
Distributed Data Fusion Using Support Vector Machines

S. Challa

Department of Electrical and

Electronic Engineering

The University of Melbourne

Parkville, Victoria 3101 Australia

schalla@ee.mu.oz.au

M. Palaniswami

Department of Electrical and

Electronic Engineering

The University of Melbourne

Parkville, Victoria 3101 Australia

swami@ee.mu.oz.au

A. Shilton

Department of Electrical and

Electronic Engineering

The University of Melbourne

Parkville, Victoria 3101 Australia

apsh@ee.mu.oz.au

Abstract - The basic quantity to be estimated in the
Bayesian approach to data fusion is the conditional
probability density function (CPDF). In recent times,
computationally efficient particle filtering approaches are
gaining growing importance in estimating these CPDF. In
this approach, i.i.d samples are used to represent the
conditional probability densities. However, their
application in data fusion is severely limited due to the fact
that the information is stored in the form of a large set of
samples. In all practical data fusion systems that have
limited communication bandwidth, broadcasting this
probabilistic information, available as a set of samples, to
the fusion center is impractical. Support vector machines,
through statistical learning theory, provide a way of
compressing information by generating optimal kernal
based representations. In this paper we use SVM to
compress the probabilistic information available in the
form of i.i.d samples and apply it to solve the Bayesian
data fusion problem. We demonstrate this technique on a
multi-sensor tracking example.

Keywords: Bayesian Data Fusion, Density
Estimation, Support Vector Machines, Particle
Filters, Sequential Montecarlo Methods.

1 Introduction

The last few years have seen significant advances in
the fields of sequential montecarlo methods [1,2],
support vector machines and Bayesian data fusion.
Sequential montecarlo methods and associated
particle filters enable recursive Bayesian estimation
in non-linear, non-Gaussian filtering and
identification problems.

These methods represent the underlying probability
densities with a set of i.i.d samples and provide
estimates of target identity or target state from them.
On the other hand, support vector machines are
essentially techniques for function approximation
based on statistical learning theory [5]. Recently,
SVM’s have been shown to perform well for density
estimation problems where the PDF of the iid

sample set can be learned and the entire sample set
can be represented by a few support vectors and the
associated kernal functions [4]. Thus while
sequential montecarlo methods provide a means of
estimating the sample set representing the
underlying PDF’s recursively, the SVM based
density estimation provides methods of compressing
the information available via the sample set into a
small set of support vectors and the associated
Kernal functions. These methods together provide a
means of solving the distributed data fusion problem
in the Bayesian framework in the Non-Gaussian
context.

The paper is organized as follows. Following
introduction, section 2 introduces the problem of
distributed data fusion problem and highlights the
key elements needed for its Bayesian solution.
Section 3, introduces the density estimation problem
and motivates the use of Support Vector Machines.
Section 4 presents the SVM based solution to the
density estimation problem while section 5 focuses
on the choice of kernal functions and other practical
issues. Section 6 provides simulation results for a
two dimensional density estimation problem and it
presents discussions and future research directions.
Finally, conclusions are drawn in section 7.

2 Distributed Data Fusion

Distributed data fusion refers to the problem of
fusing information available from remote sensors at
the fusion node [3]. The problem is illustrated in
figure 1. Bayesian solution to this problem requires
the remote nodes to have information available in

),|)(),((

),|)((
))(|)(())(|)((

),|)((

1
2

1
121

1
2

1
1

21

21

−−

−−

=

kk

kk

kk

YYkykyp

YYkxp
kxkypkxkyp

YYkxp

the form of the probability density function and can
be expressed as follows:

If the measurements are available along with their
likelihood functions, the first two terms can be
easily evaluated. However, when the measurements
are not readily available, then the following
alternate expression can be used:

Thus the most important element of carrying out the
fusion is the determination of the following
fractions based on the information supplied by the
remote sensors.

