
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004 2451

Distributed Data Mining on Grids: Services,
Tools, and Applications

Mario Cannataro, Associate Member, IEEE, Antonio Congiusta, Associate Member, IEEE,
Andrea Pugliese, Student Member, IEEE, Domenico Talia, Associate Member, IEEE, and

Paolo Trunfio, Student Member, IEEE

Abstract—Data mining algorithms are widely used today for
the analysis of large corporate and scientific datasets stored in
databases and data archives. Industry, science, and commerce
fields often need to analyze very large datasets maintained over
geographically distributed sites by using the computational power
of distributed and parallel systems. The grid can play a significant
role in providing an effective computational support for dis-
tributed knowledge discovery applications. For the development
of data mining applications on grids we designed a system called
KNOWLEDGE GRID. This paper describes the KNOWLEDGE GRID

framework and presents the toolset provided by the KNOWLEDGE

GRID for implementing distributed knowledge discovery. The
paper discusses how to design and implement data mining ap-
plications by using the KNOWLEDGE GRID tools starting from
searching grid resources, composing software and data compo-
nents, and executing the resulting data mining process on a grid.
Some performance results are also discussed.

Index Terms—Grid computing, grid programming, grid sched-
uling, knowledge grid, data mining.

I. INTRODUCTION

T
ODAY large amounts of data are collected and ware-

housed. Data sets are generated and stored at enormous

speed in local databases, from remote sources or from the sky.

At the same time, scientific simulations generating terabytes

of data are performed in many laboratories. E-commerce and

e-business applications store and manage huge databases about

products, clients and transactions.

Unfortunately, we are much better at storing data than

extracting knowledge from it. Large datasets are hard to un-

derstand and traditional techniques are infeasible for raw data.

Data mining helps scientists in hypothesis formation in bi-

ology, medicine, physics, and engineering. Companies use data

mining techniques to provide better, customized services and

support decision making. In all these different areas, massive

data collections of terabyte and petabyte scale need to be used

and analyzed. Moreover, in many cases datasets must be shared

by large communities of users that pool their resources from

Manuscript received December 29, 2002; revised October 11, 2003. This
work was supported in part by the Italian FIRB Project “GRID.IT” under Grant
RBNE01KNFP. This paper was recommended by Guest Editors H. Kargupta,
S. Bandyopadhyay, and B.-H. Park.

M. Cannataro is with the Università di Catanzaro, 88100 Catanzaro, Italy.
(e-mail: cannataro@unicz.it).

A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio are with the
DEIS, Università della Calabria, 87036 Rende (CS), Italy (e-mail:
apugliese@si.deis.unical.it; congiusta@si.deis.unical.it; talia@si.deis.unical.it;
trunfio@si.deis.unical.it).

Digital Object Identifier 10.1109/TSMCB.2004.836890

different sites belonging to a single company, or from a large

number of laboratories, plants, or public organizations.

Grid computing has been proposed as a novel computational

model, distinguished from conventional distributed computing

by its focus on large-scale resource sharing, innovative applica-

tions, and, in some cases, high-performance orientation. Today

grids can be used as effective infrastructures for distributed

high-performance computing and data processing [1]. A grid

is a geographically distributed computation infrastructure

composed of a set of heterogeneous machines that users can

access via a single interface. Grids therefore, provide common

resource-access technology and operational services across

widely distributed virtual organizations composed of institu-

tions or individuals that share resources.

Although originally intended for advanced science and engi-

neering applications, grid computing has emerged as a paradigm

for coordinated resource sharing and problem solving in dy-

namic, multi-institutional virtual organizations in industry and

business [2]. Grid applications include the following:

• intensive simulations on remote supercomputers;

• cooperative visualization of very large scientific data sets;

• distributed processing for computationally demanding

data analysis;

• coupling of scientific instruments with remote computers

and data archives.

In the last five years, toolkits and software environments for

implementing grid applications have become available. These

include Legion [3], Condor [4], and Unicore [5]. In particular,

Foster and Kesselman’s Globus Toolkit [6] is the most widely

used middleware in scientific and data-intensive grid applica-

tions, and is becoming a de facto standard for implementing

grid systems. The toolkit addresses security, information dis-

covery, resource and data management, communication, fault-

detection, and portability issues. It does so through mechanisms,

composed as bags of services, that execute operations in grid

applications. Today, Globus and the other grid tools are used in

many projects worldwide. Although most of these projects are

in scientific and technical computing, there is a growing number

of grid projects in education, industry, and commerce.

Together with the grid shift toward industry and business ap-

plications, a parallel shift toward the implementation of data

grids has been registered. Data grids are designed to allow large

data sets to be stored in repositories and moved with almost the

same ease that small files can be moved. They represent an en-

hancement of computational grids, driven by the need to handle

1083-4419/04$20.00 © 2004 IEEE

2452 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

large data sets without repeated authentication, aiming to sup-

port the implementation of distributed data-intensive applica-

tions. Significant examples are the EU DataGrid [7], the Particle

Physics Data Grid [8], the Japanese Grid DataFarm [9], and the

Globus Data Grid [10] project.

Data grid middleware is central for management of data

movement and replication on grids. Furthermore, in many

scientific and business areas it is necessary to use tools and

environments for analysis, inference and discovery over the

available data. Scientists and engineers can use those en-

vironments for implementing grid-based problem solving

environments for doing “virtual” scientific experiments. An-

alysts can follow the same approach in mining large volumes

of data to support decision making. Therefore, the evolution of

data grids is represented by knowledge grids offering high-level

tools and models for the distributed mining and extraction of

knowledge from data repositories available on the grid [11]. The

development of such an infrastructure is the main goal of our

research work, focused on the design and implementation of an

environment for geographically distributed high-performance

knowledge discovery applications called KNOWLEDGE GRID.

The KNOWLEDGE GRID is a parallel and distributed software

architecture that integrates data mining techniques and grid

technologies. In the KNOWLEDGE GRID architecture data mining

tools are integrated with generic and data grid mechanisms

and services. Thus the KNOWLEDGE GRID can be exploited to

perform data mining on very large data sets available over

grids, to make scientific discoveries, improve industrial pro-

cesses and organization models, and uncover business valuable

information.

In [12] some of us presented the system requirements and

the software architecture of the KNOWLEDGE GRID and [13] de-

scribes a visual toolset for developing data mining applications

on the KNOWLEDGE GRID. This paper includes a more detailed

introduction to the system properties, discusses the design and

execution process of applications on the KNOWLEDGE GRID, and

presents performance results achieved running a real distributed

data mining application on a Globus-based grid.

The outline of the paper is as follows. Section II briefly de-

scribes the components of the KNOWLEDGE GRID architecture

and its main features. Sections III and IV discuss how the tools

of the KNOWLEDGE GRID offer knowledge discovery services for

designing, building, and executing distributed data mining ap-

plications. Section V presents some experimental results. Sec-

tion VI discusses related work and Section VII concludes the

paper.

II. KNOWLEDGE GRID

The KNOWLEDGE GRID architecture uses basic grid mecha-

nisms to build specific knowledge discovery services on top of

grid toolkits and services. These services can be developed in

different ways using the available grid environments. The cur-

rent implementation is based on the Globus Toolkit [14]. Like

Globus, the KNOWLEDGE GRID offers global services based on

the cooperation and combination of local services. We designed

the KNOWLEDGE GRID architecture so that more specialized data

mining tools are compatible with lower-level grid mechanisms

and data grid services. This approach benefits from “standard”

Grid services that are more and more utilized and offers an open

parallel and distributed knowledge discovery architecture that

can be configured on top of grid middleware in a simple way.

