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ABSTRACT

An efficient method based on projective joint invariant sig-
natures is presented for distributed matching of curves in a
camera network. The fundamental projective joint invari-
ants for curves in the real projective space are the volume
cross-ratios. A curve in m-dimensional projective space is
represented by a signature manifold comprising n-point pro-
jective joint invariants, where n is at least m + 2. The
signature manifold can be used to establish equivalence of
two curves in projective space. However, without correspon-
dence between the two curves, matching signature manifolds
is a computational challenge. In this paper we overcome
this challenge by finding discriminative sections of signature
manifolds consistently across varying viewpoints and scor-
ing the similarity between these sections. This motivates a
simple yet powerful method for distributed curve matching
in a camera network. Experimental results with real data
demonstrate the classification performance of the proposed
algorithm with respect to the size of the sections of the in-
variant signature in various noisy conditions.
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1. INTRODUCTION
Object recognition in automated visual surveillance sys-

tems must be capable of matching features which represent
distinctive parts of objects (such as people or vehicles) in
complex environments in an online fashion across multiple
viewpoints. Commercial, law enforcement, and military ap-
plications abound, including detection of loiterers, monitor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDSC 2010 August 31 – September 4, 2010, Atlanta, GA, USA
Copyright 20XX ACM 978-1-4503-0317-0/10/08 ...$10.00.

ing vehicles on highways, patrolling borders, measuring traf-
fic flow, counting endangered species, and activity monitor-
ing in airports. As costs for cameras and computers continue
to drop while the desire for security and other applications
increases, research in this area has been developing rapidly
over the last decade [5, 6, 10, 12, 21]. Matching curves
across widely varying viewpoints requires local image fea-
tures that are invariant to changes in pose, occlusion, illu-
mination, scale, and intrinsic differences between cameras.

This paper describes a method that uses projective joint
invariants to match curves across multiple views. Given
a pair of images taken from unknown viewpoints, a set of
curves is extracted from each image that are projections of
unknown 3D curves in the scene. The objective is to deter-
mine if any two given curves, one from each image, match,
i.e. if they correspond to the same curve in the scene.

A function defined on an image, of a planar or 3D object,
is said to be invariant to a collection of transformations
if its value remains unchanged despite the transformation
of the object. Two images (or sub-images) with the same
values of the invariant are identified as images of the same
object under a transformation, thereby making the problem
of multiple hypothesis detection direct. Due to the utility
of transformation-invariant features in their ability to re-
duce the set of possible matches and speed up the search
for similar classes or objects, invariant-based approaches to
problems in computer vision have been well studied [16, 17].

Invariant-based methods may be classified as global or
local: global invariants utilize the entire image to compute
feature values whereas local invariants are computed from
much smaller subsets. Local invariants are more desirable
due to their robustness to occlusion and noise. However, one
of the fundamental problems with the use of local invariants
is that they must be computed on corresponding subsets of
points in each view.

1.1 Related Work
Projective invariants have been applied to various com-

puter vision tasks such as localization [14, 22], autonomous
navigation [27], 3D reconstruction [25], and surveillance [28].
The statistical distribution of random four-point cross-ratios
has been studied numerically [11] as well as analytically [4]
and performance of a classifier based on cross-ratios was



characterized quantitatively in terms of probability of re-
jection and false alarm [15]. However, in all of the works
mentioned above, the correspondence of points between im-
ages was either given a priori or was obtained using external
markers. Without correspondence information, the classifi-
cation methodology breaks down since the cross ratios are
not unique.

In other related work, Scale-invariant feature transform
(SIFT) [13] was used to compute a large set of local feature
vectors from each image and the correspondence between
two images was established using RANSAC [7]. This ap-
proach has been used for 3D model reconstruction in the
Photo Tourism system [26]. However, the computational
complexity of SIFT and RANSAC makes it difficult to use
for real-time video surveillance applications in camera net-
works with non overlapping field-of-view.

