
AD-AI66 83 DISTRIBUTED DATA STRUCTURES: A CASE STUDY(U) ROCHESTER 1/
UNIV NY DEPT OF CONPUTER SCIENCE C S ELLIS AUG 85
TR-156 NSS14-82-K-9193

UNCLASSIFIED F/G 9/2 NtIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEIII

1.0.

I".

* 1111.05 11111.4

MI -nnP
CHA RT

11116

-- Etc.'
1,11,--'.I

C IZ.

. . .

,..
~ .'4. C . ..-..

O)

0

* (0°

Distributed Data Structures: A Case Study

Carla Schlatter Ellis
Computer Science Department

Universitv of Rochester

Rochester, NY 14627
'V

• TR 150

, , August, 1985

DTIC

'ELECTE

. Department of Computer Science .

University of Rochester

Rochester, New York 14627

.

. -, u . 8 63 19 I8B

11U11'.iV .A lV. "'ll .- - ." 2 ~T ' 77 1777. J -,- ..- .rl

/ a.

* 714

Distributed Data Structures: A Case Study

Carla Schlatter Ellis
Computer Science Department

University of Rochester
Rochester, NY 14627

TR150 .
August, 1985

DTICSELECTE
MAR 3 11986j

Abstract

In spite of the amount of work recently devoted to distributed systems,
distributed applications are relatively rare. One hypothesis to explain this scarcity of
different examples is a lack of experience with algorithm design techniquestailored
to an environment in which out-of-date and incomplete information is the rule. Since
the design of data structures is an important aspect of traditional algorithm desilgn,

K--.we.fee at it is important to consider the problem of distributing data structures. In \) "

this paper, we mvestigatthese issues by developing a distributed version of an
extendible hash file which is a dynamic indexing structure that could be useful in a
distributed database.-

The preparation of this paper was supported in part by the National Science
Foundation. under Coordinated Experimental Research grant No. DCR-8320136 and
under grant No. MCS-8203306, and in part by the Defense Advanced ResearchProjects Agency, monitored by the ONR, under grant No. N00014-82-K-0193.

.%.. .'a

Dff"L~MON TATEMENT AL

Apprvred Ici public rem"N~ ,.~

Dkstbui Unlimift4L p: , ~ L
_ _ _ _ _ _ __-._ _o_ _-_ __• • - 4• .

="" " " " "- < '' -' " -- . "- - ""-.'': - ':,:/'¢ ' : :,'c _ .'' . ,' ,'l . ' ,.,,..,., . ".. .

(2)

1. Introduction

There is currently a significant amount of work being done in the area of
distributed systems. Among the motivations usually cited for the use of a distributed
system are ease of expansion, increased reliability, actual geographic distribution, the
ability to incorporate heterogeneous resources, and resource sharing among
autonomous sites. In spite of this, distributed applicaions are relatively rare. By this

4 we mean problems that actually exploit some aspect of distribution and have been
solved by user-level distributed programs. As an example, one can easily imnagine
problems requiring the computational power of a supercomputer along with an 6J

attractve user interface using the window package of a personal workstation that
would benefit from the ability to incorporate both kinds of machines into the
solution. There are a number of hypotheses to explain the scarcity of examples
including inadequate performance in networks and lack of programming language
support A more important problem may be a lack of experience with algorithm
designs that tolerate inaccurate and inconsistent data. It appears to be a fundamental
characteristic of distributed computations that no one component can easily gather
knowledge of the true instantaneous global state of the system. Thus, out-of-date and
incomplete information is inevitable. The purpose of our research has been to
investigate distributed programming techniques that acknowledge this principle.

Since the design of the data structures is an important aspect of traditional
algorithm design, we feel that it is valuable to consider the problem of distributing
data structures. For our purposes. a distributed system is modeled as a number of
logical processors communicating solely through port-based asynchronous message-
passing in the style of [Rashid 801. There is no memory shared among these logical
processors. A logical processor may encompass multiple processes that execute on the
same physical processor and may share data among themselves. The phrase
"distributing a data structure" means that there are a number of logical processors
each encapsulating some portion of a single coherent data structure and acting as a
manager for that piece. The data structure may either be divided into disjoint
portions or some parts may be replicated in several managers. Replication may serve
to increase availability of the data structure when processors can fail or to improve--
performance by allowing more concurrency through a bottleneck of the structure or
by placing copies of heavily used information at user's sites. Such replication raises
the issue of maintaining consistency to an appropriate degree. Although. a number of
general purpose mutual consistency algorithms are available IGifford 79, Soonebraker
79, Thomas 791, often it should be possible to exploi certain properties of the
specific problem at hand to arrive at a less synchronized medkod. In dhis paper we
investigate these issues by developing a distributed version of a particular indexing
structure.

2. A Distributed Version of Extendible Hashing

>Hashing has long been recognized as a fast method for acceising records by key

in large relatively static databases. However, when the amount of data is likely to

may eventually require rehashing all the records into a larger space. Extendible

V r"

3

hashing [Fagin 79] is one of a number of recently developed hashing schemes
[Larson 78, Litwin 80, Lomet 83, Litwin 781 that can grow and shrink in response to
insertion and deletion operations. A distributed system can provide the growth in
resources to accommodate such growth in the data structure. Thus it makes sense to
investigate how to partition an extendible hash file among the sites in a distributed
environment In addition, availability considerations demand that any data structure
used as an index for a distributed database be itself distributed and possibly
replicated. Finally, it appears to be relatively easy to distribute components of an
extendible hash file in such a way that operations involve as few sites as possible.

The sequential algorithms for extendible hashing are described in [Fagin 791. The
basic ideas and terminology are summarized below. The data structure consists of
two parts: a set of buckets and the directory. The buckets reside on secondary storage
and contain keys and associated information. The order of the data within buckets is
not important for this discussion. The directory is an array of pointers to buckets. A
hash function is used that generates a very long pseudokey when applied to a key.
The number of bits of the pseudokey actually used to index into the directory is
called the depth of the directory and changes as the file grows or shrinks. In our
work, the least significant bits are used in order to simplify manipulations of the
directory. Suppose that the directory's depth is currently three. This means that at
the moment, there are eight valid directory entries. The Oh entry, 0 < i S 7, points to
the bucket that holds all the records whose pseudokeys end in the three bit binary
representation of . Each bucket includes a Iocaldepth (< depth) indicating that the
pseudokeys of the records it contains agree in only that number of bits. Thus
multiple directory entries will point to the same bucket if its localdepth is less than
the directory's depth. Figure 1 gives an example of an extendible hash file for
sequential access. To perform a find operation for a key, k one would apply the hash
function to k to obtain the pseudokey (imagine it is '...101'), determine the current
depth of the directory (2 in this example), and use the appropriate bits C01'), as an
index. Following the pointer in the directory entry, one would search the third
bucket for k. As insertions occur, a bucket may become full (indicated by the count
field) and split into two buckets. If the old localdepth equals depth, the directory
doubles in size and depth increases by one. Similarly, deletions may result in two
buckets merging and possibly reducing the depth of the directory. One way of
detecting the condition that allows halving the size of the directory is to keep a count

* (named depthcount) of the number of buckets whose ocaldepth equals depth. Figure
2 diows how a sequence of updating operations would affect the structure given in
Figure I where x < y = z = maximum number of keys allowed in a bucket This
data structure is our point of departure for developing a distributed solution. The
obvious partitioning calls for two types of logical procuos namely directory
managers that are responsible for replicas of the directory component and bucket
manager. Each bucket manager is responsible for a diqjont subset of the buckets.