A. Globus Toolkit Services

The main services offered by Globus Toolkit 2 are the fol-

lowing:

• Grid security infrastructure (GSI). Enables secure authen-

tication and communication over an open network pro-

viding a number of services, including mutual authentica-

tion and single sign-on run-anywhere authentication, with

support for local control over access rights and mapping

from global to local user identities [15]. GSI is based on

public key encryption, X.509 certificates, and the secure

sockets layer (SSL) communication protocol.

• Monitoring and discovery service (MDS). Provides a

framework for publishing and accessing information

about grid resources [16] by using the lightweight direc-

tory access protocol (LDAP) as a uniform interface to

such information. MDS provides two types of directory

services: the grid resource information service (GRIS)

and the grid index information service (GIIS). A GRIS

can answer queries about the resources of a particular

grid node; examples of information provided include host

identity (e.g., operating systems and versions), as well

as more dynamic information such as current CPU load

and memory availability. A GIIS combines the informa-

tion provided by a set of GRIS services managed by an

organization, giving a coherent system image that can be

explored or searched by grid applications.

• Globus resource allocation manager (GRAM). Provides

facilities for resource allocation and process creation,

monitoring, and management [17]. GRAM simplifies

the use of remote systems by providing a single stan-

dard interface for requesting and using remote system

resources for the execution of jobs. The most common

use of GRAM is remote job submission and control, to

support distributed computing applications.

• Dynamically-updated resource online co-allocator

(DUROC). Manages multirequests of resources, delivers

requests to different GRAMs and provides time-bar-

rier mechanisms among jobs [18]. In Globus, a GRAM

provides an interface to submit jobs on a particular set

of physical resources, whereas the DUROC is used to

coordinate transactions with independent GRAMs.

• Heartbeat monitor (HBM). Provides a mechanism for

monitoring the state of processes [19]. The HBM is de-

signed to detect and report the failure of processes that

have identified themselves to the HBM. It allows simul-

taneous monitoring of both Globus system processes and

application processes associated with user computations.

The HBM also provides notification of process status

exception events, so that recovery actions can be taken.

• GridFTP. Implements a high-performance, secure data

transfer mechanism based on an extension of the FTP pro-

tocol that allows parallel data transfer, partial file transfer,

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2453

and third-party (server-to-server) data transfer, using GSI

for authentication [20]. This allows grid applications to

have ubiquitous, high-performance access to data in a way

that is compatible with the most popular file transfer pro-

tocol in use today.

• Replica catalog and replica management. Provide fa-

cilities for managing data replicas, i.e., multiple copies

of data stored in different systems to improve access

across geographically-distributed grids. The replica cat-

alog provides mappings between logical names for files

and one or more copies of the files on physical storage

systems; it is accessible via an associated library and a

command-line tool [21]. The replica management com-

bines the replica catalog (for keeping track of replicated

files) and GridFTP (for moving data) to manage data

replication [22].

B. Knowledge Grid Services

The KNOWLEDGE GRID is composed of two hierarchic levels:

the Core K-Grid layer and the High level K-Grid layer. The

former refers to services directly implemented on top of generic

grid services, while the latter is used to design, compose, and

execute distributed knowledge discovery computations over the

KNOWLEDGE GRID. Fig. 1 shows the layers and their components

together with the KNOWLEDGE GRID data and metadata reposito-

ries. In the following, the term K-Grid node denotes a grid node

implementing the KNOWLEDGE GRID services.

1) Core K-Grid Layer: The core K-Grid layer implements

the basic services for the definition, composition and execution

of a distributed knowledge discovery application over the grid.

Its main goals are the management of metadata describing fea-

tures of data sources, third party data mining tools, data man-

agement, and data visualization tools and algorithms. Moreover,

this layer coordinates the application execution by attempting

to fulfill the application requirements on the available grid re-

sources.

The Core K-Grid layer comprises two main services

• The Knowledge Directory Service (KDS) extends the

basic globus monitoring and discovery service and man-

ages metadata describing data and tools used in the

KNOWLEDGE GRID. These include:

• Repositories of data to be mined (data sources).

• Tools and algorithms used to extract, filter and ma-

nipulate data; tools to mine data and visualize and

store mining results.

• Distributed execution plans. An execution plan is an

abstract description of a distributed data mining ap-

plication, that is a graph describing the interaction

and data flow between data sources, data mining

tools, visualization tools, and result storage facili-

ties.

• Knowledge obtained as result of the mining process,

i.e., learned models and discovered patterns.

All metadata are represented in eXtensible Markup Lan-

guage (XML) documents and stored in a knowledge meta-

data repository (KMR).

Fig. 1. KNOWLEDGE GRID architecture.

Whereas, it would be infeasible to maintain the data

to be mined in an ad hoc repository, it could be useful

to maintain a repository of the discovered knowledge.

This information is therefore stored in a knowledge base

repository (KBR), and theassociatedmetadataaremanaged

by the KDS. The KDS is thus used not only to search and

access raw data, but also to find previously discovered

knowledge that can be used to compare the output of a

given mining computation with different data sources,

or to apply data mining tools in an incremental way.

Data management, analysis and visualization tools are

usually pre-existent to the KNOWLEDGE GRID (i.e., they re-

side into file systems or code libraries). Finally, the knowl-

edge execution plan repository (KEPR) stores the execu-

tion plans of data mining processes.

• The resourceallocationandexecutionmanagementservice

(RAEMS) is used to find a suitable mapping between an

execution plan and the available resources, with the goal

of satisfying application requirements (computing power,

storage, memory, database, compiler, network bandwidth

and latency) and grid constraints. After the execution

plan activation, this service manages and coordinates the

application execution. In the current KNOWLEDGE GRID

implementation, instead of using the KDS and the Globus

MDS services, this layer is directly based on the Globus

resource allocation manager (GRAM) services. Resource

requests of each data mining job are expressed using

the Globus Resource Specification Language (RSL) [23].

The analysis and processing of the execution plan will

generate global resource requests that in turn are translated

into RSL requests for local GRAMs.

2) High Level K-Grid Layer: The high-level K-Grid layer

includes services used to compose, validate, and execute a par-

allel and distributed knowledge discovery computation. More-

over, the layer offers services to store and analyze the discovered

knowledge. The main services are the following:

• Data access service (DAS)

The data access service is responsible for searching, se-

lecting, extracting, transforming, and delivering data to be

mined. Search and selection are based on the core KDS

2454 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

service. On the basis of the user requirements and con-

straints, the data access service automates (or assists the

user in) searching and finding data sources to be analyzed

by DM tools.

• Tools and algorithms access service (TAAS)

This service is responsible for searching, selecting, and

downloading data mining tools and algorithms. As be-

fore, the metadata regarding their availability, location,

and configuration are stored in the KMR and managed

by the KDS, whereas the tools and algorithms are stored

in the local storage facility of each K-Grid node. A node

wishing to export data mining tools to other users has

to publish them using the KDS services, which store the

metadata in the local portion of the KMR.

• Execution plan management service (EPMS)

An execution plan is represented by a graph describing

the interaction and data flows among resources. In simple

cases, a user can directly design the execution plan by

using a visual composition tool where programs are con-

nected to data sources. However, due to the variety of

results produced by DAS and TAAS, different execution

plans can be yielded, in terms of data and tools location,

strategies to move or stage intermediate results, and so

on. Thus, the execution plan management service is im-

plemented by a semi-automatic tool that takes data and

programs selected by the user, and generates an abstract

execution plan describing the designed computation to be

mapped onto concrete grid resources (see Section III-D).

Execution plans are stored in the knowledge execution

plan repository (KEPR).

