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Abstract - The basic quantity to be estimated in the 
Bayesian approach to data fusion is the conditional 
probability density function (CPDF). In recent times, 
computationally efficient particle filtering approaches are 
gaining growing importance in estimating these CPDF. In 
this approach, i.i.d samples are used to represent the 
conditional probability densities.  However, their 
application in data fusion is severely limited due to the fact 
that the information is stored in the form of a large set of 
samples.  In all practical data fusion systems that have 
limited communication bandwidth, broadcasting this 
probabilistic information, available as a set of samples, to 
the fusion center is impractical. Support vector machines, 
through statistical learning theory, provide a way of 
compressing information by generating optimal kernal 
based representations. In this paper we use SVM to 
compress the probabilistic information available in the 
form of i.i.d samples and apply it to solve the Bayesian 
data fusion problem. We demonstrate this technique on a 
multi-sensor tracking example.   
 
Keywords: Bayesian Data Fusion, Density 
Estimation, Support Vector Machines, Particle 
Filters, Sequential Montecarlo Methods. 
 

1 Introduction 
 
The last few years have seen significant advances in 
the fields of sequential montecarlo methods [1,2], 
support vector machines and Bayesian data fusion. 
Sequential montecarlo methods and associated 
particle filters enable recursive Bayesian estimation 
in non-linear, non-Gaussian filtering and 
identification problems.  
 
These methods represent the underlying probability 
densities with a set of i.i.d samples and provide 
estimates of target identity or target state from them. 
On the other hand, support vector machines are 
essentially techniques for function approximation 
based on statistical learning theory [5]. Recently, 
SVM’s have been shown to perform well for density 
estimation problems where the PDF of the iid 

sample set can be learned and the entire sample set 
can be represented by a few support vectors and the 
associated kernal functions [4]. Thus while 
sequential montecarlo methods provide a means of 
estimating the sample set representing the 
underlying PDF’s recursively, the SVM based 
density estimation provides methods of compressing 
the information available via the sample set into a 
small set of support vectors and the associated 
Kernal functions. These methods together provide a 
means of solving the distributed data fusion problem 
in the Bayesian framework in the Non-Gaussian 
context.  
 
The paper is organized as follows. Following 
introduction, section 2 introduces the problem of 
distributed data fusion problem and highlights the 
key elements needed for its Bayesian solution. 
Section 3, introduces the density estimation problem 
and motivates the use of Support Vector Machines. 
Section 4 presents the SVM based solution to the 
density estimation problem while section 5 focuses 
on the choice of kernal functions and other practical 
issues. Section 6 provides simulation results for a 
two dimensional density estimation problem and it 
presents discussions and future research directions. 
Finally, conclusions are drawn in section 7. 

 
2  Distributed Data Fusion 
 
Distributed data fusion refers to the problem of 
fusing information available from remote sensors at 
the fusion node [3]. The problem is illustrated in 
figure 1. Bayesian solution to this problem requires 
the remote nodes to have information available in 
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the form of the probability density function and can 
be expressed as follows: 

 
If the measurements are available along with their 
likelihood functions, the first two terms can be 
easily evaluated. However, when the measurements 
are not readily available, then the following 
alternate expression can be used: 
 
Thus the most important element of carrying out the 
fusion is the determination of the following 
fractions based on the information supplied by the 
remote sensors. 

 
Most of the existing methods of applying Bayesian 
data fusion to distributed sensor networks assume 
that the available probabilistic information, i.e., the 
numerator and denominator of the density function 
(from remote sensors) are Gaussian and hence can 
be represented by only two parameters (i.e., mean 
and covariance). However, in many real world 
problems, Gaussianity is far from reality and has 
given rise to a number of approaches to adapt to 
non-gaussian PDFs. Particle filters or  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sequential montecarlo methods are a set of 
techniques that address the problem of non-
Gaussianity effectively. In such methods, the remote 
sensors use a particle filter that obtains an iid 
sample set that captures the non-gaussian elements 
of the PDF accurately. However, communicating 
this PDF to the fusion node is non-trivial, as it 
involves, broadcasting the complete particle or 
sample set to the fusion node. As the links 

connecting the remote sensors to the fusion node 
have band width constraints, communicating the 
sample set is impracticle. This creates a need for 
some of compression. Based in the results of vapnik 
et. al, [4], we chose support vectors machines as a 
means of achieving such a compression. It involves 
learning the PDF from the available sample set and 
communicating the support vectors in the place of 
the samples and reconstructing the density function 
at the fusion node. This problem is studied in the 
rest of the paper. 

 

3  The Density Estimation Problem 
 
Suppose we are given a set of training data: 

 { }, 1,2, ,d
i i i n∈ℜ =x x �  (2.1) 

generated by taking samples from some unknown 
probability distribution ( )P x .  We wish to estimate 
the density function ( )p x  associated with this 

distribution. In the context of Bayesian data fusion 
the densities of interest are 

 
where the training samples are obtained from the 
respective particulate representations. These 
densities are obtained and stored in the form of a set 
of samples at each sensor. Using the density 
estimation approach out-lined in this paper, we hope 
to encode the information contained in the sample 
set into a small set of parameters. In such a context, 
the density can be communicated to the fusion node 
via these parameters thus providing a method of 
solving the Bayesian data fusion problem 
adequately. 
  