The distributed solution is derived from a solution allowing concurrent access to a
shared centralized extendible hash file [Ellis 831. That solution is based on locking
prt ools and modifications in the data structure to allow for concurrency. Additona
modifications are introduced here to improve locality and allow replication ofLihe
directory component. The fundamental change from the sequential version is that the
buckets are linked through a next field to allow recovery from concurrent
restructuring operations. This provides an alternate path to the desired data that can

* -.... .. ,--.**•*,

4

DEPTHCOUNT =2

DEPTH =2

fin ocaldepth =2
countx
data*

01

10 ocaldepth =210 count =y
data*

Iocaldepth I
count =z
data*

Directory Buckets

Figure 1 Sequential Access Extendible Hash File

pepk Off:

Dist

00 localdepth =2
count = x
data *

01__ _ _ _ _ _

Iocaldepth =2
10 ~ count.=
10 data*

11c

un
/

DEPTHCOUNT =4

DEPTH= 2 ocaldepth =2

a) After inserting record with pseudokey ... 11 into Fig. 1, causing split.

000 Iocaldepth =2
count = x

DEPTHCOUNT =2 data*
001

DEPTH= 3_ _ _ _

010 localdepth =3
PI cont =y/2
data*I

01Oil____

locatdepth = 2
100 count z/2

101 ocaldepth =2
count =z/2

110 data*j

111 ocaldepth =3
count zy/2
data*I

b) After inserting record with pseudokey10, causing split and doubling of ..

Figure 2 Updates

a * ~ 121,

6

be used by a searching operation when the information is being moved in a split or
merge operation. The approach is similar to the use of link pointers in Lehman and
Yao's Brink-tree solution [Lehman 81). When a bucket splits, the next link of the
original bucket is reassigned to point to the newly created bucket. The new bucket %
gets the original bucket's old next pointer. Merging does the reverse. The next
pointer is also used for recovery through deleted, but not yet deallocated, buckets.%
Deleted buckets and discarded halves of the directory are actually deallocated only
after ensuring that they are no longer needed. In addition, there must be a way for a
bucket manager performing the search phase of a transaction to tell if it has read the
wrong bucket. We chose to include a field (conmonbits) containing the common bit
pattern that characterizes the pseudokeys that belong in the bucket. Alternatively.
one could reapply the hash function to any key stored in the bucket and use this for
comparison with the target pseudokey as long as the possibility of an empty bucket is
taken care of. "Wrong bucket" includes the case where the bucket has been merged
into a preceding bucket. That bucket is marked as "deleted" (using commonbits
field). A prey ink has been added to each bucket that leads to the bucket from which
this bucket originally split off. This information which is local to the bucket manager
is used to simplify finding the partner bucket for a possible merge. Each link now
represents a pair consisting of a long-lived identifier for a manager port and a bucket
address that is meaningful to that manager. A version field introduced into each
bucket and each directory entry is used in updating directory copies asynchronously.
The resulting data structure appears in Figure 3. Two copies of the directory are
shown in that figure. Note that this example represents a consistent state with no
update operations in progress.

The main purpose behind the modifications is to make it possible to tolerate
inconsistencies and inaccuracies in the directory data. In order to gain some intuition
for these structural changes, consider the configuration shown in Figure 4. There are
two active update operations: an insertion of a record with pseudokey 00" that has
just caused a split and the deletion of the only record left with pseudokey of the
form'.... 11' causing a merge. The top copy of the directory has not yet recorded the
effect of the split and the bottom copy does not yet reflect the merge. Suppose there
is a find operation for pseudokey '.... 10' directed at the topmost directory. The first
bucket retrieved is the wrongbucket as indicated by the comparison of the pseudokey
and commonbits and the search continues with the next bucket which turns out to be
the desired one. Similarly, consider a search for pseudokey 11' directed at the
bottom copy of the directory. The first bucket read is marked as deleted and the next
link leads to the appropriate bucket.

The actions taken by the managers in response to messages received are discussed
below. Figure 5 shows the message types that flow between the various managers.
The information contained in these messages is outlined in Figure 6. A condensed
version of the procedure for the directory manager, written in a C-like syntax
[Kernigan 781, is given in Figure 7. The directory manager is presented here as a
server capable of handling multiple user requests. The bucket manager is written as a

* front end process that serves as the initial contact for its set of buckets and a set of
associated processes that reside at the same site and share secondary memory. The
pseudo-code for these processes is given in Figure 8.

I-.-...., .-... ,-,.-.-... **.* ** * *.- ,:...... . - ,........-.,..........,,..,.-.....,.-,: '-

7
*

DEPTHCOUNT

DEPTHCO = 2

00 veirsion:

01 version:
I focadeph 1

commonbits =

10 vesion:version: 1
DEPTHnext = 2rev

localdepth = 2
commonbits =

00 vesion:1
version:1

01 version: veson

10 version:

r '00

Figure 3 Distributed Extendible Hash File

DEPTHCOUNT =0

I.DEPTH =2

00 version:

01 version:
2 localdepth =2

commonbits=
00

10 version: version: 1

11 version:loaeph2
commonbits=

10*
version: 1

DEPTHCOUNT =4 nx

localdepth = 1
commonbits=

00 version: 1eson

-'01 version:

commonbits=
10 version: deleted

next

11 version:

b Figure 4 Out of Date Distributed Hash File

9

Iner

Request Manager cletM U tMerge-up

reply Go ahead

Bucket uke c

U igur 5MngRn essge Flowge

Co y - .

-
-
"-'...

messaie id data in message message id data in message

Request desired key Wrongbucket op: (find I insert I delete)
op: (find I insert I delete) desired key
user's port transaction # -

page address ",User Response success: (true false) user's port

directory manager's reply port
Find, Insert, desired key pseudokey
Delete transaction # bucket manager's reply port

page address rppo
user's port Ack for Wrongbucket
directory manager's reply port .:.:

pseudokey Splitbucket manager's reply port
user's reply port buffer contents of new half

Bucketdone transaction # Splitreply new page address
success: (true [false) id of bucket manager

Update transaction # Mergedown partner's address
old localdepth localdepth
version # of "0" partner bucket manager's reply port
version # of"1" partner
new page address M.D. Reply buffer contents
id of bucket manager success: (true I false)success: (true I false)

Mergeup partner's address

Copy update op: (insert I delete) bucket manager's reply port
pseudokey target bucket's addres
old localdepth bucket manager's id
version # of"O" partner
version # of"1" partner M.U. Reply localdepth
new page address version #
id of bucket manager bucket manager's reply port
acknowledgement port success: (true [false)

Ack for Copy update Go ahead next link
next bucket manager id

Garbage Collect list of page addresses version # ,
success: (true I false)

Figure 6 Messages

Figure 7 Pmdocode for Directory Managers

Noation

C-Wig stmmeril;
English-like paeudocode statements;

NI, /Scomments/

whil (tue dOPgrWOW irmert)(
* memaed. GgASeaag (9mag); Apply appropriate updates

/0 Either receives a message or takes a Mtew off to local copy of directory;
*Ae UK of delayed but now ready directory update&. If (e IMMgauess)(
eeh na..si) Try again;