Most of the existing methods of applying Bayesian
data fusion to distributed sensor networks assume
that the available probabilistic information, i.e., the
numerator and denominator of the density function
(from remote sensors) are Gaussian and hence can
be represented by only two parameters (i.e., mean
and covariance). However, in many real world
problems, Gaussianity is far from reality and has
given rise to a number of approaches to adapt to
non-gaussian PDFs. Particle filters or

sequential montecarlo methods are a set of
techniques that address the problem of non-
Gaussianity effectively. In such methods, the remote
sensors use a particle filter that obtains an iid
sample set that captures the non-gaussian elements
of the PDF accurately. However, communicating
this PDF to the fusion node is non-trivial, as it
involves, broadcasting the complete particle or
sample set to the fusion node. As the links

connecting the remote sensors to the fusion node
have band width constraints, communicating the
sample set is impracticle. This creates a need for
some of compression. Based in the results of vapnik
et. al, [4], we chose support vectors machines as a
means of achieving such a compression. It involves
learning the PDF from the available sample set and
communicating the support vectors in the place of
the samples and reconstructing the density function
at the fusion node. This problem is studied in the
rest of the paper.

3 The Density Estimation Problem

Suppose we are given a set of training data:

 { }, 1,2, ,d
i i i n∈ℜ =x x � (2.1)

generated by taking samples from some unknown
probability distribution ()P x . We wish to estimate
the density function ()p x associated with this

distribution. In the context of Bayesian data fusion
the densities of interest are

where the training samples are obtained from the
respective particulate representations. These
densities are obtained and stored in the form of a set
of samples at each sensor. Using the density
estimation approach out-lined in this paper, we hope
to encode the information contained in the sample
set into a small set of parameters. In such a context,
the density can be communicated to the fusion node
via these parameters thus providing a method of
solving the Bayesian data fusion problem
adequately.

The density function is related to the cumulative
density function by:

() () ()
1 2

2 1Pr
dL

L
x x x dF p dx dx dx

−∞ −∞ −∞
= ≤ = ∫ ∫ ∫x X x x� � (2.2)

Using our sample set, we can construct an empirical
cumulative distribution function and the related
empirical density function as follows:

() ()

() ()

()

1

1

1

1

where: Dirac-delta function

l

l i
i

l

l i
i

i

F
l

p
l

θ

δ

δ

=

=

= −

∴ = −

− =

∑

∑

x x x

x x x

x x

 (2.3)

Clearly, the empirical density function as defined
here is unsatisfactory. The difficulty is that the
problem of finding ()p x from ()F x using (2.2) is an

Fusion
Node

()()1
kp x k y

()()2
kp x k y

()()1 2,k kp x k y y

Figure 1.

),|)(),((

),|)((

)|)((

)|)((

)|)((

)|)((

),|)((

1
2

1
121

1
2

1
1

1
2

2
1

1

1

21

−−

−−

−−

=

kk

kk

k

k

k

k

kk

YYkykyp

YYkxp

Ykxp

Ykxp

Ykxp

Ykxp

YYkxp

)|)((

)|)((

)|)((

)|)((
1

2

2
1

1

1
−− k

k

k

k

Ykxp

Ykxp
and

Ykxp

Ykxp

)|)(()|)((21
kk YkxpandYkxp

il l-posed problem. As we have just seen, small
errors in the distribution function can lead to large
errors in the resultant density function. One way to
overcome this difficulty is to use regularization
techniques to smooth our distribution function prior
to finding our density function. The SV regression
techniques allow us to do just this and are considered
in the next section.

4 Support Vector Machines for
Density Estimation

The general non-linear regression problem may be
stated as follows. Given a set of training pairs:

 (){ }, , , 1,2, ,d
i i i iz z i n∈ℜ ∈ℜ =x x �

 (2.4)

where
ix is sampled from some unknown

probability distribution ()P x and
iz is generated by

some unknown function:

 ˆ : df ℜ → ℜ (2.5)

and possibly corrupted by noise, and a class of
functions:

 { }: dF ff= ℜ → ℜ (2.6)

we want to find the function f F∈ that minimises

the risk functional:

 [] () ()() ()ˆR l dPf f f= −∫ xx x (2.7)

where l is the loss function. Unfortunately, we do
not know ()P x , so we are unable to calculate the
actual risk. We can only calculate the empirical
risk:

 () ()()1

1

l

emp i il
i

R f l z f
=

= −∑ x (2.8)

It would be unwise to attempt to minimise the
empirical risk directly, as this would likely lead to
overfitting and bad generalisation properties. In
order to avoid this, it is usual to add a capacity
control or regularisation term, []fΩ , which leads us

to the regularised risk functional:

 [] [] []reg empR f R f C f= + Ω (2.9)

The constant C is called the regularisation constant.
It controls the trade-off between capacity
minimisation and empirical risk minimisation. It is
usually selected using some form of error cross-
validation.