• Results Presentation Service (RPS)

Result visualization is important in the knowledge

discovery process to help users in the interpretation of

the discovered patterns. This service specifies how to

generate, present and visualize the knowledge models

extracted (e.g., association rules, clustering models, clas-

sification models), after storing them in the Knowledge

Base Repository. The result metadata are stored in the

KMR to be managed by the KDS.

III. DESIGN OF GRID DATA MINING APPLICATIONS

Fig. 2 shows the steps of the design process of distributed

knowledge discovery applications on the KNOWLEDGE GRID.

The design process starts by searching and selecting the

resources needed to compose the application. This step is ac-

complished by means of DAS and TAAS tools that analyze the

XML metadata documents representing the available resources

of the participant K-Grid nodes, stored into their KMRs. Such

analysis attempts to find specific information about useful

resources (e.g., software implementing a specific data mining

algorithm, particular data sources, etc.). It is performed on the

basis of search parameters and selection filters chosen by the

user. Metadata about the resources selected for the computation

are then stored into the task metadata repository (TMR), a

local storage space that contains information about resources

(computational nodes, data sources and software) selected to

perform a computation.

Fig. 2. Design process of a data mining computation.

Fig. 3. VEGA software modules.

The design of a data mining computation is performed by

means of the EPMS. For allowing a user to build the compu-

tation in a simple way, we developed a toolset named visual

environment for grid applications (VEGA). The VEGA archi-

tecture is shown in Fig. 3. VEGA integrates functionalities of

the EPMS and other K-Grid services. In particular, it provides

the following EPMS operations:

• task composition, i.e., definition of the entities involved

in the computation and specification of the relationships

among them;

• consistency checking of the planned computation;

• generation of the execution plan.

A. Task Composition

The task composition phase is performed by means of a

graphical interface (see Fig. 4), which provides a user with a

set of graphical objects representing the grid nodes and the

resources (e.g., data sets, data mining tools) available on them.

These objects can be composed through visual facilities that

allow a user to insert links among them and produce a graphical

representation of the computation.

In particular, such phase is implemented by the following

software components:

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2455

Fig. 4. Visual interface of VEGA.

• resource manager;

• object manager;

• workspace manager.

The resource manager supports the browsing of the TMR in

order to search and choose the resources to be used in the com-

putation. Selected hosts are displayed into the hosts panel, and

a user can explore resources of each one by clicking on its label.

Resources are displayed, by categories, into the resources panel.

The object manager deals with the graphical objects during

the visual composition. Each graphical object is associated with

information about the related resources; such information is

used for the creation of an internal model and for the execution

plan generation. The object manager handles three kinds of

objects: data, software and hosts. It allows the user to drag

the objects presented in the hosts and resources panels (on the

right-hand side of Fig. 4) into a workspace. Then, a user can link

those objects to indicate the interaction between them. During

the composition phase, the objects can be involved in several

operations, such insertion and movement in a workspace,

selection, linking with other objects, etc. Links can represent

different actions, such as data transfer, program execution and

input and output relationships. The object manager performs the

labeling of the links and the attribution of the other associated

properties. The data transfer link is used to move resources

among different locations of the grid. The execute link is used

to run an application on a grid host, the input and output links

are used to indicate input and output data of a program. For

each link type it is possible to set related parameters (e.g.,

protocol and destination path of the data transfer, job-manager

of the execution, etc.).

A complex computation is composed of several jobs. The de-

sign environment is organized in different workspaces. Jobs in

a given workspace are intended to be executed concurrently,

whereas workspaces are executed sequentially. To this end, a

priority relationship between workspaces is maintained.

We describe here an example that shows in detail the

task composition process. A user logged on K-Grid node

aims to perform a data mining application

on the data set , stored on the same node. The appli-

cation is composed of two data mining steps: clustering and

classification. The data set are to be clustered using three

different algorithms, running in parallel on copies of the data

set. The clustering results are then analyzed by a classification

algorithm that will be executed in parallel on three different

nodes, generating three classification models of the same data

set. Finally, the three different models will be shown to the

user that will select the more accurate ones. The user has lo-

cated K-Grid nodes , ,

and offering the clustering algorithms

K-Means [24], Intelligent Miner [25] and AutoClass [26],

respectively, and node that offers the C5.0

classifier [27].

Figs. 5–8 show the sequence of the four following workspaces

composed by the user to design such computation:

• Workspace 1 (Fig. 5). The dataset (which is located

on node) and the classifier C5.0 (which is located on

) are copied to nodes , , and .

• Workspace 2 (Fig. 6). On node , dataset is an-

alyzed by K-Means producing the output ;

on , dataset is analyzed by IMiner that produces

; on , dataset is analyzed by Auto-

Class producing its results as .

• Workspace 3 (Fig. 7). On node , is an-

alyzed by C5.0 producing the output ;

on , is analyzed by C5.0 producing

2456 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

Fig. 5. Workspace 1.

; on , is analyzed by

C5.0 producing .

• Workspace 4 (Fig. 8). The results ,

and are moved from

, and to .

Since the set of workspaces represents a unique logical com-

putation, the workspace manager must handle the case in which

a task in a given workspace needs to operate on resources gen-

erated by tasks in previous workspaces. Such resources are not

physically available when a user starts to compose a subsequent

workspace, because all the workspaces are processed for the ex-

ecution only at the end of the design phase.

The workspace manager recognizes such a situation during

the composition of a workspace, and generates and makes avail-

able the needed virtual resources to the successive workspaces.

For instance, in workspace 1 (Fig. 5) the dataset is copied

to node , then a new metadata document is

created for and stored in the por-

tion of the TMR. That document is marked as temporary until

the data transfer is actually performed. However, in workspace

2 (Fig. 6), the dataset is displayed as already available

under the resources of .

B. Task Consistency Checking

The goal of this phase is to obtain a correct and consistent

model of the computation. The validation process is performed

by means of two components: the model preprocessor and the

model postprocessor.

The preprocessing of the computation model takes place

during the graphical composition. The model preprocessor

checks the consistency of composition, allowing, with a con-

text-sensitive control, to create links only if they represent

actions that can be actually executed. For instance, it allows the

user to insert an input or output link only between a software

object and a data object, but it does not allow to insert an

execution link between a host object and a data object.

The checking is completed by the model post-processor,

which is responsible for catching errors that cannot be recog-

nized during the preprocessing phase. For example, it verifies

if a workspace contains at least one host.

C. Execution Plan Generation

In this phase the computation model is translated into an exe-

cution plan represented by an XML document. This task is per-

formed by the execution plan generator.

Basically, the execution plan generator is a parser that an-

alyzes the computation model produced during the graphical

composition, and generates its equivalent XML representation.

When invoked, the execution plan generator performs its task by

taking into account the properties of the involved resources and

the parameters of the links. The XML execution plan describes

a data mining computation at a high level, containing neither

physical information about resources (which are identified by

metadata references), nor about status and current availability of

such resources. In fact, specific information about the involved

resources will be included in the RSL generation phase, when

the computation model is translated in this language. Fig. 9

shows an extract of the execution plan for the example described

above.

The execution plan gives a list of tasks and task links, which

are specified using the XML tags and , respec-

tively. The attribute for a element identifies each

basic task in the execution plan, and is used for linking various

basic tasks to form the overall task flow.

Each element contains a task-specific sub-element,

which indicates the parameters of the particular represented

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2457

Fig. 6. Workspace 2.

task. For instance, the task identified by the label

contains a element, indicating that it is a data

transfer task. The element specifies

and . The attributes of such elements

specify the location of metadata about source and destination

objects.

In this example, metadata about the source of data transfer

in the task are provided by the file stored

in the directory named of the TMR, whereas

metadata about destination are provided by the file

stored in the portion of the same TMR.