/number of transactions in progres*/Vaert=racut-1

Coaculate pseudokey and locate current eaite(mgtrnciofl
incarnation of the bucket manager responsible aa~ae(m~rnato)

for desired bucket.
Generate transaction#* and save state related esem (P* op = delete/
to this request; Record location of deleted bucket for the
Construct end send a "find'. 'inser' or eventual garbage collection phase;
"delet" message., Apply local directory updates;

CMo buckgatorm: P* fom bucket manager - Plif finijshing this directory update enables previouly

1* Recall context for this request brak
11 Imgacce &a oation a.delete)(

Try again: locate bucket manager again case copyupdate: P from other directory managers
and reissue "find". *insert" of "delete"'~ (VeruiwOneaNot~atch(mgfl
11101111"t; DeloyUpdate~nW):

~N ifme IIfmggp howngr)
r.idcount . rgedcount - 1; Apply local directory updates;

%Cieuiamet (mag.tranmsction *;SendAck(nigg.acliport); P respond to
/bwe about this request Vdirectory manager who initiated this update S

break;she({P op =deleteV
Apply local directory updates;

em updale: /0 directory update at ectory manager Rmme~kr" cpr)
ast initially bandled request VP save up ads until the equivalent of

ftoruPi 1 (mog.transactiorfl;U exclusive-locking occurs I/

Sgfld a copylupdate message to aN other directory
managers and increment copycount for each A~m~'eO

outstanding directory update)
I fo (V~u ocNotMtch(mag)) g;L

/0 version numbers in Smg with
aina umbers in corresponding ectOrY earn.if Vo a*: coyon -* out-1

break;
-a'

I (lreecom't) BgndftgmgmbeivdAcksO:
/Onsd acka saved by deletion copyupdates I
I (Weai &IL lopymont) GwbaggColgtf;
Pget rid of buckets dMated through this directory manager V£

-W'

12

Figure S Pseudocode for Bucket Managers

Bucket Manager Front End Procis:

While (t11M) meisr:(usihn re t

* mem~trssgeed - rewnwme (&rm); c.Iat nahn re

*mamaWe with no available space I -- W*Itohvg)
Allocate available pae;. If (nueesageid as a fOfgbuCket)

puduciiet (newpage, nMg~halt2); Send "Ack to previous bucket manager;

Send "SplitRoply, Message Containing link to new bucket. geticket (oldpage. current):;ke
)Follow next links until current is the right bce

(as in find case except use Selective locks instead of
eleefRead locks).

Crate a bucket Slave Process and forward meg to it, I (lormachine)(
) uucelvemnesuage (anml):/0 Wronbucket reply

UnSelehie~ol (odpage).

Bukt Slae Plocdes If (seerch (current. mog.key)) (Pis key already dwere'/

* roagmd a ecevminge ~tiig,,Send 'Bucketdone" message.
It (mesesged W wrongbucket) aw a meg-op, neeh.ch(lpg)

* ~ o esew = meiaugeid;)

* switch(ma,)(an If (current -) count I.a numentris)

casaftid: Oldpage a mego-page; /I current backet not fll I/

feadLock (aidpage); success a wrue;
I (messageid a wrongbUCket) Send "luchotdone" mesage;

Send -ACk -to bucket Manager holding addnseis ke ino urentbuer
previous bucket; Pallows it to unlock /One keyint current)fer0

doe Send successfut "SUCketdone" message; pulexcks oadgk curdraen);

Ptells directory manager that no update is needed I/) ne fvlc od)

gelbucket (oldpege. Current); se(cret l ietr ilb etd.

enmachine w true; * /creti ul-drcoywl eahce
/*Folownex liks nti curentis he igh buket*/euccM a split (Current, haiti, haffl. msg~ley);

whilew ne(lsutlcurrent is therongi bucket : &&omcie /Odisriute the contents at the current bucket into

w pog (current swr ncet & nacie 2 buffers pointed to by halfl and halO:-

nachane *current 4 neonr if room avalblle, insert key into appropriate halt
macin reun cureen oteris reeurtfals

f(machine I a me) (/ next bucket is remote 0/ aneun u;ohrws eun as

Send "Wrongbucket" message to next bucket ~(~ ~ O
manager. nWPagS a uioobuiciet 0;

enmachine a false, machine a myid;
) putbuclst (newpage, half 2);

doe (P next bucket is local V
RleadLock (newpage), else (P an available pages locally V

getbuCket (newpalge, Current); Send lSplitbucker" message
Un~edL~k (odpae);Containing contents Of new bucket

ae - newpage; to a manager with space.
) recelvvinesaage (&mag). Psplit bucket reply/

) machine a ms.bucketmgr;

I (enimachine) (WPO - HMg.Page

if (seach (Current, imsgkey))/O i key there' 0/
found (mg~iey);hait .)next p nspge
hiundhit .mA";WI- nextmgr a machine.

notfound (nugo-ey); puit(~ae at)
11-811111-0 X (oldpage),

anmo, (Imeg);P Wrogbucket reply /ed dte esgetonnt.g
51 rscsveiissa~edlrectorV manager telling, Nt to update diretor;

U Rm o (eldpag);)

%rak break;

brealt

-. . -~*~. Ti--; -

Figure 8 (continued) 13

cuse delet: NI (key to be deleted no longer

Find the right bucket as in the beginning of/insert belongs in current bucket) { k
* except place Exclusive locks. UnExckiwIVLO* (Odpage);
* I (!onmachine) (Send 'Goafted" message to Partner

receweernsge (Imeg);/ Wrongbucket ack I/ with succes held set to false.-

UnExcluuiveLock Coidpage); /*Cane ap /

Send "aucketdone' message
Glen(with success a false;

It (current bucket wi not be left "too empty" /*m-U disawy manawe to retry V
as a result of deleting msg-koy) ().

Send successful *Buckotdone" message. else of (Current.)Eocawdpth
It %leove (MeODA&e current)) does not metch Woaldepth In msg

puibucket (oldpage, cueQ current no lsnger 'too empty')(.
U xluiavLock (Oldp~g); Send aueceaaul *ucketdone

It (mag.key is in first bucket of the pair) "Anie (remauewz current)

newpo . cureffl nextUnExdnve~ock (oldpsg); ..

machne curentnextgr:Send 'Gefted' message
it (mahinoe- no)with Success a fal$*e;j

else(partner is remote / ..e

Send "Mergedown" message toSedscsfu Gaa"

partner's bucket manager; medess fuet part ed
tSciensucS (A"s); mesprt aage r to partneV

/0 Mergedown Reply expecd/ /wfwl nxtfl curantse t> mere
I (msg.succe) (/O0K to merge current nedxt a uintPW

(ije. localdepths match): curren -) extmgr

cntents of partner ina s I/~ Gu rn t-?prmor;li a do~

Construct merged bucket aubx WOD elCreted

putckelt (oldpege. current): Message;

Send successful "Update" message;

eOn W/ simply remott record V/ breWi
Send successful
'Bucketdone" message; cMs mergedown: newpWg a meg.PattIW;
It (remove Wa current)) Eaclusive~Ock (newpage);

putbucket (oldpage. current); gelbucket (newpge. brothe);

.4..)maccen * brltWO r.) Iocaldeptt unomg Jocaldepth;
UnExclusiveLock (cldpage): Sand "MergeDown Repy" to Partner;

) ~it (maccaf) I
brother 4 coffmOuiblt a deletd.

els j to msg.key in second of Pair I/ bouier -) next - brother -> Prey.