Rothwell et al. [24, 23] presented an approach for planar
object recognition by constructing a canonical frame for de-
termining projectively invariant indexing functions for pla-
nar curves. The idea is to identify four distinguished points
on the curve and then compute the projective transforma-
tion that maps these points to the four corners of a square.
The distinguished points are chosen using tangency condi-
tions that are preserved under projective transformations.
Similar ideas have been put forth by Hann and Hickman
[8, 9] and by Orrite and Herrero [20]. These methods also
utilize bi-tangency points on curves to learn a projective
map. The key difference in the more recent work [8, 9, 20]
from the algorithms presented in mid-nineties [24, 23] is that
they learn the best projective transformation between two
given planar curves in an iterative fashion whereas the ear-
lier work focussed on solving for a projective transformation
that best maps the bi-tangency points to four corners of the
unit square.

There are several shortcomings of existing methods for
matching curves across multiple viewpoints that preclude
their deployment to applications like video surveillance in
camera networks. The methods based on learning projective
transformations [8, 9, 20, 24, 23] between given curves are
inherently centralized and computationally expensive. In or-
der to deal with differences in sampling of images (resulting
from different imaging devices), existing methods employ an
iterative scheme where the learnt projective transformation
is corrected-for based on the resulting mismatch in the im-
age domain. Specializing these methods to matching curves
in video streams will require transmitting full frames at each
iteration and repeated estimation of projective transforma-
tions. Furthermore, the methods depend on the ability to
consistently identify bi-tangents. But, due to possible occlu-
sions, the curves extracted from the images may not admit
any bi-tangents. Finally, the methods based on detecting in-
terest points and representing images in a visual dictionary
obtained by clustering SIFT descriptors [18] are inherently
offline. In applications such as video surveillance (where
the object to be matched may be moving), these methods
require frame synchronization across video feeds from differ-
ent cameras as well as dictionary computation and exchange
every few frames.

1.2 Our Approach
We present a method for matching curves in different

views without assuming any knowledge of the relative po-
sitions and orientations of the viewpoints. Our approach is

based on the computation and comparison of projective in-
variants that are expressed as volume cross ratios of curves
extracted from images of an arbitrary 3D scene. Signatures
based on these cross ratios are computed from each image
and a computationally efficient algorithm is presented for
distributed matching. This work was inspired by recent ad-
vances in joint invariants [19] and probabilistic analysis of
random cross ratios. We build on our previous work [2]
which focusses on first establishing correspondence of points
on the given curves and then comparing the associated pro-
jective joint invariant signatures. This requires exchange of
images of the curves between cameras and solving an op-
timization problem to search for matching pivot points for
each pair of curves [2]; therefore, the algorithm does not lend
itself to distributed matching.

Joint invariant signatures were studied by Olver [19] for
various transformation groups. However, due to the sheer
size and global nature of the signatures, they cannot be di-
rectly employed for curve-matching. The novel ideas in this
paper include generating compact local signatures indepen-
dently from each image and fast distributed matching suited
for camera networks. We systematically reduce the size and
computational complexity of the matching by reformulating
the problem and offering a tradeoff between the size of the
feature space and the size of the search space for registration
parameters.

Our method alleviates the aforementioned shortcomings
of existing methods. Unlike existing methods that match
curves in the image domain, the proposed method matches
curves in an invariant domain. The classification rule is
based on comparing the projective invariants of a given pair
of curves. The invariants are known to be complete and
therefore uniquely represent the corresponding curve. There-
fore, it is only required to exchange these invariant descrip-
tors of the curve rather than the entire curve itself.

The joint-invariants are also robust to noise as a small
perturbation of points on the curve results in a small rel-
ative error in the invariant domain [3]. The matching of
two curves can be performed efficiently in the presence of
bi-tangents on the given curves. Unlike previous work [8,
9, 20, 24, 23], the proposed method does not critically de-
pend on the existence of bi-tangents. However, whenever
bi-tangents are present, our approach utilizes them to speed
up the search for registration parameters.

It is important to note that a description of a curve us-
ing projective joint invariants remains invariant to Euclidean
transformations as well. Therefore, in video surveillance ap-
plications, the representation is redundant across frames of
the video-feed when the object undergoes rigid-body motion.
This saves network bandwidth and computational resources
and allows for robust matching of curves between two cam-
eras without frame synchronization.