The first of such XML documents provides metadata about the

dataset when stored on , whereas the

second one provides metadata about when, after the data

transfer, it is stored on . The ele-

ments represent relationships among tasks of the execution plan.

For instance, the shown indicates that task

follows , as specified by its and attributes.

The KNOWLEDGE GRID also offers the users a set of services

for transparent location, retrieval, and access to data sources and

software tools on the grid. Such transparency support has a cost,

as it involves production, publishing, retrieval, and updating of

resource metadata. Moreover, navigating inside metadata re-

quires accessing local or remote repositories, thus resulting in

CPU and transmission overheads.

An additional issue concerns control transparency, that is

the abstraction of data mining applications from the available

physical grid resources. Such transparency is achieved in the

KNOWLEDGE GRID through a precompilation of the execution

plans with respect to a set of hosts including also abstract hosts.

The execution plans are later mapped and scheduled against

the available grid resources mapping abstract hosts to concrete

ones. In Section III-D, we detail our approach to application

scheduling.

D. Application-Oriented Scheduling

In real grid applications it is generally infeasible to specify all

the application requirements at the time of their composition. As

said before, we are currently adding to the KNOWLEDGE GRID

programming model the possibility to define and use abstract

hosts, i.e., hosts whose characteristics are only partially spec-

ified, and that can be matched to different concrete ones. The

assignment of abstract jobs (i.e., those involving abstract hosts)

to concrete hosts is performed by a scheduler, which is part of

the resource allocation and execution management service. The

scheduler’s task is to examine execution plans comprising ab-

stract jobs and, on the basis of knowledge or prediction about

computational and input/output (I/O) costs, yield schedules (i.e.,

assignments along with timing constraints) with the goal of im-

proving applications’ performances. Furthermore, the scheduler

is able to adapt generated schedules to new information about

job status and available resources.

The scheduler offers an open Java interface allowing the spec-

ification of user-defined scheduling policies. Moreover, users

can provide their own way to estimate computational and I/O

costs, i.e., computation times of software components as a func-

tion of input, processing host, and time; communication times

for data transfers as a function of source and destination hosts,

size of data to be transferred, and time; output sizes as a function

of software and input. The currently provided functionalities are

the following:

• Scheduling strategy. Several strategies are provided (dis-

cussed in the remainder).

2458 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

Fig. 7. Workspace 3.

• Scheduling process. A dynamic rescheduling scheme is

adopted, where schedules are computed initially and then,

during applications’ execution, they are recomputed as a

consequence of the completion of all jobs preceding an

unassigned job in the current schedule; important perfor-

mance variations; job failures.

• Computational cost estimation. The scheduler adopts

the Network Weather Service (NWS) [28] as its infor-

mation source about current and future CPU avail-

ability, a sampling method for evaluating the pro-

cessing requirements of software components [29],

and based on that it computes the cost formula

where represents the processing requirements

of software run on data set (with respect to a reference

host), is the no-load performance of host , and

is the fraction of processing cycles reserved

on host at time .

• I/O cost estimation. The scheduler adopts the NWS as

well, and directly employs information about bandwidth

and latency to build I/O cost estimates.

• Output size estimation. The scheduler makes use of user-

provided descriptions of the relationships between input

and output sizes of software components.

Scheduling strategies are implemented by a mapper compo-

nent. The mapper’s input, besides the abstract execution plan

and resource descriptions, comprises the three cost estimation

functions. The mapper’s output consists of an assignment of ab-

stract jobs to hosts, and a timing function associating each job

with the time at which it must be started during the application

execution. Computed schedules may be partial, i.e., comprise

unassigned jobs (called pending), to be scheduled subsequently,

but they must meet several strict requirements. First, resource

constraints must be satisfied, i.e., each job has to be really exe-

cutable (taking into account the properties of software, data and

host composing it). Precedence constraints must be satisfied as

well, i.e., if a job precedes another job in the input plan,

then ’s starting time has to be chosen after ’s completion

(and after other possible data movement operations). Finally, the

overall completion time must be as low as possible.

The mapper deals with a very challenging problem. Even

if we assume that the mapper is in control of an entire com-

pletely-connected resource pool, invariant and composed of

resources having identical performances, both w.r.t. processing

units and network links [30], the resulting problem (which

is a generalization of the precedence-constrained scheduling

problem) is NP-hard if more than one host is considered [31].

Therefore, exact optimal techniques, such as integer-linear or

constraint programming, seem not to be usable as they incur

in an exponential duration of the scheduling process. More

suitable approaches tackle the problem heuristically, and sev-

eral interesting proposals have appeared, both dealing with sets

of independent jobs ([29], [32], [33]) and entire applications

([34]–[36]).

The mapper, before applying its heuristics, performs a pre-

processing phase with the objective of reducing the size of the

search space. The preprocessing phase comprises the following

steps:

1) The abstract plan is reduced by eliminating jobs whose

input size is not known neither it can be suitably esti-

mated. This reduction is feasible since we deal with data-

intensive applications.

2) The abstract plan is still reduced to comprise only entry

jobs (i.e., jobs that have all inputs ready at scheduling

time) and jobs that depend on them, up to a certain depth .

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2459

Fig. 8. Workspace 4.

Fig. 9. Extract of an execution plan.

3) In the spirit of [34], [36], groups of “similar” hosts, in

terms of computing power and network distance, are

formed.

4) Finally, for each abstract job, the set of possible hosts on

which that job can be scheduled is built, by looking at

resource descriptions, in order to consider only feasible

assignments.

After having reduced the search space, the mapper employs

one (or more) of the following heuristics:

• Min-Min. The Min-Min heuristic at the first step evaluates

the earliest completion times of entry jobs over available

hosts, and schedules a job to the host that allows the

earliest completion time. Then, at each step, the heuristic

schedules a job that becomes ready to be run only after

the completion of some jobs that have been scheduled

at the previous steps (we refer to these as to ready

jobs). The process terminates when all jobs have been

scheduled.

• Max-Min. This heuristic works in the same fashion as the

Min-Min one, except that at each step it assigns the job to

the host that incurs in the maximum completion time.

• Minimum completion time. This heuristic works in the

same fashion as the Max-Min one, except that it exam-

ines only one randomly-chosen job at a time. The job is

extracted from the set of entry jobs at the first step, and

subsequently from the set of ready jobs.

• Opportunistic load balancing. This heuristic assigns each

considered job to the first host that becomes idle; the steps

are the same as those of MCT.

• Simulated annealing. This heuristic is based on the idea

of starting from an initial solution, and then performing

moves into the search space, from a current solution to

one belonging to its “neighborhood.” This heuristic allows

moves toward worse solutions according to a probability

distribution that decreases with time.

• Tabu search. This heuristic is based on the idea of marking

recently examined solutions and moving in their neighbor-

hood without re-examining them for a certain amount of

time, until a stop criterion is reached.

• Genetic algorithms. This heuristic uses a set of current so-

lutions (population) and mimics the natural evolution of

the population through suitable breeding and recombina-

tion mechanisms.

2460 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

Fig. 10. Execution process of a data mining computation.

We have planned a thorough experimental evaluation of our

scheduler. We will consider different approaches to cost estima-

tion and different scheduling strategies, in order to assess their

performance with respect to classical measures, such as distance

from the optimal solution and turnaround time (i.e., total exe-

cution time, comprising the scheduling activity itself), but also

in terms of other desirable properties, such as robustness w.r.t.

unpredictable changes and stability.