*nwpage acurrent) prey; brothier 4) -WAIPmr a brother -) prevmgr;

mascime *current -)prevgr; pumucket (newpage. brothe);
UnfxckiielveLock (olegep); e ck(epe)
0 (machine .- me)(brek~~c rw

Mferge on site; bek

else yPertner is remate V/ cMs geup." @ewPaqe a meg.Pastir;

Send "Mergeup" message to Ennv~c (newpeve);

partners bucket fmnager; 9etm (nepeoe, brodwe);

reewM.- ee(ae) mca ON (bo -r) net a aw~mgt
m Mi"); ber *) neu tera HmegminINrDO);

/MeWgep Reply expected 0/f

Iaas usa i p.y emove record 0/ (min

Send successful -,eo a eSUU1 (&,M); /- -rGojuhea epected "

"Dwkefono" message; V (meg"AuccUS 1 /0 map e/

N (remone (a. mWnr) Construct merged bucket in MioMer.

(UM ~ p O'; -gcket pb~d (fl5wpiag. kbrot

else(Pppaedymwpgbkftm
patnes ~in o 51wcheck more locally 0/ UnfxckaklvLock (new-psge

ExcluelveLock (oldpage): re
gebtucket 0 owpege current); -

-M gebagecellect.
for each page in MOUgNat

deialloot (peW);
UnExclusiveLock (pepe);

breek;

In the centralized solution, the directory component was locked during the
search for the target bucket to prevent interference between searches and deletions.
A deleting process placed an incompatible lock. If the deleter did not exclude the
reader and was in the process of halving the directory, the reader might have
attempted to access an invalid directory entry based on the old value of depth. A
similar interference could occur between readers and deleters with regard to recently
deallocated buckets. The locking of the directory in the centralized solution translates -_,

into the manager's explicit scheduling of requests for its attention in the distributed
version.

A user wishing to perform an operation on the distributed hash file may contact
any directory manager with a request message. Upon receiving the request, the
manager saves some state about the desired operation, does the directory lookup, and
forwards the request to the bucket manager indicated. After forwarding the request,
the directory manager can service another message. While a request is outstanding,
the manager delays deallocation of deleted components that the request may be
depending upon.

The forwarded request is eventually received by the bucket manager front end. A
new slave process is created for each request requiring service from the bucket
manager (with the exception of an off-site split which is handled by the remote front-
end). The slave processes associated with a bucket manager can manipulate the data
in buckets belonging to this manager after locking the bucket and transferring the
information into private buffers. The buckets are assumed to occupy physical pages
on disk which are read and written as single operations. The locking protocol uses
various types of locks placed on individual buckets. The compatibility of lock types is
given by the following table.

Lock request Existing lock

read-lock selective-lock exclusive-lock

read-lock yes yes no

selective-lock yes no no

exclusive-lock no no no

If the request message calls for a find operation, a read-lock is placed on the
target bucket. For an insert operation, the slave process places an selective-lock and
for a delete, an exclusive-lock.

Upon reading the data, the process may discover that it has the wrong bucket
This means that a split or merge has occurred that was not yet reflected in the copy
of the directory that was read. In other words, now the localdepth low order bits of
the target pseudokey do not match the commonbits of this bucket By following the
next pointer, the right bucket will eventually be found. The next bucket is always
locked prior to releasing the lock on the current bucket. This flow of locks, known as
lock-coupling, prevents processes from leapfrogging each other. If the next bucket
belongs to a different bucket manager, a wrongbucket message is sent and

15

acknowledged before the lock is released. Once the right bucket is found, the desired
operation is performed and finally a response sent to the directory manager that
initially handled the request. Lock incompatibilities prevent interference among
updates. An insert or delete operation may result in a splitting or merging of buckets.
Off-site splitting may be necessary if there is a shortage of available buckets locally.
Off-site merging occurs when the partner bucket belongs to a different manager.
Protocols are available to handle these situations (splitbucket, mergedown, and
mergeup messages and associated replies). If a merge operation appears to be
appropriate, the partner bucket can be determined using local information (i.e. either
next or prey links). In the centralized algorithms it was acceptable to locate a partner
bucket using the directory. In the distributed case, this would have involved
additional message traffic for a bucket manager to send an inquiry message to a
directory manager and wait for a reply. In order to avoid deadlock, the partners for a
merge must be locked according to the ordering imposed by next links. If it is
necessary to lock the bucket pointed to by prey, the lock on the target bucket must
first be released and a number of conditions must be checked after gaining the locks.
This results in the differences between the mergeup and the mergedown protocols.

Two possible responses may come back to the directory manager from a bucket
manager, either bucketdone or update. Bucketdone will generally signify that no
directory modifications are needed and the directory manager may now forget about
this request. An update message calls for scheduling an update on the local copy
according to version number and notifying all other directory managers by
broadcasting a copyupdate message. For each outstanding unacknowledged remote
directory modification, a counter is incremented that serves to prevent garbage
collection. A bucket may not be deallocated until all directories send an acknowledge
message. Upon receiving a copyupdate message, a directory manager schedules the
update on its local copy and when the changes have been applied (and in the case of
delete operations, when no outstanding requests remain at this manager),
acknowledgements are sent.

Because obsolete directory information is usable, the multiple copy update does
not have to be strictly synchronized (in the sense of an atomic transaction). However,
the ordering of different directory modifications due to operations on the same
bucket should be the same across all copies and determined by the order in which
the bucket operations are performed. Each split or merge changes the version
numbers of the affected buckets. A split generates two buckets with version numbers
one greater than that of the original bucket. A merge results in one bucket with a
verion number one larger than the maximum version of the two partners. The
version number in each directory entry should match the version of the bucket it
points to when the directory is competely up to date. Each directory manager applies
the modifications indicated by an update or copyupdate message to its local copy
when the version numbers of the affected directory entries match the version
numbers in the message which reflect the versions of the buckets involved. This use
of version numbers for scheduling updates enforces the desired ordering. The
following example illustrates why this ordering approach is adopted. Suppose first a
split operation is performed almost immediately followed by a merge involving those
two buckets. Imagine a directory manager that hears about these updates in the
opposite order and applies them. The directory update related to the merge would
essentially have no effect since the split had not yet been processed. The subsequent

'.6

update related to the split would result in directory entries leading to a deleted
bucket. At this point the directory is usable since next links provide recovery.
However, since it appears that both messages have been serviced, the deleted bucket
could then be deallocated. This would leave that copy of the directory in a truly

* incorrect state from which recovery would be impossible.

Under the assumptions that processes do not fail, message buffering is sufficient
teliminate blocking on a send, and messages are reliably delivered, then this

solution can be shown to be deadlock free and correct in the sense that requests are
serializable in their externally observable behavior. Although extremely unlikely, the
theoretical possibility of indefinite postponement does exist.

In discussing the correctness of this algorithm, we wish to separate the arguments
concerning the replication of the directory from those about the basic protocols and

directories as a single global directory with certain desirable properties in later phases
of the discussion. Intuitively, we need a statement to the effect that the information
gathered from a directory access may not accurately reflect the current state of the
hash file; but it is incorrect in such a way that next links provide adequate recovery.
We now attempt to formalize this idea somewhat and then show that our multiple
copy update strategy actually maintains this property. Throughout this presentation,
the term transaction is used for the execution of a single find, insert, or delete
operation as it moves thorugh various managers.

