioned groups are not
pruned, this further led to a large number of groups which
had to be pruned in the post-processing step. While we do
not address this issue of extreme data skew in this paper, we
provide some initial discussion of it in Sec. VIII.

VII. RELATED WORK

Since the introduction of data cube by Gray et al [12],
many techniques [2], [3], [10], [13], [14], [22], [28] have
been proposed for efficient cube computation. Leveraging the
algebraic or monotonic properties of the measures has been
at the center of those techniques. In particular, the BUC
algorithm [3] leverages monotonic measures like COUNT to
efficiently compute the iceberg cube. All these studies focus
on non-parallel algorithms and are therefore not scalable to
the billions of tuples that we aim to analyze. Further, many
of these approaches assume the cube measures to be algebraic
and are therefore not applicable to the analysis tasks that we
are interested in.

Ng et al [18] first introduced a series of parallel algorithms
for cube computation over small PC clusters. Two of our
baseline algorithms (MR-BPP and MR-PT) are adopted from
this study. However, as we demonstrate in our experiments,
those algorithms are designed for small PC clusters and
therefore can not take advantage of the MapReduce infras-
tructure. Other recent algorithms for parallel cubing either
require a special parallel architecture that is different from
MapReduce [15] or require the measures to be algebraic [5],
[23], [29]. Chen et al [4] recently proposed an algorithm for
parallel evaluation of composite aggregate queries. However,
it focuses on computing composite measures for specific cube
regions and does not handle the reducer-unfriendliness that we
study here.

Our work is also complementary to recent studies on
MapReduce languages like Pig [19] and Sawzall [21], which
provide a user-friendly layer over MapReduce for ad-hoc
aggregate analyses. The cube computation task can be incor-
porated as an operator into those languages to provide users
with a friendly way to explore their data without issuing many
ad-hoc aggregate queries.

Implementations of large-scale distributed aggregation
have been documented in proprietary systems. The Google
Dremel [17] system uses a hierarchical architecture to compute
aggregates which cannot be directly applied to holistic mea-
sures. Aster Data’s SQL/MapReduce [11] uses the MapReduce
model in combination with a mature database system; we
expect cube-style queries to be executed similar to our Naive
approach in their environment.

We note that computing certain holistic measures approxi-
mately with memory bounds or in the presence of heavy skew
is the subject of many previous studies [8], [25]. Our work
differ from those by providing a generic framework that works
for a large number of holistic measures without the need for
ad hoc specialization. Furthermore, we are able to compute
the measures exactly instead of approximately.

VIII. FUTURE WORK

There are several interesting issues beyond the scope of the
current paper that we would like to address as part of future
work. The first issue is the challenge of extreme data skew,
which occurs if a few cube groups are unusually large even
when they belong to a cube region at the top of the lattice
(i.e., those with fine granularities such as �query, city�). This
causes value partitioning to be applied to the entire cube and
therefore reduces the efficiency of our algorithm. The second
issue is identifying interesting cube groups on top of the cube
computation layer. Indeed, computing measures for each cube
groups is just the initial, albeit essential, step for the full
analysis task, and a natural follow up step is to automatically
discover unusual cube groups. We briefly describe here some
preliminary studies we have done on both.

Group-level Partitioning using Sketches: We currently
perform value partitioning on a region-by-region basis: if a
cube region is estimated to contain a reducer-unfriendly group,
all groups within the region are value partitioned, many of
which may not be necessary. This approach works well until
there is extreme data skew which can lead to most cube
regions being value partitioned. We are actively investigating
an alternative approach of marking reducer-unfriendly groups
instead of regions. Since the number of groups can be very
large, it may not be feasible to compute quickly or maintain
some statistics in the mapper’s memory, as can be easily done
for regions. We are looking into using compressed counting
data structures such as CM-Sketch [8] as a solution.

Identifying Interesting Groups: Computing the cube (i.e.,
computing measures for all cube groups satisfying the pruning
conditions) is only the first step, identification of interesting
cube groups often needs to follow. Such tasks are trivial when
the size of the full cube is tenable and when the interestingness
can be defined as a simple value predicate. However, analysts
often require more complex measures of interestingness. For
example, the example task in Example 2 requires the system
to compare the top-k queries of parent and child groups.
This relative nature of interestingness requires non-trivial
computation and breaks the ability to distribute computation to
multiple nodes. We are investigating duplicate and co-locate
approaches where certain groups are duplicated and co-located
to their parent/child groups, such that uninteresting groups can
be pruned without being computed.