The loss function l controls how training errors are
penalised. The de-facto standard loss function for
SVM work is Vapnik’s ε-insensitive loss function:

 ()() ()()max 0,i i i i il z f z f ε− = − −x x (2.10)

The motivation behind this choice is the expected
existence of noise in our measurement of

iz . As can

be seen from figure 2, the parameter
iε may be used

to make the empirical risk insensitive to small errors
due to noise. Thus the regularised risk functional
has a degree of noise insensitivity.

The regularisation term []fΩ is usually chosen to

maximise the margin of separation. Unfortunately,
in this case this leads to unacceptable constraints
being imposed on our choice of function class F .

Figure 2: The ε-insensitive loss function.

Motivated by the usual dual form the F in the max-
margin case, we will consider the function set:

 () () ()
1 1

,

0, 0

l k

ij ij j i
i j

ij ij

f K bα α

α α
= =

′= − +

′≥ ≥

∑∑x x x (2.11)

The functions (),j iK x x are called the kernel

functions. Following Vapnik’s paper, we will be
using the following regularisation term:

 [] ()
1 1

l k

j ij ij
i j

f w α α
= =

′Ω = +∑∑ (2.12)

The terms
iw allow us to favor some kernels over

others. A set of kernel functions:

 () (){ }, , : , 1,2, ,d
j i j iK K j k• ℜ → ℜ =x x x �

 (2.13)

is called a kernel dictionary. Under these
assumptions, the risk minimisation problem
(2.9) becomes a linear programming problem of
the form (2.14). A training point

ix is called a

support vector if any one element of the set

{ } { }ij ijα α′∪ is non-zero. Thus (2.11) may be

expressed solely in terms of support vectors.
Typically, these support vectors make up only a
small fraction of all training set. Hence SV
regression may be thought of as a form of
compression.

iε+iε− ()i iz f− x

l

()

() ()

() ()

1 1 1 1

1 1

1 1

minimise:

such that: ,

,

0, 0, 0, 0

1,2, , , 1,2, ,

l k l l

j ij ij i i
i j i i

l k

mj mj j i m i i i
m j

l k

mj mj j i m i i i
m j

ij ij i i

w C C

K b y

K b y

i l j l

α α ξ ξ

α α ε ξ

α α ε ξ

α α ξ ξ

= = = =

= =

= =

′ ′+ + +

′ ′− + ≤ + +

′− + ≥ − −

′ ′≥ ≥ ≥ ≥
= =

∑∑ ∑ ∑

∑∑

∑∑

x x

x x

� �

(2.14)

Two characteristics of this technique make it ideal
are:

1. The approximation given by the SV
regressor may be expressed solely in terms
of a small number of support vectors. Thus
the training set is compressed in that we may
discard all non-support vectors without
losing any information.

2. The density function can be expressed using
only the parameters of the regression
function.

Essentially, the SV density estimation approach
allows us to approximate a sample set using a small
subset of that sample set that none-the-less gives the
characteristics of the density function from which
the samples were drawn.

Following Vapnik’s method [4], we train our SV
regressor using the triples:

()() ()() ()()

() () ()()
1 1 1 2 2 2

1

, , , , , , , , ,

where: 1 1

l l l l l l

i l i l il

F F F

F F

ε ε ε

ε δ= + −

x x x x x x

x x

�

(2.15)

The resulting distribution function will have the
form of (2.11). It follows that:

() () ()

() ()

1 1

1 2

,

where , ,
L

L

l k

ij ij j i
i j

d

j i j id

p

K
z z z

α α κ

κ

= =

′= −

∂=
∂ ∂ ∂

∑∑x x x

z x z x
�

 (2.16)

The set of functions:

 () (){ }, , : , 1,2, ,d
j i j i j kκ κ • ℜ → ℜ =x x x �

 (2.17)

are called the cross-kernel dictionary associated
with the kernel dictionary (2.13). However, due to
the following constraints:

1. Because () 0p ≥x , we must set 0ijα′ = and

insist that our kernel dictionary (2.13)
consists only of monotonically increasing
functions.