The version of the directory seen by a transaction can be expressed as one
member of a set of schedules, S. that defines the state of the directory. For this to
make sense, we must elaborate on the notion of a schedule. Consider the set, A, of all -

split merge and remove (enabling garbage collection) actions resulting from update
operations that have changed the bucket structure by the time of the directory access
in question. For example, a delete request may require no directory modifications at
all or it may generate a merge and subsequent remove that become members of A.
There is a partial ordering imposed in these actions based on when. bucket
modifications are made. Specifically, if two operations affect the same bucket, then
there is a relationship established between them. A schedule is a totally ordered
subset of A that obeys the following constraint: The order of actions within the
schedule must be consistent with the partial order. No individual schedule in the set
S necessarily represents the timing of bucket modifications; but rather, it can be
viewed as encoding a valid directory structure at some point during a possible
execution sequence of the actions in A. An action is considered done and its effects
incorporated into the directory when it appears in each schedule of S. All other
actions are stili in progress. In the case of a delete request that causes two buckets to
be merged, the deleted bucket is not deallocated until the associated remove action is C

done so recovery through its next link is stRi possible. The point is that the
appropriate next links are set up before the related split or merge action appears in
any schedule of S and deleted buckets remain in place until all schedules include the
relevant remove action. Consequently, any member of S represents usable
information.

In the implementation of the replicated directories, each copy corresponds to
one schedule in the set. The sequence of actions in a schedule indicate the order of

17 1

directory updates applied to that copy. A split action signifies the local execution of
the updatedirectory procedure and possibly doubledirectory. A merge action

represents the execution of halvedirectory or updatedirectory. Remove denotes the
equivalent of placing an exclusive-lock on the local copy (i.e. testing the readcount).
Inclusion in the set A can be defined by the set of update messages that have been
sent from bucket managers to directory managers. A sequence of these actions is an
appropriate model for the state of a single copy since the corresponding code sections
are performed serially by the manager. There are various ways of enforcing this
requirement. In the multiplexed directory manager given, access to its copy of the
directory by concurrent transactions is controlled by explicit scheduling. the receipt
of a message establishes a context for the resulting processing and the directory
structure is put into a consistent state before the context changes again. Either the
required values are contained within the incoming message to initialize the context
(e.g. copyupdate or request messages) or saved values that were previously tagged
with a transaction number are restored when further steps must be taken on behalf
of the transaction (e.g. due to arrival of an update message). The directory updates
are scheduled locally in response to receipt of an update or copyupdate message. Our
requirements state that this scheduling must be consistent with the partial ordering
on actions. This is accomplished using the version number Each split or merge
changes the version numbers of the affected buckets. A split generates two buckets
with version numbers one greater than that of the original bucket. A merge results in
one bucket with a version number one larger than the maximum version of the two
partners. The partial ordering is determined from the buckets and resulting version
number associated with each action. For example, consider the following set of
actions applied to the hash file in Figure 3 where the format for an individual action
is (type of action and transaction number, first bucket involved, second bucket,

*', resulting version number>:

.(split 1. bucket a, bucket d (new), version 2>

(split 2, bucket c, bucket e (new), version 3>

(split 3, bucket e, bucket f (new), version 4>

(merge 4, bucket d, bucket a, version 3>

aerge 5, bucket b, bucket a, version 4).

Then. using < for the precedence relation,

split I < merge 4 (merge 5 and split 2 (split 3.

Each directory manager schedules updates on its copy based on its record of
which actions have already been incorporated into the structure. This information is
encoded as version numbers in each entry of the table to be matched against the
version number of updates (data supplied in the update or copyupdate message).
Specifically. the Boolean function, VersionsDoNotMatch, must calculate the indices
of the affected directory entries (using the pseudokey, whether the operation was an
insertion or a deletion, and the local depth of the buckets prior to modification) and
then compare version numbers of the entries and the message.

The requirement that deleted buckets remain available until all schedules

2:';
k£ ' -. . -"._

"
" - _ -. -. -= .,. -. .. -" , .'_.' .''.. '- -" - -. -- '- ' -- -- -- '---i , - - ' -.- .- . .."

contain the associated remove action is enforced by a conservative approach. The
directory manager initially contacted for a request to delete that causes two buckets K

collect acknowledgements related to the merge from all other directory managers and
wait uni rnatosuigodinformation fo t w oyhv iihdbfr
the partner's page can be deallocated. In fact, the directory manager waits for all
outstanding acknowledgements and a quiescent local state before triggering garbage
collection. Other directory managers wait until there are no transactions using their
copies before sending acknowledgements, for deletions.

The next step is to assume a well-behaved global directory and show that
concurrent transactions do not interfere with each other or destroy te data structure.

First, we need to demonstrate that the search phase of a transaction arrives at
the right bucket The user's request for an operation may be directed to any available

* directory manager. In servicing this request, the manager generates a transaction
* number, decides which bucket manager to contact, and saves some state about the

transaction. The information used to determine the appropriate bucket manager may
be out of date because of insert or delete operations that are still in progress (i.e. the .~.

associated update or copy update message has not yet been processed).

Imagine a searching transaction that indexes into the directory and finds a
pointer to bucket A as that directory entry is about to be changed to reflect a split or
merge. If A has recently been split, A's next link will lead to the new bucket which
contains the records moved from A. If A has just been merged into its partner, it will
be marked as deleted, making it the "wrong bucket" for any search and the next link
again will provide recovery. The important observation is that obsolete directory
entries that are still visible always point to a bucket from which the correct bucket is
reachable via next links. The changes in the bucket structure appear as atomic actions
to concurrent transactions. In our formulation of the bucket manager, a slave process
is spawned for each transaction within each manager involved in the transaction.
Thus there is the need for locking to control concurrent access to a manager's
buckets. Adding or removing a key without causing restructuring is done in a single
disk put operation. If the target bucket for an insertion is full, it will be replaced by a
pair of buckets in which the old contents are distributed between the two according
to pseudokey. The new record will be included in the appropriate partner if there is
room. The second half of the pair is written first in a newly allocated disk page and
then the old bucket is replaced by the first half of the pair. Immediately after the
first put the new bucket is still not reachable through pointers in the hash file. Thus
writing the pair is equivalent to the single operation of writing the first, partner. Two

* buckets that are being merged are protected with exclusive-locks so intermediate
state are not visible. Upon arriving at the right bucket, a process performing an

inetordeee usalosetergtvrinoitAgnalokwihxcds
other updaters is required in order to read the bucket contents into private storage
and is held until the bucket is rewritten (or it is discovered that no change is needed).
Thus previous updaters have made their modifications known by the time a new
updater gains its lock. Processes executing the find operation may legitimately see
either an old or the new version of the target bucket

Next we consider potential inference among update transactions. Once an

ir

19

update arrives at the right an e oc requires,
modifications are essentially serialized. Thus updaters work with the most recent
version of that bucket. However, for a deleter to get to the point where it has all the
locks its needs can be somewhat involved if the target bucket is the "1" partner of a R
potential merge. The deleter must release its lock on the target bucket, place a lock
on the "0" partner, and then re-lock the "1" partner. While this is taking place, other
update operations may be affecting these buckets. In particular, a concurrent
insertion could add new records to the target bucket once the deleter's lock is
released so that it is not longer empty enough to allow merging. It is even
theoretically possible for a stream of inserters to fill up the target bucket and cause a
split, thereby moving the key that is to be deleted. In addition, another deleter might
get the two partners locked and merged before the deleter we are focusing on does.
Each of these conditions is checked for and the pitfalls avoided. After gaining the
lock on the "0" partner, the deleter checks whether merging might be possible (the
partner's next link points to the target bucket), and if this check fails, it goes back to
simply trying to remove its key. If the two buckets are not linked in this way, it may
mean the localdepths do not match or that the target bucket has been deleted.
Attempting to lock the target bucket under these circumstances would carry with it
the danger of deadlock. Upon finding the two buckets directly linked and re-locking
the "1" partner, the deleter checks the emptiness of the bucket, whether the desired
key is still there, and whether localdepths still match before going ahead with the
merge. Unless the key has moved, the deleter at this point would have the needed
locks and no further interference could occur at the bucket level.