The density function is related to the cumulative 
density function by: 

( ) ( ) ( )
1 2

2 1Pr
dL

L
x x x dF p dx dx dx

−∞ −∞ −∞
= ≤ = ∫ ∫ ∫x X x x� � (2.2) 

Using our sample set, we can construct an empirical 
cumulative distribution function and the related 
empirical density function as follows: 
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Clearly, the empirical density function as defined 
here is unsatisfactory.  The difficulty is that the 
problem of finding ( )p x  from ( )F x  using (2.2) is an 

Fusion 
Node 

( )( )1
kp x k y

( )( )2
kp x k y

( )( )1 2,k kp x k y y

Figure 1. 
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il l-posed problem.  As we have just seen, small 
errors in the distribution function can lead to large 
errors in the resultant density function.  One way to 
overcome this difficulty is to use regularization 
techniques to smooth our distribution function prior 
to finding our density function.  The SV regression 
techniques allow us to do just this and are considered 
in the next section.  

4 Support Vector Machines for 
Density Estimation 
 

The general non-linear regression problem may be 
stated as follows.  Given a set of training pairs: 

 ( ){ }, , , 1,2, ,d
i i i iz z i n∈ℜ ∈ℜ =x x �

 (2.4) 

where 
ix  is sampled from some unknown 

probability distribution ( )P x  and 
iz  is generated by 

some unknown function: 

 ˆ : df ℜ → ℜ  (2.5) 

and possibly corrupted by noise, and a class of 
functions: 

 { }: dF ff= ℜ → ℜ  (2.6) 

we want to find the function f F∈  that minimises 

the risk functional: 

 [ ] ( ) ( )( ) ( )ˆR l dPf f f= −∫ xx x  (2.7) 

where l  is the loss function.  Unfortunately, we do 
not know ( )P x , so we are unable to calculate the 
actual risk.  We can only calculate the empirical 
risk: 

 ( ) ( )( )1

1

l

emp i il
i

R f l z f
=

= −∑ x  (2.8) 

It would be unwise to attempt to minimise the 
empirical risk directly, as this would likely lead to 
overfitting and bad generalisation properties.  In 
order to avoid this, it is usual to add a capacity 
control or regularisation term, [ ]fΩ , which leads us 

to the regularised risk functional: 

 [ ] [ ] [ ]reg empR f R f C f= + Ω  (2.9) 

The constant C  is called the regularisation constant.  
It controls the trade-off between capacity 
minimisation and empirical risk minimisation.  It is 
usually selected using some form of error cross-
validation. 
 
The loss function l  controls how training errors are 
penalised.  The de-facto standard loss function for 
SVM work is Vapnik’s ε-insensitive loss function: 

 ( )( ) ( )( )max 0,i i i i il z f z f ε− = − −x x  (2.10) 

The motivation behind this choice is the expected 
existence of noise in our measurement of 

iz .  As can 

be seen from figure 2, the parameter 
iε  may be used 

to make the empirical risk insensitive to small errors 
due to noise.  Thus the regularised risk functional 
has a degree of noise insensitivity. 
 
The regularisation term [ ]fΩ  is usually chosen to 

maximise the margin of separation.  Unfortunately, 
in this case this leads to unacceptable constraints 
being imposed on our choice of function class F . 
 
 
 
 
 
 
 
 
 
 

Figure 2: The ε-insensitive loss function. 
 
Motivated by the usual dual form the F  in the max-
margin case, we will consider the function set: 

 ( ) ( ) ( )
1 1

,

0,  0

l k

ij ij j i
i j

ij ij

f K bα α

α α
= =

′= − +

′≥ ≥

∑∑x x x  (2.11) 

The functions ( ),j iK x x  are called the kernel 

functions.  Following Vapnik’s paper, we will be 
using the following regularisation term: 

 [ ] ( )
1 1

l k

j ij ij
i j

f w α α
= =

′Ω = +∑∑  (2.12) 

The terms 
iw  allow us to favor some kernels over 

others.  A set of kernel functions: 

 ( ) ( ){ }, , : , 1,2, ,d
j i j iK K j k• ℜ → ℜ =x x x �

 (2.13) 

is called a kernel dictionary. Under these 
assumptions, the risk minimisation problem 
(2.9) becomes a linear programming problem of 
the form (2.14). A training point 

ix  is called a 

support vector if any one element of the set 

{ } { }ij ijα α′∪  is non-zero.  Thus (2.11) may be 

expressed solely in terms of support vectors.  
Typically, these support vectors make up only a 
small fraction of all training set.  Hence SV 
regression may be thought of as a form of 
compression. 

iε+iε− ( )i iz f− x

l
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(2.14) 
 
Two characteristics of this technique make it ideal 
are: 

1. The approximation given by the SV 
regressor may be expressed solely in terms 
of a small number of support vectors.  Thus 
the training set is compressed in that we may 
discard all non-support vectors without 
losing any information. 