IX. CONCLUSION

In this paper, we study cube computation of holistic mea-
sures over extremely large data such as search logs using the
MapReduce framework. We identify a subset of holistic mea-
sures that are partially algebraic and propose the technique of
value partitioning to make them easy to compute in parallel.
We design algorithms that partition the cube lattice into batch
areas to effectively exploit both the parallel processing power
of MapReduce and the pruning power of cube materialization
algorithms. Experiments over real and synthetic data show that
our MR-Cube algorithm efficiently distributes the computa-
tion workload across the machines and is able to complete
cubing tasks at a scale where prior algorithms fail.

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, et al. HadoopDB:
An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. VLDB, 2009.

[2] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton,
R. Ramakrishnan, and S. Sarawagi. On the Computation of Multidi-
mensional Aggregates. VLDB, 1996.

[3] K. Beyer and R. Ramakrishnan. Bottom-Up computation of sparse and
iceberg CUBEs. SIGMOD, 1999.

[4] L. Chen, C. Olston, and R. Ramakrishnan. Parallel evaluation of
composite aggregate queries. In ICDE, 2008.

[5] Y. Chen, F. K. H. A. Dehne, T. Eavis, and A. Rau-Chaplin. PnP:
sequential, external memory, and parallel iceberg cube computation.
Distributed and Parallel Databases, 2008.

[6] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a
Hypothesis Based on the Sum of Observation. Math. Statistics, 1952.

[7] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. MAD
skills: New Analysis Practices for Big Data. VLDB, 2009.

[8] G. Cormode and S. Muthukrishnan. An Improved Data Stream
Summary: The Count-Min Sketch and its Applications. Journal of
Algorithms, 2005.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. OSDI, 2004.

[10] M. Fang, N. Shivakumar, H. Garcia-molina, R. Motwani, and J. D.
Ullman. Computing Iceberg Queries Efficiently. VLDB, 1998.

[11] E. Friedman, P. Pawlowski, and J. Cieslewicz. SQL/MapReduce: A
Practical Approach to Self-Describing, Polymorphic, and Parallelizable
User-Defined Functions. VLDB, 2009.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A
Relational Operator Generalizing Group-By, Cross-Tab and Sub-Totals.
ICDE, 1996.

[13] J. Hah, J. Pei, G. Dong, and K. Wang. Efficient Computation of Iceberg
Cubes with Complex Measures. SIGMOD, 2001.

[14] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data
Cubes Efficiently. SIGMOD, 1996.

[15] R. Jin, K. Vaidyanathan, et al. Communication & Memory Optimal
Parallel Datacube Construction. Parallel Distrib. Syst., 2005.

[16] X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP: A Minimal
Cubing Approach. In VLDB, 2004.

[17] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets.
VLDB, 2009.

[18] R. T. Ng, A. S. Wagner, and Y. Yin. Iceberg-cube computation with PC
clusters. SIGMOD, 2001.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A not-so-foreign language for data processing. In SIGMOD, 2008.

[20] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and
M. Stonebraker. A Comparison of Approaches to Large-Scale Data
Analysis. SIGMOD, 2009.

[21] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 2005.

[22] K. A. Ross and D. Srivastava. Fast Computation of Sparse Datacubes.
VLDB, 1997.

[23] K. Sergey and K. Yury. Applying Map-Reduce Paradigm for Parallel
Closed Cube Computation. DBKDA, 2009.

[24] K. V. Shvachko and A. C. Murthy. Scaling Hadoop to 4000 nodes at
Yahoo! Yahoo! Developer Network Blog, 2008.

[25] D. Talbot. Succinct Approx. Counting of Skewed Data. IJCAI, 2009.
[26] J. Walker. Mathematics: Zipf’s Law and the AOL Query Database.

Fourmilog: None dare call it reason., 2006.
[27] Y. Xie and D. O Hallaron. Locality in search engine queries and its

implications for caching. INFOCOM, 2002.
[28] D. Xin, J. Han, X. Li, and B. W. Wah. Star-Cubing: Computing Iceberg

Cubes by Top-Down And Bottom-Up Integration. VLDB, 2003.
[29] J. You, J. Xi, P. Zhang, and H. Chen. A Parallel Algorithm for Closed

Cube Computation. ICIS, 2008.
[30] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and

J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. OSDI, 2008.