The paper is organized as follows. Section 2 describes the
curve matching problem in a multiview setting and briefly
presents mathematical preliminaries in projective joint in-
variants. Section 3 describes the joint invariant signature
and challenges associated with distributed matching of sig-
nature manifolds. In Section 4 we discuss the use of sub-
manifolds and local signatures to establish correspondence
and equivalence of curves across viewpoints. Experimental
results are presented in Section 5.



2. PROBLEM FORMULATION AND PRE-

LIMINARIES
This section introduces notation and presents the prob-

lem formulation for pairwise curve matching across different
viewpoints. Let Ci represent an unknown viewpoint or cam-
era location. Let Sij denote the jth continuous planar-curve
captured at viewpoint Ci. The curve Sij is obtained from a
3D space curve S under an unknown projective transforma-
tion. Formally, Sij is defined to be a parametric curve

Sij : Iij → R
m

t 7→ Sij(t), (1)

where Iij ⊂ R is a real interval and m is the dimensionality
of the ambient Euclidean space for the curve. For t ∈ T ,
Sij(t) = [x1(t) · · · xm(t)]T gives coordinates in R

m of the
corresponding point on the curve. For planar curves, m = 2
and for space curves m = 3. The n-dimensional Cartesian
product of the curve Sij is written as,

S
n
ij : I

n
ij → R

m×n

t
n 7→ S

n
ij(t

n), (2)

where In
ij ⊂ R

n is an n-dimensional interval, tn = (t1, . . . , tn)
and Sn

ij(t
n) = (Sij(t1), . . . , Sij(tn)). For a pair of curves

Sij , Skl observed at viewpoints Ci, Ck respectively, the ob-
jective is to determine if the two curves in the image space
at the two unknown viewpoints represent the same space
curve in the scene. The sampled, discretized version of Sij

is denoted Dij .
We denote the manifold associated with the given curve as

M . A given curve may undergo various transformations like
rotation, translation, scaling and projection. These transfor-
mations can be described by a Lie group, denoted G, acting
on the manifold M . The joint action of a group on a man-
ifold describes how the group transforms any given n-tuple
on the manifold. Formally, the joint action of the group G

on the Cartesian product Mn is a map (G × Mn) → Mn

given as:

g · (z1, . . . , zn) = (g · z1, . . . , g · zn), (3)

for g ∈ G and z = (z1, . . . , zn) ∈ Mn. With a slight abuse
of notation we use zi to represent a point on the manifold
M ⊆ R

m as well as its Euclidean coordinates in the ambient
space R

m. An n−point joint invariant of the transformation
group G on Mn is defined to be a function

F
(n) : R

m×n → R
l

z 7→ [F
(n)
1 (z), . . . ,F

(n)
l (z)], (4)

that is invariant to the joint action of the group on the man-
ifold: F(n)(g · z) = F(n)(z), for all g ∈ G.

The projective transformation group, G = PSL(m+1, R),
which is the subject of study in this paper, acts on the pro-
jective space RP

m as w = g ·z = Az+b
c·z+d

, where A is an m×m

matrix, b, c are m × 1 vectors, and d is a scalar. The trans-
formation g maps the point z ∈ R

m ⊂ RP
m to w ∈ R

m.
For planar curves (m = 2), the fundamental 5-point joint

invariants for the projective transformation group PSL(3, R),
are given by the volume cross ratios [19]:

CR(z1; z2, z3, z4, z5) =
V (z1, z2, z3)V (z1, z4, z5)

V (z1, z2, z5)V (z1, z3, z4)
, (5)

Figure 1: The five-point projective joint-invariant is the ra-
tio of the product of areas of the non-shaded triangles and
the product of areas of the shaded triangles.

and

CR(z2; z1, z3, z4, z5) =
V (z1, z2, z3)V (z2, z4, z5)

V (z1, z2, z5)V (z2, z3, z4)
, (6)

where V (zi, zj , zk) is the area of the triangle defined by zi, zj

and zk. The cross ratio defined in (5) is described as the
ratio of the product of the areas of the non-shaded triangles
in Fig. 1 and the product of areas of the shaded triangles.
Therefore, for PSL(3, R), F(n) is given by

F
(n)(z) = [CR(z1; z2, z3, z4, z5), CR(z2; z1, z3, z4, z5)] . (7)

For m = 3, i.e. space curves, we consider 6-point joint in-
variants. There are three fundamental volume cross-ratios:
CR(z1, z6; z2, z3, z4, z5), CR(z1, z3; z2, z4, z5, z6), and CR(z3,

z6; z1, z2, z4, z5). Geometrically, CR(z1, z6; z2, z3, z4, z5) is
the ratio of the volumes of four tetrahedrons:

CR(z1, z6; z2, z3, z4, z5) =
V (z1, z2, z3, z4)V (z2, z3, z5, z6)

V (z1, z2, z4, z5)V (z3, z4, z5, z6)
.