Bucket manipulations that are completely contained within one bucket manager
work almost exactly like the centralized solution [Ellis 83]. Processing may go outside
the boundaries of one bucket manager if the search phase has arrived at the wrong
bucket manager, a split is required and no space is available locally, or a merge
appears necessary and the partner is remote. In each of these situations, a second
bucket manager becomes involved. In this presentation of the algorithm, an off-site
split is handled directly by the front end process since it does not affect existing
buckets in the second manager's partition. For the other cases, another slave is
created for the transaction by the second manager. A wrongbucket message transfers

.. the necessary state for continuation of processing at the new site. Calls to SendAck
and SendBucketdone generate messages that trigger the releasing of read-locks. If a
split is called for, two or three processes (i.e. the originating directory manager, the
bucket manager slave currently responsible for the full bucket, and possibly a bucket
manager front end with available space) become involved; however, there is no real
parallelism among them so the order in which the disk operations take place is well-
defined.

The merge is slightly more complex. There are two cases to consider based on
which of the partners the original bucket manager has. The Mergedown message and
its associated reply are used when the first manager has the "0" partner of the
potential merge to share state values needed by the other manager (e.g. the
localdepths of the two buckets must be compared and new links must be set up in
both buckets). The Mergeup protocol (i.e. Mergeup, MergeUpReply, and GoAhead.'"
messages) serves to exchange the information needed for the extra checking on
mergability described above. Parallelism is allowed between the two bucket
managers; however, because of the exclusive-locks protecting the two partners, the

.-. .

' ,.' A'

i~ A->

20

.
ordering of disk operations does not matter.

The freedom from deadlock argument depends on the fact that locks are
requested according to an ordering on the buckets. While a bucket is locked,
additional locks are requested only on buckets reachable from it via next links. Given "'..
the way deleted buckets are handled, it is not true that the ordering between two
buckets stays the same for as long as both exist. Thus, initially bucket B may be
reachable from bucket A but if they are partners this relationship may be reversed as
B is merged into A. However, it is not possible for transactions following the old
ordering to coexist with ones following the new ordering because during deletion
exclusive-locks are used to ensure that all the slave processes with old information
have cleared out of the vicinity of the merge. Extra precautions must be taken by the
slaves involved in a deletion to check that the locking of partners is consistent with
reachability.

This distributed implementation not only has locking as a potential source of
deadlock but also involves message flows and internal scheduling of requests within

,* managers. It is necessary to demonstrate that these factors do not introduce deadlock.
A transaction could be blocked if it requires service from a process that is blocked on
a receive message primitive or it is stuck in one of a directory manager's scheduling
tables.

First, consider the message flows. Ignoring name lookup for ports, there is a
single receive point in the directory manager code (in the procedure GetMessage at
the top of the outer loop) and it accepts any incoming message regardless of message
type or identity of sender. Basically the same statement holds for the bucket manager
front end processes. Each instance of a bucket slave is dedicated to one transaction.
This fact simplifies the analysis of protocols between bucket managers. For each
receive point in the bucket slave code, we can characterize the state of both the
sender and receiver. For example, the receivemessage in the rmd case is executed
only when onmachine = false and SendWrongbucket has been done. This imples
that messageid = Wrongbucket in the other slave process and SendAck is eventually
executed. It is easy to see that the message flows through bucket managers do not
cause deadlock by doing this kind of analysis for each receive point.

There are four ways in which a transaction can get delayed within directory
managers: it may be in the context table awaiting a bucketdone or update message
from a bucket manager, its directory updates may be delayed until versions match,
copyupdate acknowledgements for deletions may be waiting for the equivalent of
local exclusive- locking (i.e. a readcount of zero), and the initiation of garbage
collection may be waiting for the analogue of global exclusive- locking (i.e. local .
exclusive-locking plus receipt of outstanding copyupdate acknowledgements). The
first cue presents no problem as long as a bucketdone or update message is sent F
back to the originating directory manager for each find, insert, or delete message.
This is true as can be seen by following each branch of the bucket slave code for
handling the find, insert, and delete message types. The second case requires a
guarantee that versions eventually do match. The update message contains the old
version numbers and the oldlocaldepth of the two buckets involved. The
oldlocaldepth and the pseudokey are used to determine which directory entries must
have the matching version numbers. The basis of the argument that the desired

~ .2-.~:' ~ . ~ ~ .* >.-* ~ '.-. .*. o. -

21 1
VI.

pattern of version numbers eventually occurs is the partial ordering on transactions
previously described and the way this partial ordering is implemented using the
version numbers. The ordering on transactions affecting shared buckets precludes
two transactions each waiting for the other to advance a version number in the
directory. The third and fourth sources of delay are related. The key observation is
that readcount represents the number of transactions initially handled locally that
have not yet, appled their modifications to the local copy of the directory.
Copyupdates are not reflected in the value of readcount. It is possible for readcount
to reach zero if new requests do not continually arrive since delayed updates are not
permanently blocked. Copycount becoming zero at some directory manager depends
on each directory manager independently reaching the point where it is finished with
all but the garbage collection work of the transactions it is responsible for. Thus,
sending remembered acknowledgements and garbage collection can be indefinitely
postponed by a steady stream of new requests but deadlock among a fixed set of
transactions is not possible.

3. Incorporating Fault Tolerance

The solution just described does not address the issues of crash tolerance and
recovery. The structure of that solution reveals that it is a fairly straightforward
adaptation of the earlier concurrent algorithm. Consideration of crash recovery
suggests a slightly different organization.

The problems associated with processor and communication failures could be
conveniently avoided if it were possible to embed updates to the hash file in a system
based on atomic transactions. However, the goals guiding the design of our solution
(e.g. concurrency and availability) have led to locking protocols that are not
compatible with standard commit protocols. As we shall see, the atomic transaction
construct is a useful tool when applied to small groups of steps within the processing
of an individual update operation.

The kinds of failures being addressed include the failure of a manager with loss
of all associated volatile process state but not of its portion of the hash file'residing
on disk. Lost messages and network partitions are also considered. We assume that it
is possible to detect the death of a process. The IPC mechanism used here as the
model of communication provides notification to potential senders when a port
disappears (for example as a consequence of the receiver's death) so this assumption
is reasonable.

The most significant problems with the current distributed solution have to do
with interactions among the directory servers. In particular, directory updates are
funneled through the one directory server initially contacted for the operation and it
forwards copyupdate messages to all the other directory managers A direcry
manager can not allow the garbage collection of the set of deleted buckets for which
it is responsible until it has collected acknowledgements from all other directory
manageis. Furthermore, if a server goes down before propagating the directory
update information, the scheduling of other updates at other managers is affected.