2. Assuming that all training data is drawn
from [],∈x a b , we add the constraints

() 0F =a and () 1F =b for obvious reasons.

we rewrite (2.14) as follows:

()

()

()

()

1 1 1 1

1 1

1 1

1 1

1 1

minimise:

such that: ,

,

, 0

, 1

0, 0, 0

1,2, , , 1,2, ,

l k l l

j ij i i
i j i i

l k

mj j i m i i i
m j

l k

mj j i m i i i
m j

l k

mj j m
m j

l k

mj j m
m j

ij i i

w C C

K b y

K b y

K b

K b

i l j l

α ξ ξ

α ε ξ

α ε ξ

α

α

α ξ ξ

= = = =

= =

= =

= =

= =

′+ +

′+ ≤ + +

+ ≥ − −

+ =

+ =

′≥ ≥ ≥
= =

∑∑ ∑ ∑

∑∑

∑∑

∑∑

∑∑

x x

x x

a x

b x

� �

 (2.18)

In the density estimation problem, the parameters

jw are often used to favour wider distributions over

narrower distributions in order to penalise
overfitting without leading to underfitting.

The resulting approximation of the density function
will have the form:

 () ()
1 1

,
l k

ij j i
i j

p α κ
= =

= ∑∑x x x (2.19)

5 Choice of Kernel Dictionary and
other Practical Issues

While the SV method automatically selects the
height and center-point of each kernel distribution,
the widths of our distributions must be selected a-
priori when choosing our kernel dictionary. Here,
we must trade-off between providing an adequate
range of widths to properly describe the distribution
and the computational time required to solve (2.18).
The trade-off should be done on a problem-by-
problem basis.

For all simulations in this paper we have used a
gaussian-like kernel functions of the form:

() ()

() () ()

1

1

1
,

1

,
2

L

i i

L

i i i i

d

x y
i

d

x y x y
i

K
e

e e

γ

γ γ

γκ

− −
=

− − −
=

=
+

=
+ +

∏

∏

x y

x y

 (2.20)

The density estimator was implemented in C++
Simulations were run in DOS under Windows 2000
on a 1GHz Pentium III Coppermine computer.
Linear programming was done using the Higher-
Order Primal-Dual Method, HOPDM, software
package with permission.

6 Results

We tested the SV density estimator using samples
drawn from the distribution:

 ()
[] []1 0 4 01 1

0 1 0 42 21 1

4

x x
x y x y

y yp x e e
π π

− −

 = + (2.21)

The kernel dictionary consisted of 4 sigmoidal
kernels of type (2.20) with

1.33, 2.66, 2.99 and 6.65γ = (
iw i=), with bounds

[] []7.98 7.98 , 5.32 5.32
T T= − − =a b .

Figure 2 shows the estimate attained using 100
samples, of which the regressor selected 12 as
support vectors. The more accurate estimate shown
in figure 3 shows the result for 200 training samples.
In this case, only 8 support vectors were found, or
4% of the total number of training vectors.

7 Conclusions

We consider the problem of density estimation in
the context of Distributed Bayesian Data Fusion.
The key issue in such a problem is the accurate
transmission of the probability density from sensor
nodes to the fusion node. We propose a method
based on support vector machines for this approach
and demonstrate its effectiveness in a two
dimensional problem. We show that, in the example
shown, the number of support vectors needed to
adequately estimate the density function is
extremely small at the cost of increased

computational load. Incremental methods for SVMs
provide a method of reducing this load and future
work is focused in this area.

References

[1] N. Gordon, D. Salmond and A. Smith, “Novel
Approach to nonlinear/non-Gaussian Bayesian state
estimation” , IEEE Proceedings-F, Vol. 140, pp. 107-
113, April 1993.
[2] A. Doucet, N. Gordon, and V. Krishnamurthy,
“Particle Filters for state Estimation of Jump
Markov Linear Systems” , IEEE Transactions on
Signal Processing, Vol. 49, pp. 613-624, March
2001.
[3] Y. Bar-shalom and X. R. Li, “Multitarget-
Multisensor Tracking: Principles and Techniques,
ISSN 0895-99110, YBS Publishing, 1995.
[4] V. Vapnik and S. Mukherjee, “Support Vector
Method for Multivariate Density Estimation” ,
Advances in Neural Information Processing
Systems, Vol 12, MIT Press 2000
[5] V. Vapnik, “Nature of Statistical Learning
Theory” , Second Edition, Springer, NY, 1999

Figure 3: SV estimate learned from 100 particles

Figure 4: SV estimate learned from 200 particles

Figure 2: Test distribution function.