Fig. 1 shows a bird’s eye view of the double pyramid with
common base resulting from the union of the tetrahedrons
[19].

The probabilistic analysis of random five point cross-ratios
reveals that no single cross-ratio is unique on smooth man-
ifolds [3]. Consequently, for planar curves, the matching
schemes based on comparing single cross-ratios are not dis-
criminative. The six-point joint-invariants for 3D curves
lend themselves to the same analysis as the empirical dis-
tributions are found to exhibit characteristics similar to the
planar case. Furthermore, it is argued using jitter-analysis
that the cross-ratios are robust to noise; for more details the
reader is referred to [3].

3. JOINT INVARIANT SIGNATURES
The non-uniqueness of any single cross ratio value implies

that no single cross ratio value can be used for matching
without establishing correspondence of points [3]. However,
the joint invariant signature defined to be the manifold com-
prising cross-ratio values generated by all possible n-point



Table 1: Notation Table

Symbols Description

Ci ith camera or ith viewpoint
Sij jth continuous curve at viewpoint Ci

I an interval of R

Dij jth discrete curve in image plane of camera Ci

G transformation group
M manifold

F(n) n−point joint-invariant function [F
(n)
1 , . . . ,F

(n)
l ]

V (zi, zj , zk) area of the triangle with vertices zi, zj , zk

CR(z1; z2, z3, z4, z5) volume cross-ratio given in eqn. (5)
Sn

ij n−times Cartesian product of the curve Sij

Jij invariant signature manifold for curve Sij

d
ij
kl distance function used for matching; see eqn. (10)

t∗ pivot points (t∗1, t
∗

2, . . . , t
∗

n−p)
π a permutation of n-points
At∗,π slice of signature manifold determined by t∗, π

Ut∗,π a section of the slice At∗,π

sets on a curve represents the curve uniquely up to a pro-
jective transformation [19].

Let F(n) be the n-point joint invariant map for the projec-
tive transformation group PSL(3, R) given in Eq. (7). Con-

sider the composition Jij = F(n) ◦ Sn
ij ,

Jij : I
n → R

l

t
n → F

(n)(Sn
ij(t

n)). (8)

The invariant signature manifold at viewpoint Ci for the jth

curve is defined to be Jij(I
n
ij). We now focus on restriction

of the curves to a common domain. Consider I ⊆ Iij ∩ Ikl.
Note that the intervals Iij , Ikl can be translated, flipped and
scaled appropriately so that I 6= ∅. We denote the restriction
of the curves to the common interval I by S̃ij and S̃kl.

Now, if the curves S̃ij , S̃kl are related by a projective
transformation, i.e., S̃ij = g·S̃kl for some g ∈ G = PSL(3, R)
on interval I ⊂ R, then from the definition of joint action,
S̃n

ij = g · S̃n
kl. This implies that the invariant signature man-

ifold for the two curves coincide: For all tn ∈ In,

Jij(t
n) = (F(n) ◦ S̃

n
ij)(t

n)

= (F(n) ◦ (g · S̃n
kl))(t

n)

= (F(n) ◦ S̃
n
kl)(t

n)

= Jkl(t
n). (9)