In order to prevent a failed directory manager from holding up completion of an
operation, we need the ability to remove unavailable servers from participation in the

. .'. ,.'- *. ,.-..,." .. '..,....-..-. -. '... " ,. e. ,.- "_ .-.-..- , ..-...... ... ,1

22 IL

normal directory update routine and re-enlist them later. Thus, an individual bucket
may be deallocated when all directory servers either acknowledge the associated
update message or are designated as being down. This approach requires additional
information in acknowledgement messages (i.e. identification of transaction and
sender) and more state kept by the server responsible for outstanding (not yet fully
acknowledged) directory updates. A directory manager that is rejoining the system

* must construct a sufficiently up-to-date copy of the directory before resuming normal
processing. The key observation is that the buckets contain the necessary information
for building such a copy (i.e. localdepth, commonbits, and the next link). Thie
starting point for a scan of buckets, namely the first bucket is in a fixed location and

* never moves during restructuring; so any old version of the directory can be used to
find it. The manager follows next links through all the buckets using a lock-coupling
protocol with selective-locks. This approach leaves the recovering manager
vulnerable to failures of bucket managems If this possibility is determined to be
unacceptable, the manager can start with a reasonably good copy of the directory
(acquired from a healthy directory server) and use the bucket scan to verify and
update its entries. In this case, upon encountering an unavailable bucket manager,
the server can take a fairly low-risk chance of missing some information and skip
over those buckets.

The second major aspect of this more fault tolerant solution is a reassignment of
responsibilities. Rather than having the propagation of directory updates handled by
one of the directory managers, the bucket manager in charge of the bucket update

* broadcast the directory update messages and collects the acknowledgements. Since
the directory manager initially contacted does not assume responsibility for an

I operation once the appropriate bucket manager has the target bucket locked, the
* bucket manager can immediately send a bucketdone message to allow the directory

manager to forget any state it had saved about the transaction and later send it an
update message if necessary. The bucket managers must maintain a list of directory
managers believed to be up. The bucket scan performed by a recovering directory
manager serves to announce its existence to the bucket managers. In addition, bucket
managers can periodically exchange their up-lists. Recovering bucket managers must
acquire a current up-list and send information to directory managers for verification
of their entries for its buckets. The removal of a network partitioning is detected
during the exchange of up-lists and dealt with by the bucket manager recovery
mechanism.

The advantage of this reorganization is that the faiure of a bucket manager
prevents subsequent updates concerning those buckets from occurring so the fact
that the directory updates may not get sent is not as much of aproblem asit iswhen
one of the directory managers is supposed to send those update messages and it is
down. In that cas, there is more potential for subsequent bucket operations whose

asoiaedirectory updates wilbeheld up bythe minuing messges,

The remaining details needed for fault tolerance are applications of standard
techniques such astimeout and retransmission of messages. The act of writing the

r two buckets involved in a merge operation back to disk should be done atomically
using a commit protocol. The order of writing the two buckets involved in a split
operation makes them visible in one atomic step but failures during this action may
result in the allocation of a new bucket that never gets incorporated into the data

structure. It may be convenient to enclose the disk operations involved with splitting 23 '.

within an atomic action as well.

Figure 9 shows the revised message flow for the increased degree of fault
tolerance provided. Figures 10 and 11 give the pseudocode for the managers
implementing this solution.

.S.

i

-p.

i ".

• "2
"°°°

4
"

24

Response
Request

Recoovrec

Requestke daUplis
tonagexhange '
recovery Updateve

Bucket- pi~ne RecoverAck

Figurer 9pFatTern Mesges
Ac M.el

Response
Go ahead

- ~ ~ ~ ~ ~ ~ ~ ~ B ce data* .~-~- ~ -\ - ~ *:.-~- -*.-- *:.i.. .

25

Figure 10 Pseudocode for Fault Tolerant Directory Managers
while((true) (do(

massageid - GetMessage (Amag): Contact IPC name server to locate a healthy
/* Either receives a message or takes a message off directory manager and
the list of delayed but now ready directory updates. send a "request copy" message to it;
Messageid ="timeout" if lis is empty and receive primitive Receive response containing copy of directory
timesot /) while (timeout or emergency message received).
switch (mamageid) {No~ood~leasse - tu;

caus request: /I firom user 0/ while (NoGoodMessage){
Calculate pseudokey and locate current lookup port to first bucket manager;
incarnation of the buck*(manager responsible If (no valid port found) dolayo,
for desired bucket;010
/,Maps bucket umager id to port either through send "recover" message.
a local cache or the [PC name sere/ while (re

* - If (valid port found) (~Receive message;
rsmco a read on +I;f (timeout) break;

*/*numnber of transactions Nt (it is a bucketdata message)(
currently using directory data/ NoGoodMessage - false;
Generate transaction#S and save state related break:;
to this request;)
Set timer for transact ion*; it (emergency message about
Construct and send a 'find', 'insert' "or this port) I
"deferte' message to bucket manager, delayl)

) break;
else send user a failure reply;
break; /ignore irrelevant emergency

message or duplicate direcwr cops I/
cane bukettlone: I* from bucket manager 0/

If (transaction#S not in use))
/*This is a duplicate message or state lost in crash*/)

break; *'falls through to next case*/
readcount - rsacount - 1;
CleanStatte (msg.transaction f); came bucketclata /*from bucket managers
/* forget about this request V in response to recover message*/
break; Update directory entry with information in message;

it (all bucket managers have replied)
cams update: /* from bucket manager /*Pall directory entries have been verified*/

if (Veruiond~ooatch(mog)) Publicize own named port with name server;
P* compares version numbers in message with /P Implies this manager now has healthy copy-
version numbers in corresponding director) entries: and will now serve users' "request" messages
detects duplicate update messages that have already and recovering directory managers' 'request
been done and reissues acks in appropriate way V copy- messa (accesses gotten through

DelayUpdate(msg); name server)V
/,Eliminates duplicates of messages in queue*/bek

if (fm-gop us e") (cams bucketrecovsry: /*from recovering bucket manager/*
Apply appropriate updates Update directory entries, if necessary,. to reftsect
to local copy of directory;. true state of buckets:
Send!Ac(mmg.ackport, transaction at, myport); Cache port of bucket manager in local name table.
/respond to bucket manager break;

who, iaed t update
cate m e genty. IOfm 1KC- notification of pot death */

else (/0 op = deet V Remove port from cached name table;
Apply local directory updates;.lc nidctrI Mt fec aa~e
"smN W eAck(msg.ackpot transaction# myt); transaction ta initially contacted port has died,
1. save up acks, Mnti the equivalent of ifdoesit just &hoan tresacton sate another

s11hid1-locking occrs bucket ttioiW am now be involved (wromgbucket protocol)
so wait& until tier be wrinseion goes off F
break;RslseSavedQ;

V. P~/If finishing this directory update enables previously__
delayed ones, make them accessible to CoetMessage cal Wnot brask

'I. break; It(Ireadcount)-m SdemntwssdAck&O.
/*send licks saved by deletion updatesV

came remnit; ,from OS's process manager that for (alt transactions. t. whose timers have expired)(
feamed directory manager process. RstoreStae(t);
Note this uses a consersative approach- Nf (t.portdied)
doesn't skip bucket managers / Send user a failure reply

eOW Retransmit.