Furthermore, we plan to integrate ontologies within the KDS,

in order to possibly find partial matches between resource re-

quests and descriptions, and also to give the possibility to have

abstract software, data sources etc. Ontologies may help the

scheduling task as it is often difficult to find identities between

resource requests and descriptions. Ontologies can be created to

explicitly describe resources and job requests allowing to per-

form semantic matching using terms defined in those ontolo-

gies. Resource descriptions and job requests may be expressed

as concepts of ontologies while matchmaking rules allow to

specify when a resource matches a job description (i.e., a re-

quest). Thus, to realize ontology-based request/resource match-

making, an ontology describing requests, properties of the re-

quest (such as the request’s owner), characteristics of the re-

quest (e.g., the type of the job requested) and resource require-

ments should be provided. Moreover, an ontology capturing the

resource authorization and usage policies (e.g., a set of accounts

that are authorized to access a specified computer system) is

also needed. We are currently developing an ontology for the

data mining domain that classifies data mining software tools.

It will be used to simplify the development of distributed knowl-

edge discovery applications on the grid, by offering to a domain

expert a reference model for the different kind of data mining

tasks, methodologies, and software available to solve a given

problem, helping a user in finding the most appropriate solu-

tion. It can also be used as a starting point for matchmaking

[37], [38].

IV. EXECUTION OF GRID DATA MINING APPLICATIONS

Fig. 10 shows the steps of the execution of a data mining

computation on the grid. The execution plan optimization and

translation is performed by means of the RAEMS, whose basic

functionalities are provided by the VEGA components and by

the scheduler (see Fig. 3).

Currently, VEGA integrates an RSL generator module, which

produces an Resource Specification Language (RSL) script that

can be directly submitted to the Globus resource allocation man-

ager (GRAM) of a grid node running the Globus Toolkit. In

opposition with the XML execution plan, the RSL script en-

tirely describes an instance of the designed computation, i.e., it

specifies all the physical information needed for the execution

(e.g., name and location of resources, software parameters, etc.).

Fig. 11 shows an extract of a sample RSL script.

The execution of the computation is performed by means of

the VEGA execution manager module. The execution manager

allows the system to authenticate a user to the grid, by using the

Globus grid security infrastructure (GSI) services, and submits

the RSL script to the Globus GRAM for its execution. The exe-

cution manager is also responsible of the monitoring of the jobs

that compose the overall data mining computation during their

life cycle. Finally, the execution manager collects the results of

the distributed data mining computation and passes them to the

RPS that, in turn, presents them to the user.

As it appears evident from the discussed example, it could

often be necessary to move a large amount of data across nodes

to perform a distributed data mining applications over the grid.

To optimize data movements and prevent both wasted band-

width and computational inefficiency, our approach adopts con-

venient scheduling strategies for software, datasets, and models

movement (see Section III).

At the same time, ad hoc protocols and tools are crucial to

perform efficient data transfer along heterogeneous networks

having different latencies and bandwidths. To this end, in [39]

we proposed a system to enhance the use of the GridFTP

protocol for efficient data transfer on the grid. Such system

is based on an algorithm that, on the basis of historical file

transfer data, selects the appropriate GridFTP parameters for a

required transfer session. Among other projects for distributed

data analysis, DataSpace proposes a significant system to

address efficient data access and transfer over the grid [40].

DataSpace is a Web services based infrastructure for exploring,

analyzing, and mining remote and distributed data. DataSpace

applications employ a protocol for working with remote and

distributed data called DataSpace transfer protocol (DSTP).

DSTP simplifies working with data by providing direct support

for common operations, such as working with attributes, keys

and metadata. The DSTP protocol can be layered over spe-

cialized high performance transport protocols such as SABUL

[41], that allows DataSpace applications to effectively work on

wide-area high-performance networks.

Finally, it is worth mentioning that security and privacy is-

sues are critical in distributed environments such as grids. In

this paper we did not address how privacy considerations can

prevent the execution of distributed data mining applications

on the KNOWLEDGE GRID. In fact, a typical issue in decentral-

ized data mining, where data are distributed among two or more

nodes, is how these nodes can cooperate to learn a global model

without revealing their individual data. Several approaches and

systems to allow privacy-preserving data mining have been pro-

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2461

Fig. 11. Extract of a sample RSL script.

posed (see, for example, [42]). Even though we did not tackle

this issue so far, an effort to integrate a set of standard privacy

services into the KNOWLEDGE GRID will be investigated in the

near future. The KDS can be used not only to search and access

raw data, but also to find prediscovered knowledge that can be

used to compare the output of a given KNOWLEDGE GRID com-

putation when varying data, or to apply data mining tools in an

incremental way.

V. EXPERIMENTAL RESULTS

To evaluate the efficiency of the KNOWLEDGE GRID prototype,

we carried out a performance analysis of a classification task

for intrusion detection of network data. To this end, a number

of independent classifiers have been first computed by applying

in parallel the same learning algorithm over a set of distributed

training sets, generated through a random partitioning of the

overall data set. Afterwards, the best classifier has been chosen

by means of a voting operation taking into account evaluation

criteria like computation time, error rate, confusion matrix, etc.

The training sets on which to apply the mining process have

been extracted from a dataset with a size of 712 MBytes, con-

taining about five million records produced by a TCP dump car-

ried out during seven weeks of network monitoring. The C4.5

data mining tool has been used to generate a classifier based on

decision trees.

After partitioning, each training set has been moved to a node

of the grid providing the C4.5 data mining software. The induc-

tion of the decision trees has been performed in parallel on each

node and the results have been next moved back to the starting

node to execute the voting operation and the validation of the

chosen model against a testing set.

The application has been designed using the VEGA visual en-

vironment as a set of workspaces reflecting the steps that com-

pose the entire data mining application as described above. Sev-

eral runs of the application have been performed to test the ap-

plication and measure the execution times. In the following we

present a comparison of the experimental results obtained on a

single node (sequential case) with those of the distributed exe-

cution over three and eight nodes, respectively.

In order to improve transfers, data sets have been compressed

before moving them to destination nodes; this permitted us to

transfer files from 94% to 97% smaller in size with respect to

original data sets.

Table I shows the execution times obtained during the exper-

iments. Notice that the compression, data transfer, and decom-

pression steps were not needed in the execution on one single

node. It should be mentioned that, even when more than one

node is used, partitioning and compression phases are still exe-

cuted on a single machine, whereas decompression and compu-

tation phases are executed in parallel.

The experiments were performed on grid nodes of an early

deployment of the SP3 Italian national grid funded by MIUR.

Machines hardware was ranging from dual Pentium III 800

MHz workstations to Pentium 4 1500 MHz PCs.

Figs. 12 and 13 show, respectively, execution times and

speedup achieved with the different configurations shown in

Table I.It should be observed that, with 8 nodes, the speedup

of the computational time is slightly superlinear. This is due

to several factors, among which 1) machine heterogeneity,

2) caching effects, and 3) random partitioning of the dataset,

possibly introducing inhomogeneity among the training sets.

The total time suffers of the overhead added by the compres-

sion/decompression steps and data transfers. However, a total

speedup factor of about two has been achieved employing three

nodes and a speedup of about five was obtained by using eight

nodes.

These results show how the use of the KNOWLEDGE GRID

may bring several benefits to the implementation of distributed

knowledge discovery applications both in terms of data analysis

distribution and scalability results.

VI. RELATED WORK

As discussed in our recent work [12], [13] and, in different

ways, in works of Berman [43] and Johnston [44], the creation

of knowledge grids on top of computational grids middleware

is the enabling condition to allow and favor the development

of knowledge discovery processes. In general terms, a knowl-

edge grid is an abstract problem solving environment that al-

lows a user to express a problem using his/her domain specific

knowledge and is able to translate it to the computational and

data analysis operations of the underlying, real, problem solving

system.