More importantly, S̃ij = g · S̃kl for some g ∈ G if Jij(I
n) =

Jkl(I
n)[19]. Therefore, two curves are equivalent up to a

projective transformation if and only if their signature man-
ifolds coincide. Consider the following distance function
that measures the degree of mismatch between two curves in
terms of the mismatch in the associated invariant signature
manifolds,

d
ij
kl(U) ≡

Z

U

||Jij(t
n) − Jkl(t

n)||22 dt
n
, U ⊆ I

n
, (10)

where || · ||2 represents the Euclidean norm. For robustness
to noise, we adopt the following test for matching two curves,

d
ij
kl(I

n) < ǫ, (11)

where threshold ǫ > 0 depends on the amount of noise re-
sulting from differences in quantization and the sampling
grids of the two cameras. The matching criterion in (11) is
straightforward if the two curves are defined on the same
domain and the true correspondence between the curves is
known. However, without the correspondence information
between the two curves there is no direct method to compute
the distance function in (10). This problem is further com-
pounded by various practical aspects of matching in a cam-
era network. First and foremost, the curves observed at each
camera are discrete curves (Dij obtained from sampling Sij).
Secondly, due to differences in the sampling grids for differ-
ent cameras, the discretization of the interval I differs for
each camera. Finally, the size of signature manifold associ-
ated with each curve grows exponentially with the number of
samples on the curve. Therefore, estimating correspondence
between the two curves using entire signature manifolds is
not a feasible solution due to computational constraints. In-
stead we restrict invariant descriptors of the curves to be
certain sections of the signature manifold. Then the match-
ing proceeds with estimating d

ij
kl between given sections Jij

and Jkl.

4. TOWARD LOCAL SIGNATURES
The joint invariant signature manifold is a global descrip-

tor. Owing to the lack of robustness of global signatures to
occlusion, we restrict our attention to sections of invariant
signature sub-manifolds. We first define a slice of the sig-
nature manifold and then discuss local signatures computed
on sections of slices.

4.1 Slices and Sections of Signature Manifold
A slice of the signature manifold may be generated by

freezing one or more coordinate direction of In (at pivot
points denoted as t∗) while at least one coordinate direc-
tion spans the entire interval. Matching slices of the sig-
nature manifold across varying viewpoints provides an ef-
ficient method for establishing correspondence of curves.
Such slices (or sub-manifolds) may not be generated arbi-
trarily: If the pivot points in RP

2 (RP
3) result in collinear



(a) Smoothed contour of letter “W”.
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(b) Surface plot of a section of 2D slice.
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(c) Surface plot of a 2D slice under F
(n)
1 .

Figure 2: The points z3, z4 and z5 are the pivot points and points z1, z2 span the 2D slice of the signature sub-manifold

associated under F
(n)
1 .

(coplanar) points on the curve, then the resulting slice may
comprise all zero cross-ratio values. A p-dimensional sub-
manifold of the n-point joint invariant signature manifold
is obtained by pivoting n − p of the n points. Consider a
canonical p-dimensional slice of the interval In ⊂ R

n,

At∗ = {t∗1} × {t∗2} × · · · × {t∗n−p} × I
p
, (12)

where first (n − p) coordinates for tn ∈ At∗ are fixed: tn =
(t∗, tp). In order to generate all possible slices, we need to
introduce the notion of permutation of coordinates. Let π

denote a permutation of integers {1, . . . , n},

π : {1, . . . , n} → {1, . . . , n}

i 7→ π(i). (13)

The permutation π acts on At∗ to give another slice,

At∗,π =
˘

t̃ ∈ I
n : t̃π(i) = ti, for i = 1, . . . , n, where

(t1, . . . , tn) ∈ At∗} . (14)

Given a slice At∗ , consider a local section Ut∗ ⊆ At∗ defined

as

Ut∗ = {t∗1} × {t∗2} × · · · × {t∗n−p} × U
p
, (15)

where Up = Un−p+1 ×Un−p+2 × · · · ×Un ⊆ Ip. A section of
At∗,π is denoted as Ut∗,π.

Using sections of signature manifolds offers a tradeoff be-
tween the size of the invariant descriptors versus the compu-
tational load associated with searching pivot points. Con-
sider the special case of projective transformations of planar
curves (m = 2, n = 5). A 2D slice of the signature manifold
for the letter “W” from a license plate dataset [1] is shown in

Fig. 2(c) with permutation

„

1 2 3 4 5
3 4 5 1 2

«

. The pivot points

are zπ(i) = Sij(t
∗

i ) for i = 1, 2, 3 and zπ(4), zπ(5) span the en-
tire interval I. A section of the slice is shown in Fig. 2(b)
with free points restricted to the region marked by squares
in Fig. 2(a).