2. The density function can be expressed using 
only the parameters of the regression 
function. 

Essentially, the SV density estimation approach 
allows us to approximate a sample set using a small 
subset of that sample set that none-the-less gives the 
characteristics of the density function from which 
the samples were drawn. 

Following Vapnik’s method [4], we train our SV 
regressor using the triples: 

 
( )( ) ( )( ) ( )( )

( ) ( ) ( )( )
1 1 1 2 2 2

1

, , , , , , , , ,

where: 1 1

l l l l l l

i l i l il

F F F

F F

ε ε ε

ε δ= + −

x x x x x x

x x

�

(2.15) 

The resulting distribution function will have the 
form of (2.11).  It follows that: 

 
( ) ( ) ( )

( ) ( )

1 1

1 2

,

where , ,
L

L

l k
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∑∑x x x
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 (2.16) 

The set of functions: 

 ( ) ( ){ }, , : , 1,2, ,d
j i j i j kκ κ • ℜ → ℜ =x x x �

 (2.17) 

are called the cross-kernel dictionary associated 
with the kernel dictionary (2.13). However, due to 
the following constraints: 

1. Because ( ) 0p ≥x , we must set 0ijα′ =  and 

insist that our kernel dictionary (2.13) 
consists only of monotonically increasing 
functions. 

2. Assuming that all training data is drawn 
from [ ],∈x a b , we add the constraints 

( ) 0F =a  and ( ) 1F =b  for obvious reasons. 
 
we rewrite (2.14) as follows: 

( )

( )

( )

( )

1 1 1 1

1 1

1 1

1 1

1 1

minimise:

such that: ,

,

, 0

, 1

0, 0, 0

1,2, , , 1,2, ,

l k l l

j ij i i
i j i i

l k

mj j i m i i i
m j

l k

mj j i m i i i
m j

l k

mj j m
m j

l k

mj j m
m j

ij i i

w C C

K b y

K b y

K b

K b

i l j l

α ξ ξ

α ε ξ

α ε ξ

α

α

α ξ ξ

= = = =

= =

= =

= =

= =

′+ +

′+ ≤ + +

+ ≥ − −

+ =

+ =

′≥ ≥ ≥
= =

∑∑ ∑ ∑

∑∑

∑∑

∑∑

∑∑

x x

x x

a x

b x

� �

 (2.18) 

In the density estimation problem, the parameters 

jw  are often used to favour wider distributions over 

narrower distributions in order to penalise 
overfitting without leading to underfitting. 
 
The resulting approximation of the density function 
will have the form: 

 ( ) ( )
1 1

,
l k

ij j i
i j

p α κ
= =

= ∑∑x x x  (2.19) 

 
5  Choice of Kernel Dictionary and 
other Practical Issues 
 
While the SV method automatically selects the 
height and center-point of each kernel distribution, 
the widths of our distributions must be selected a-
priori when choosing our kernel dictionary.  Here, 
we must trade-off between providing an adequate 
range of widths to properly describe the distribution 
and the computational time required to solve (2.18).  
The trade-off should be done on a problem-by-
problem basis. 
 
For all simulations in this paper we have used a 
gaussian-like kernel functions of the form: 
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The density estimator was implemented in C++  
Simulations were run in DOS under Windows 2000 
on a 1GHz Pentium III Coppermine computer. 
Linear programming was done using the Higher-
Order Primal-Dual Method, HOPDM, software 
package with permission. 
 

6 Results 
 
We tested the SV density estimator using samples 
drawn from the distribution: 

 ( )
[ ] [ ]1 0 4 01 1

0 1 0 42 21 1

4

x x
x y x y

y yp x e e
π π

     
− −     

     = +  (2.21) 

The kernel dictionary consisted of 4 sigmoidal 
kernels of type (2.20) with 

1.33,  2.66,  2.99 and 6.65γ =  (
iw i= ), with bounds 

[ ] [ ]7.98 7.98 , 5.32 5.32
T T= − − =a b .  

 
Figure 2 shows the estimate attained using 100 
samples, of which the regressor selected 12 as 
support vectors.  The more accurate estimate shown 
in figure 3 shows the result for 200 training samples.  
In this case, only 8 support vectors were found, or 
4% of the total number of training vectors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 Conclusions 
 
We consider the problem of density estimation in 
the context of Distributed Bayesian Data Fusion. 
The key issue in such a problem is the accurate 
transmission of the probability density from sensor 
nodes to the fusion node. We propose a method 
based on support vector machines for this approach 
and demonstrate its effectiveness in a two 
dimensional problem. We show that, in the example 
shown, the number of support vectors needed to 
adequately estimate the density function is 
extremely small at the cost of increased 

computational load. Incremental methods for SVMs 
provide a method of reducing this load and future 
work is focused in this area. 
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Figure 3: SV estimate learned from 100 particles 

Figure 4: SV estimate learned from 200 particles 

Figure 2: Test distribution function. 