2462 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

Fig. 12. Comparison of execution times.

Fig. 13. Achieved speedup.

TABLE I
COMPARISON OF THE EXECUTION TIMES

A main issue in the implementation of such environments is a

general, clear representation and manipulation of the knowledge

base that is used to translate moderately abstract queries into

sets of computations and data analysis that resolve the query.

A second, important issue, regards the integration of two main

characteristics of knowledge grids: the ability to synthesize data

to provide useful and usable information and the ability to per-

form sophisticated large-scale computation leveraging the grid

infrastructure.

Whereas some data mining systems that support high-perfor-

mance distributed data mining recently appeared (see [45] and,

for a short review, also [12]), there are really a few projects at-

tempting to build knowledge grids on top of computational grids.

More specifically, many parallel and distributed data mining sys-

tems operate on clusters of computers or over the Internet, but

none of those, to the best of our knowledge, makes use of the

computational grid basic services (e.g., authentication, data ac-

cess, communication and security services). On the other hand,

emerging knowledge grids can be roughly classified as domain-

specificknowledgegrids(e.g.,TeraGrid,ADaM),anddomain-in-

dependent knowledge grids. The KNOWLEDGE GRID we designed

is one of the first attempts to build a domain-independent knowl-

edge discovery environment on the grid.

In the rest of this section we shortly review the most sig-

nificant grid-based projects/systems discussing differences and

common aspects with respect to our KNOWLEDGE GRID system.

The TeraGrid project is building a powerful grid infrastruc-

ture, connecting four main sites in USA (San Diego Supercom-

puter Center, National Center for Supercomputing Applications,

Caltech and Argonne National Lab), that will provide access to

tera-scale amounts of data [43]. The most challenging applica-

tion on the TeraGrid will be the synthesis of knowledge from

very large scientific data sets. The development of knowledge

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2463

synthesis tools and services will enable the TeraGrid to operate

as a knowledge grid. A first application is the establishment of

the Biomedical Informatics Research Network to allow brain re-

searchers at geographically distributed advanced imaging cen-

ters to share data acquired using different techniques and sub-

jects. Such application makes a full use of a distributed data grid

with hundreds of terabytes of data online, enabling the TeraGrid

to be used fully as a knowledge grid in the biomedical domain.

The use of the KNOWLEDGE GRID services can be potentially ef-

fective in these applications [11].

The algorithm development and mining (ADaM) system is an

agent-based data mining framework developed at the University

of Alabama in Huntsville, used to mine in parallel hydrology

data from four sites [46]. The system comprises a mining engine

and a daemon-controlled database. The database contains infor-

mation about the data to be mined, including its type and loca-

tion. A user provides the mining engine with a mining plan (i.e.,

a sequential list of mining operations that are to be performed

along with any parameters that may be required for each mining

operation). The mining engine consults the database in order to

find out where the data to be mined is stored and then applies

the mining plan to the set of data that has been identified. Each

mining operation is represented as a shared-library file (one file

per operation). In the grid version of ADaM the database and

its associated daemon reside on a processor distinct from the

one on which the mining engine operates. Data are managed at

multiple sites through SRB/MCAT and GridFTP. This system

uses a design approach similar to the KNOWLEDGE GRID, but the

system architecture is simpler and the system purpose is limited

to the application range for which the system has been designed.

The Discovery Net is a newly announced Engineering and

Physical Sciences Research Council project (EPSRC), at Im-

perial College [47]. Its main goal is to design, develop and

implement an infrastructure to support real time processing,

interaction, integration, visualization and mining of massive

amounts of time critical data generated by high throughput

devices. The knowledge discovery process will be applied to

raw and processed data from biotechnology, pharmacogenomic,

remote sensing, and renewable energy data. The DNET architec-

ture aims to develop high throughput sensing (HTS) applications

by using the Kensington Discovery Platform on top of the Globus

services. In this case the rationale is to port a Java-based dis-

tributed data mining system to grid platforms using the Globus

Toolkit. The main question mark here is how the pre-existent

system can adapt to grid mechanisms and policies.

Finally, the National Center for Data Mining (NCDM) at the

University of Illinois at Chicago (UIC) is developing some sig-

nificant testbeds on knowledge discovery over grids [48]:

• The Terra Wide Data Mining Testbed is an infrastructure

built on top of DataSpace for the remote analysis, dis-

tributed mining, and real time exploration of scientific, en-

gineering, business, and other complex data. Terra testbed

uses the DataSpace predictive modeling and scoring pro-

tocol working with “events,” which are abstractions repre-

senting new bits of information assumed to arrive in a real

time stream. DataSpace supports an open standard called

the Data Transformation Markup Language (DTML) for

updating profiles with new events in real time or near real

time.

• The Terabyte Challenge Testbed is an open, distributed

testbed for DataSpace tools, services, and protocols. It

consists of ten sites distributed over three continents

connected by high performance links. It has been in-

strumented for network measurements and provides a

platform for experimental discovery of scientific, en-

gineering, business, and e-business data. The testbed

includes a variety of distributed data mining applications,

including the analysis of climate data, astronomical data,

network data, web data, and business data.

• The Global Discovery Network is a collaboration be-

tween the National Center for Data Mining (Laboratory

for Advanced Computing) and the Discovery Net. The

new Global Discovery Network will link the Discovery

Net to the Terra Wide Data Mining Testbed to create a

combined global testbed with a critical mass of data. The

Global Discovery Network is the first global high perfor-

mance testbed for remote data analysis and distributed

data mining and holds the promise of providing scientists

and engineers easier ways to work with distributed data.

In summary, these emerging knowledge discovery-oriented

grids are almost all facing specific application domains. Our

system, besides being independent of the application domain,

adopts specifically designed tools for the management of

knowledge discovery results that allow a user to evaluate and

compare different knowledge models and allow for the trans-

parent integration of parallel and sequential data mining tools

and algorithms.

VII. CONCLUSION AND FUTURE WORK

Parallel and distributed data mining suites and computational

grid systems are two critical elements of future high-perfor-

mance computing environments for e-science (data-intensive

experiments), e-business (distributed online services), and vir-

tual organizations support (virtual teams, virtual enterprises).

The grid infrastructure is growing up very quickly and is

going to be more and more complete and complex both in the

number of tools and in the variety of supported applications.

Along this direction, grid services are shifting from generic

computation-oriented services to high-level information man-

agement and knowledge discovery services.

Knowledge grids will enable entirely new classes of advanced

applications for dealing with the data deluge. Their integra-

tion is a challenge whose achievements could produce many

benefits in several application areas. Grids are coupling com-

pute-oriented services with data-oriented and high-level infor-

mation management services. This trend enlarges the grid ap-

plication scenario and offers opportunities for high-performance

distributed knowledge-based systems and services such as data

mining and knowledge discovery.

The KNOWLEDGE GRID system we discussed here is a sig-

nificant component of this trend. It integrates and completes

the data grid services by supporting distributed data analysis

and knowledge discovery and knowledge management services

[43].

2464 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

After introducing the general architecture of the KNOWLEDGE

GRID, we presented VEGA, a tool that implements some

services provided by the KNOWLEDGE GRID, and discussed

step-by-step how a user can utilize VEGA to compose and

execute a knowledge discovery computation in a simple

way. Experimental results obtained from the execution of a

distributed data mining application on a grid by using the

KNOWLEDGE GRID have been presented. They demonstrate

the feasibility of the proposed approach and show how the

KNOWLEDGE GRID system can exploit the grid infrastructure for

developing complex knowledge discovery applications.

ACKNOWLEDGMENT

The authors wish to thank the organizations involved in the

MIUR SP3 project that offered their machines for running the

experiments discussed in this paper.