4.2 Distributed Matching
An important issue in an implementation of a local signa-



ture based matching algorithm is that of non-uniform sam-
pling of the curves in the two images. That is, some parts
of the curve may be more densely sampled in C1 than in
C2. One solution is to re-sample each extracted contour
from an image (as a preprocessing step) on to a uniform
grid. This realizes a uniform resolution over the sampled
curve. Another possible solution is to exchange images of the
curves between cameras and solve an optimization problem
to search for matching pivot points for each pair of curves [2].
Then, for each possible match of pivot points the joint in-
variant signature is computed locally and compared against
a pre-determined threshold [2]. Although effective, this al-
gorithm does not lend itself to distributed matching.

In this section we propose a distributed matching method
that avoids the overhead of reconstructing or resampling the
images on a uniform grid. The key idea behind the match-
ing algorithm is that local sections on the curve correspond
to tight clusters in the domain of the signature manifold.
This motivates the following algorithm for generating sec-
tions of the signature manifold that are discriminative as
well as compact descriptors of the given curve.

def Jsig1 = genSIG(S1, N , lo, hi)
Input: S1 - local planar curve, N - size of the section

of invariant signature, (lo, hi) - terminal indices
for a segment of the curve

Output: An N × 2 matrix representing a section of the
invariant signature

L = number of samples on S between lo and hi;
Pivot point t∗ = (lo + ⌊L

4
⌋, lo + ⌊ 2L

4
⌋, lo + ⌊ 3L

4
⌋, hi, lo);

CR1 = F
(5)
1 (S5

1(t∗)) ;

CR2 = F
(5)
2 (S5

1(t∗)) (see Eqns. (4), (5), (6));
Jsig1(1, 1) = CR1, Jsig1(1, 2) = CR2;
Define a neighbourhood U ⊂ I5 around t∗;
for i = 2, 3, . . . , N do

Generate uniformly random sample t5 from U ;
(CR1, CR2) = F(5)(S5

1(t5));
Jsig1(i, 1) = CR1, Jsig1(i, 2) = CR2;

end

Algorithm 1: Generating sectional signature

It should be remarked that at each iteration of the inner
loop in Algorithm 1, a new point in U is sampled (without
replacement). Also, the drawn sample is discarded if the
corresponding cross-ratios are not well defined or lie outside
a desired interval. Recall that the probabilistic analysis of
random cross ratios [3, 4, 11, 15] suggests that smaller cross
ratios are not discriminative and very large cross ratios are
sensitive to noise.

Given sections of two invariant descriptors, one computed
on a curve captured locally and another received from a
different node in the camera network, the goal is to score
the similarity of the invariant descriptors. A simple scoring
scheme follows from identification of the best possible match
between the subsets (of sufficient size) of the sections of the
two descriptors. The scoring scheme is described in Algo-
rithm 2.

def Score = matchSIG(Jsig1, Jsig2, N , α)
Input: Jsig1 - Invariant descriptor received, Jsig2 -

Invariant descriptor for the curve captured
locally, N - size of the invariant signature,
overlap parameter 0 < α ≤ 1

Output: Similarity score between Jsig1 and Jsig2

Score = 0;
J = {1, 2, . . . , N}, K = {1, 2, . . . , N};
for i = 1, 2, . . . , ⌊αN⌋ do

(ĵ, k̂) = arg minj∈J,k∈K ||Jsig1(j, :) − Jsig2(k, :)||2;

Score = Score + ||Jsig1(ĵ, :) − Jsig2(k̂, :)||2;

J = J\ĵ, K = K\k̂
end

Algorithm 2: Matching sectional signature

In order to facilitate fast matching of sections of invariant
descriptors, one should be able to generate the same sets
of pivot points consistently across varying viewpoints, even
in noisy conditions. This is accomplished by identification
of inflection points on the curve which are left invariant by
projective transformations. The segment of the curve de-
limited by a pair of inflection points is used to generate a
section of the invariant signature as described in Algorithm
1. For more details on finding inflection points, see Sec. 4.3.

4.3 Picking Pivot Points
A robust method for choosing pivot points and sections

consistently across varying viewpoints is based on the iden-
tification of inflection points of curves. Inflection points are
defined to be the points on the curve at which the curvature
changes sign. Consider the motion of the tangent to a given
planar curve at a point as the point moves along the curve.
The tangent either rotates clockwise or anti-clockwise in the
plane. The rate of rotation of the tangent the curvature
of the curve. The points at which the rotation changes di-
rection (clockwise to anti-clockwise or vice versa) are the
inflection points of the curve. It is well known that inflec-
tion points are invariant to projective transformations. Thus
they can be found consistently across different viewpoints
and result in the same segmentation of the curve.

However, inflection points are sensitive to noise. Fig. 3
shows inflection points for various contour images extracted

(a)

(b)

(c)

Figure 3: Inflection points marked with dots on (a) original
contours, (b) smoothed contours and (c) post-elimination
based on the amount of rotation of tangent about inflection
points.



Figure 4: Contour images from the license plate database [1]. The digits extracted from license plates as seen at (a) Camera 1,
(b) at a randomly generated viewpoint of the curves observed at Camera 1, (c) at Camera 2, and (d) at a randomly generated
viewpoint of the curves observed at Camera 2. (e) Confusion matrix for 100 random projective transformations of curves in
the license plate database.

from the license plate dataset [1]. Due to the quantized na-
ture of the contours and associated noise or discontinuities,
a simple test for inflection points results in a host of pos-
sible candidates as seen in Fig. 3(a). Smoothing the curve
using a simple low-pass filter eliminates most of the noisy
candidates (Fig. 3(b)). Further elimination based on the
area under the curvature plot about each candidate point
reveals the significant inflection points as seen in Fig. 3(c).
This pre-processing method is robust to severely noisy con-
ditions as well as widely varying viewpoints. Thus it allows
for robust segmentation of curves.

Note that most interesting shapes admit inflection points
in the resulting contours. However, in the case where no in-
flection points are observed, the pivot points can be picked to
ensure that the associated cross-ratio values satisfy certain
design constraints. As long as the pivot points are identified
consistently, it does not affect the accuracy of the distributed
matching scheme described in the previous section. This is
also evident from experimental results in severe noisy con-
ditions.

5. EXPERIMENTAL RESULTS
This section discusses performance of the distributed curve-

matching algorithm proposed in this paper on a license plate
image database [1].

Fig. 2 shows one of the contour plots from the license plate
dataset along with its invariant signatures. Fig. 2(a) shows
the contour of the letter “W” (extracted from images of the
license plate WMP619). The set of five points on contours
that generated the invariant signature (in Fig. 2(c)), are
highlighted with dots. The points z3, z4 and z5 are the pivot
points and points z1, z2 span a 2D slice of the signature sub-

manifold associated with F
(n)
1 in Eq. (7). The surface plot

of the 2D slice is shown in Fig. 2(c) and surface plot of a
section is shown in Fig. 2(b).

The images from the license plate dataset captured at
two different viewpoints are shown in Figs. 4(a,c). The test

dataset comprising the 12 contour images was enlarged by
generating random projective transformations of the given
contours. The confusion matrix for this experiment for 100
random projective transformations is shown in Fig. 4(e). It
is evident from the experimental results that the method
enjoys a good specificity as well as sensitivity. The number
of detected inflection points for the test images ranged from
0 (for the digit “8” after smoothing) to 8 (for the letter “X”).

Finally, the performance of matching was studied with
respect to the size of the exchanged sections of the invari-
ant signature in various noisy conditions. A family of curves
representing the probability of correct classification was gen-
erated for various SNR levels as shown in Fig. 5. Results are
reported for the 12 contours of digits and letters (shown in
Fig. 4) extracted from the multi-view license-plate dataset
[1]. Our method enjoys better accuracy than the clustering-
based method presented in [2] on the same dataset. At the
same time the algorithm is considerably faster with each
comparison (including the generation of the invariant signa-
ture) taking roughly 0.5s on a 2.4GHz machine. The source
code along with a detailed report on experimental settings
and extended results is available online [1].

6. DISCUSSION
This paper presented an efficient algorithm for matching

curves across widely varying viewpoints using joint invari-
ants. The equivalence of curves under projective transfor-
mation is established by matching sections of the invariant
signature manifold which are local, compact descriptors of
curves. Experimental results with a license plate dataset
show superior accuracy and speed over existing methods.
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