REFERENCES

[1] I. Foster and C. Kesselman, “The anatomy of the grid: Enabling scalable
virtual organizations. S. Tuecke,” Int. J. Supercomput. Applicat., vol. 15,
no. 3, 2001.

[2] Building the Grid: An Integrated Services and Toolkit Architecture for
Next Generation Networked Applications, I. Foster. (2000). [Online].
Available: http://www.gridforum.org/building_the_grid.htm

[3] Legion [Online]. Available: http://legion.virginia.edu
[4] Condor [Online]. Available: http://www.cs.wisc.edu/condor
[5] Unicore [Online]. Available: http://www.unicore.org
[6] The Globus Toolkit [Online]. Available: http://www.globus.org/toolkit
[7] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K.

Stockinger, “Data management in an international data grid project,” in
Proc. IEEE/ACM Int. Workshop Grid Computing Grid, Dec. 2000, pp.
77–90.

[8] P. Avery and I. Foster. (2001) GriPhyN Project Description. [Online].
Available: http://www.griphyn.org/info/index.html

[9] Y. Morita et al., “Grid data farm for atlas simulation data challenges,”
in Proc. Int. Conf. Computing High Energy Nuclear Physics, 2001, pp.
699–701.

[10] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The
data grid: Toward an architecture for the distributed management and
analysis of large scientific datasets,” J. Netw. Comput. Appl., vol. 23, pp.
187–200, 2001.

[11] F. Berman, private communication, Nov. 2001.
[12] M. Cannataro and D. Talia, “The knowledge grid,” Commun. ACM, vol.

46, no. 1, pp. 89–93, 2003.
[13] M. Cannataro, A. Congiusta, D. Talia, and P. Trunfio, “A data mining

toolset for distributed high-performance platforms,” in Proc. Conf. Data
Mining, Bologna, Italy, 2002.

[14] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” Int. J. Supercomput. Applicat., vol. 11, pp. 115–128, 1997.

[15] The Grid Security Infrastructure. The Globus Project. [Online]. Avail-
able: http://www.globus.org/security

[16] The Monitoring and Discovery Service. The Globus Project. [Online].
Available: http://www.globus.org/mds

[17] The Globus Resource Allocation Manager. The Globus Project. [On-
line]. Available: http://www.globus.org/gram

[18] The Dynamically-Updated Request Online Coallocator (DUROC). The
Globus Project. [Online]. Available: http://www.globus.org/duroc

[19] The Globus Heartbeat Monitor Specification v1.0. The Globus Project.
[Online]. Available: http://www.globus.org/hbm/heartbeat_spec.html

[20] The GridFTP protocol. The Globus Project. [Online]. Available:
http://www.globus.org/datagrid/gridftp.html

[21] The Globus Replica Catalog. The Globus Project. [Online]. Available:
http://www.globus.org/datagrid/replica-catalog.html

[22] The Globus Replica Management API. The Globus Project. [Online].
Available: http://www.globus.org/datagrid/replica-management.html

[23] The Globus Resource Specification Language RSL v1.0. The Globus
Project. [Online]. Available: http://www.globus.org/gram/rsl_spec1.
html

[24] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Symp. Mathematical Statistics Prob-
ability, 1967, pp. 281–297.

[25] Intelligent Miner [Online]. Available: http://www.software.ibm.com/
data/iminer/

[26] P. Cheeseman and J. Stutz, “Bayesian classification (autoclass): Theory
and results,” in Advances in Knowledge Discovery and Data Mining,
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
Eds. Cambridge, MA: MIT Press, 1996, pp. 61–83.

[27] J. R. Quinlan. (2002) See5/C5.0, version 1.16. [Online]. Available:
http://www.rulequest.com/see5-info.html

[28] R. Wolski, N. Spring, and J. Hayes, “The network weather service: A dis-
tributed resource performance forecasting service for metacomputing,”
Future Gener. Comput. Syst., vol. 15, 1999.

[29] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Scheduling high
performance data mining tasks on a data grid environment,” Europar,
2002.

[30] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors,” ACM Comput. Surv., vol. 31, no.
4, 1999.

[31] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.
[32] D. Arnold, H. Casanova, and J. Dongarra, “Innovation of the netsolve

grid computing system,” Concur. Comput., 2002.
[33] A. Abraham, R. Buyya, and B. Nath, “Nature’s heuristics for scheduling

jobs on computational grids,” in Proc. IEEE 8th Int. Conf. Advanced

Computing Communications, 2000.
[34] H. Dail, H. Casanova, and F. Berman, “A Modular Scheduling Approach

for Grid Application Development Environments,” UCSD, 2002.
[35] H. J. Siegel and S. Ali, “Techniques for mapping tasks to machines in

heterogeneous computing systems,” J. Syst. Architect., vol. 46, 2000.
[36] M. Mika, G. Waligora, and J. Weglarz, “A metaheuristic approach to

scheduling workflow jobs on a grid,” in Grid Resource Management,
J. Nabrzyski, J. Schopf, and J. Weglarz, Eds. Norwell, MA: Kluwer,
2003.

[37] M. Cannataro and C. Comito, “A data mining ontology for grid pro-
gramming,” in Proc. 1st Int. Woprkshop Semantics Peer-to Peer Grid

Computing (SemPGrid), 2003, pp. 113–134.
[38] H. Tangmunarunkit, S. Decler, and C. Kesselman, “Ontology-resource

matching in the grid the grid meets the semantic web,” in Proc. 1st Int.

Workshop Semantics Peer-to-Peer Grid Computing, pp. 85–101.
[39] M. Cannataro, C. Mastroianni, D. Talia, and P. Trunfio, “Evaluating and

enhancing the use of the GridFTP protocol for efficient data transfer on
the grid,” in Proc. 10th Euro PVM/MPI, vol. 2840, Venice, Italy, 2003,
pp. 619–628.

[40] DataSpace [Online]. Available: http://www.dataspaceweb.net/
[41] Y. Gu, X. Hong, M. Mazzucco, and R. Grossman, “SABUL: A high

performance data transfer protocol,” IEEE Commun. Lett., submitted for
publication.

[42] C. Clifton et al., “Tools for privacy preserving distributed data mining,”
ACM SIGKDD Explorations Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[43] F. Berman, “From teragrid to knowledge grid,” Commun. ACM, vol. 44,
no. 11, pp. 27–28, 2001.

[44] W. E. Johnston, “Computational and data grids in large-scale science and
engineering,” Future Generation Computer Systems, 2002, to be pub-
lished.

[45] Advances in Distributed and Parallel Knowledge Discovery, H. Kar-
gupta and P. Chan, Eds., MIT Press, Cambridge, MA, 2000.

[46] T. Hinke and J. Novonty, “Data mining on NASA’s information power
grid,” in Proc. 9th IEEE Int. Symp. High Performance Distributed Com-

puting, 2000.
[47] Y. Guo. (2002) Discovery Net. [Online]. Available: http://www.lesc.

ic.ac.uk/projects/dnet.html
[48] (2002) Testbeds. National Center for Data Mining, Laboratory for

Advanced Computing, Univ. Illinois, Chicago. [Online]. Available:
http://www.ncdm.uic.edu/testbeds.htm

Mario Cannataro (A’94) received the Laurea De-
gree (cum laude) in computing engineering from the
University of Calabria, Italy, in 1993.

He is an Associate Professor of Computer Engi-
neering at University “Magna Græcia” of Catanzaro,
Italy, and a co-founder of Exeura. His current
research interests include grid computing, bioinfor-
matics and proteomics, grid-based problem solving
environments, and adaptive hypermedia systems.
He published a book and more than 100 papers in
international journals and conference proceedings.

He is serving as a program committee member of several conferences.
Prof. Cannataro is a member of ACM.

CANNATARO et al.: DISTRIBUTED DATA MINING ON GRIDS: SERVICES, TOOLS, AND APPLICATIONS 2465

Antonio Congiusta (S’01–A’01) received the Laurea
degree in computer engineering from the University
of Calabria, Rende, Italy, in 2002. He is currently pur-
suing the Ph.D. degree in systems and computer en-
gineering from the same university.

From 2002 to 2003, he was a Research Fellow at
the Institute of High Performance Computing and
Networking of the Italian National Research Council
(ICAR-CNR), working on data mining applications
on the grid. His research interests are focussed on
grid programming environments, grid services, and

workflow based grid systems.

Andrea Pugliese (S’03) received the Laurea degree
(cum laude) in computer engineering from the Uni-
versity of Calabria, Rende, Italy, in 2000, and is cur-
rently pursuing the Ph.D. degree in systems and com-
puter engineering from the same university.

His current research interests include architectures
and strategies for Grid scheduling, grid services, and
semistructured data.

Mr. Pugliese is a student member of the ACM.

Domenico Talia (A’94) received the Laurea degree in
physics from the University of Calabria, Rende, Italy.

He is a Professor of computer science at the
Faculty of Engineering, University of Calabria,
Rende, Italy. His main research interests include
grid computing, parallel computation, parallel data
mining, parallel programming languages, cellular
automata, computational science, and peer-to-peer
computing. He is a Member of the editorial boards
of the IEEE Computer Society Press, the Parallel and
Distributed Practices journal, the Future Generation

Computer Systems journal, and the Web Intelligence and Agent Systems In-
ternational journal. In addition he a member of the advisory board of Euro-Par
conference series and a member of the advisory committee of the IEEE Task
Force on Cluster Computing (TFCC). He served as a distinguished speaker
in the IEEE Computer Society Chapter Tutorials Program and in the IEEE
Computer Society Distinguished Visitors Program. He was guest editor of
special issues of IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Parallel
Computing and Future Generation Computer Systems and he is serving as a
program committee member of several conferences. He published three books
and more than 130 papers in international journals such as Communications

of the ACM, Computer, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, and IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, and
conference proceedings.

Dr. Talia is a member of the ACM.

Paolo Trunfio (S’03) received the Laurea degree
in computer engineering from the University of
Calabria, Rende, Italy, in 2001. He is currently
pursuing the Ph.D. degree in systems and computer
engineering from the same university.

He collaborated with the Institute of High Perfo-
mance Computing and Networking of the Italian Na-
tional Research Council (ICAR-CNR) in the area of
grid computing. His current research interests include
parallel and distributed computing and peer-to-peer
systems.

	toc
	Distributed Data Mining on Grids: Services, Tools, and Applicati
	Mario Cannataro, Associate Member, IEEE, Antonio Congiusta, Asso
	I. I NTRODUCTION
	II. K NOWLEDGE G RID
	A. Globus Toolkit Services
	B. Knowledge Grid Services
	1) Core K-Grid Layer: The core K-Grid layer implements the basic

	Fig.€1. K NOWLEDGE G RID architecture.
	2) High Level K-Grid Layer: The high-level K-Grid layer includes
	III. D ESIGN OF G RID D ATA M INING A PPLICATIONS

	Fig.€2. Design process of a data mining computation.
	Fig.€3. VEGA software modules.
	A. Task Composition

	Fig.€4. Visual interface of VEGA.
	Fig.€5. Workspace 1.
	B. Task Consistency Checking
	C. Execution Plan Generation

	Fig.€6. Workspace 2.
	D. Application-Oriented Scheduling

	Fig.€7. Workspace 3.
	Fig.€8. Workspace 4.
	Fig.€9. Extract of an execution plan.
	Fig.€10. Execution process of a data mining computation.
	IV. E XECUTION OF G RID D ATA M INING A PPLICATIONS

	Fig.€11. Extract of a sample RSL script.
	V. E XPERIMENTAL R ESULTS
	VI. R ELATED W ORK

	Fig.€12. Comparison of execution times.
	Fig.€13. Achieved speedup.
	TABLE I C OMPARISON OF THE E XECUTION T IMES
	VII. C ONCLUSION AND F UTURE W ORK
	I. Foster and C. Kesselman, The anatomy of the grid: Enabling sc
	Building the Grid: An Integrated Services and Toolkit Architectu

	Legion [Online] . Available: http://legion.virginia.edu
	Condor [Online] . Available: http://www.cs.wisc.edu/condor
	Unicore [Online] . Available: http://www.unicore.org
	The Globus Toolkit [Online] . Available: http://www.globus.org/t
	W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. St
	P. Avery and I. Foster . (2001) GriPhyN Project Description . [O
	Y. Morita et al., Grid data farm for atlas simulation data chall
	A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuec
	F. Berman, private communication, Nov. 2001.
	M. Cannataro and D. Talia, The knowledge grid, Commun. ACM, vol
	M. Cannataro, A. Congiusta, D. Talia, and P. Trunfio, A data min
	I. Foster and C. Kesselman, Globus: A metacomputing infrastructu

	The Grid Security Infrastructure . The Globus Project. [Online]
	The Monitoring and Discovery Service . The Globus Project. [Onli
	The Globus Resource Allocation Manager . The Globus Project. [On
	The Dynamically-Updated Request Online Coallocator (DUROC) . The
	The Globus Heartbeat Monitor Specification v1.0 . The Globus Pro
	The GridFTP protocol . The Globus Project. [Online] . Available:
	The Globus Replica Catalog . The Globus Project. [Online] . Avai
	The Globus Replica Management API . The Globus Project. [Online]
	The Globus Resource Specification Language RSL v1.0 . The Globus
	J. MacQueen, Some methods for classification and analysis of mul

	Intelligent Miner [Online] . Available: http://www.software.ibm.
	P. Cheeseman and J. Stutz, Bayesian classification (autoclass):
	J. R. Quinlan . (2002) See5/C5.0, version 1.16 . [Online] . Avai
	R. Wolski, N. Spring, and J. Hayes, The network weather service:
	S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, Schedulin
	Y. Kwok and I. Ahmad, Static scheduling algorithms for allocatin
	M. R. Garey and D. S. Johnson, Computers and Intractability: A G
	D. Arnold, H. Casanova, and J. Dongarra, Innovation of the netso
	A. Abraham, R. Buyya, and B. Nath, Nature's heuristics for sched
	H. Dail, H. Casanova, and F. Berman, A Modular Scheduling Approa
	H. J. Siegel and S. Ali, Techniques for mapping tasks to machine
	M. Mika, G. Waligora, and J. Weglarz, A metaheuristic approach t
	M. Cannataro and C. Comito, A data mining ontology for grid prog
	H. Tangmunarunkit, S. Decler, and C. Kesselman, Ontology-resourc
	M. Cannataro, C. Mastroianni, D. Talia, and P. Trunfio, Evaluati

	DataSpace [Online] . Available: http://www.dataspaceweb.net/
	Y. Gu, X. Hong, M. Mazzucco, and R. Grossman, SABUL: A high perf
	C. Clifton et al., Tools for privacy preserving distributed data
	F. Berman, From teragrid to knowledge grid, Commun. ACM, vol. 4
	W. E. Johnston, Computational and data grids in large-scale scie

	Advances in Distributed and Parallel Knowledge Discovery, H. Kar
	T. Hinke and J. Novonty, Data mining on NASA's information power
	Y. Guo . (2002) Discovery Net . [Online] . Available: http://www

	(2002) Testbeds . National Center for Data Mining, Laboratory fo