P)

26

Figure 11 Pudocode for Fault Tolerant Bucket Managers

Bucket Manager Front End Process: Bucket Slave Process:

/*Note that communication between bucket managers involves meemageid - receivemeesage (&msg):
IPC name lookup- the presentation here generally assumes that /* includes data nieeded to initialize local copy of up-lis/ p
a valid port is found/ 0 (inessageid wrongbucket) sw - rmg.op;

elseew a memageld.
While swtc 8w)

while si (tue reeo(eei (ain"n);,wth(w
Swth (meamooeld (-as recover PCould try to package infonnation about conseuo~e

cas apibelte: P fun another bucket buzkets in one message, but does't in this veapon/
manager with no available space olkme a mfeg-Page:

Allocat eavalble pegs SelectiveLock (Old~g);
Pilbuckst (newpage, mmgWAi2); Sendu -recoverack- to map ~replYPort;
Pas writen, falure here makes inIWg gmbag/ getbuiat ((I dpege, current);

Send "SPiIpy- Mssae Containing link to new bucket; Contruct and send "buckedata" to reovefng drectory;

came Cancelso100it: Oeallocate Page assigned. while (oriffachins) bek nahn re
brea*; newpags current 4next:

ce recover: machine ucurrent 4nextmgr;
Update up-list, It (machine a -nil) break;
Broadcast revival to existing slaves; it (machine!.* me){
Create slave to handle response. Send "recover" to next manager;
Forward message to it; GethecoverAcko; P loops until achie~ed.
break; reamt if tieot WAITS if detination

cMe emergency message about slave: known to be down*/*
Update transaction#V - slave table; oflhmchinO - false;
break; I.-~

case reimit: /fromn 0.S's process manager/ else (
/*Get an up-lis fom a neighboring bucket manager- SelectiveLock (nwwpage);
a "neighbor" being another bucket manager connected getbucket (newpage. current);
Via next or prev links from locally managed buckets- UnSelectiveioc (oldpage);
frtost end process probably should maintain Send 'btckefdata"

- -a cache of bucket managers id's - current port if known*/ oldpege a newpage;
"Ohile (true) ~

Locate pod.~ p, for one of neightboring)
bucket managers; UnSelectiveLock (oildpage);
Send Oempty" up-list to initiate up-list exchange, Clear~upkiaWe;
wae@"el a receivemesmag (Ameg): break;

/*with finite tameout/
If (Massagod a=up-list exchang) break; case find: oidpage a melg-page;

) ReadLock. foldpage);
for (alt directory managers in msg.up-list) if (meesaged - - wrongbucke)

Send "bucketrecovery" message; Send "Ack" to bucket manager holding
AtergeUp-lista(Sup-ist. mesg up-list); previous bucket; /allows it to unlock V1
Allocate public port and assert my long-term name for it; afas Send "Buckoldone" message to directory manager,
break. get1buckst (oldpege, current);

case up-NOt exchange: onmachine a Ow.e
9 (not a reply) Send own up-list in response; /Folow next links until current is the tdgt bucket*/
I"OrgeUp-lista (Cup-Net. msgu7 lHe?); whifle (current is wrong bucket &A @lmachie)
for (all directory managers in ma pup-list - up-ost) I flwpag -curtrenit -) next:

Send "bucketrmcovery" message: machinet airrient 4 nextmgr;
Broadcast revival to existing slaves, I (mackern I n me) (/ next bucket is raome I/

) Send *Wrongbucket" MSSae to next bucket
break; manager,
a"@~ nn"WA: Onmnechlne a false;

/dmt worry if valid porem canot be found for one/ Ole (/0 st bucket is local *

Oresk; Re&&00 (newpags);
(etnewpmge. uret

9 (tranet"lOOR not yet see) (ULWAsedLock (oldpege);
Create a bucket slave process and forward moo to ft. eldpe newpegee
teord transaction 4' . sive (nappig;

e lm (fd u p lic a t e i a g e /
I (o n m a c it in s)

4 1i l
it (asociatd slave till alve)

found (moqkey);
forward mYessage; PSead ume response indicatingt key Ibund

eMO Send appropriate reply; ems) notleund (meg key);

elms tWron1uck:I P"; PSee below"*/
UnfleedLock (oldpege);
Cleet~upli~ee; Phe below/

srak;

r ' 1

Figure 11 (continued) 27

puoxicket (oldpage. MOaLt)
clsaeinrt. onmachine a true; Urutaechv5'~o~J (oldpage).

oldpeg a 0019P90 rocastupiatlSO; /*See WeOW*/
Se vevLock (oldpage);
it (mesagiWu wrongbuctwt)

Send 'ACk - to previous bucket manager.I (uceS
els Sed bcked~f@" essge;Send Use response;

getbucet (okopge, current); 111 W ,qot msaet n ietr
Follow next Enka Until current is the rtht bucketSedrqsf-esaetan rcOy

(as in ftnd ase except use Seletow locks instead of manager as Ht Nt came from User;

Read locks);
if (ionmehine) {OsoalsO

ufllieck(oNdAMe); ca e slef: rieedupdstef 11110

if (earh (crret, mg ky)) /*i keys~r~dy pod the right bucket as in the beginning Of insert
iflarchCernt a~e) (/isky ue;y hree excep onae Exclusive locks: -'

USlctVSLock (oldoe); I (tonmech WOe D (

a%*sV (Cuet -) counthl I .umentrie)(k~ca~SOk(lpg
/* current 4L. .. L bucke no fullI

meg~ky); I (current bucket wilt not be left "too empty'

add (current. a-e) as a resul of deleting rnsg-keY)
PuDSUS key into current buffer N (rejm (meghaey, curvent))

pullbuckel (oidpage, curmet); (IMke (ige current);

IUnSelectvel~ock (oldPse); nuis.c'(dpe)

slue Pcurent s felse" (/@Merpng partner buckts is cafled for/
maccer a SONt (current haffi, haft2. meg key); II (mag. key is in brat bucket of the Pair){
IPdistrbutes dhe contents of dhe cluret, bucket into newpege * arst neot;
2 buftn pointed to by hill and hslf2- 1ch arntfm f
if room available, inserts key into appropriate half N mchine - Auen)netnr

and em tre: thewis mo MeMecrgie a me).

U (AvailablePgeeO0) ()

~ ~buc~t (J; lse (/- partner ,s remote
mach newee myid ; Send -ea'gedowfl- message t
) o "(epae 0) parner's bucket manager.

else P no ailabe p~ ocall */- Mergudown Repi) expected "

done a fas; meai ecieeeso 9a)

whie (not done) ((mean)l * eevflss(lnn
Send 'Splltbucket' message m Mce an
containing content of now bucket mgacsn~fle

to any manager with space
whie) 1 (meageid a a rgsdowt'ReIV) break;

gW l McelveiNNOW (&Meg); If(emergency message about partner's
N (timeout) Wese; bucket managei){

.4.,if (Moeagldua soltucteteply) { .pgspcom a fule;

done w true; bof

Deal with posstb" dupwl~ss;.
i (emergecy message, about /a n0trmbcuRy

Potential Partner) bra*;.
W Memgel wrongbucket) II(alm)(-Kt a

Send lack*. (iLe. bcaldepdus match).

I (imegld a reQUst) contens of parnner in an

INSend 'OcLetdene;. onetn merged bucket
I (emergency WAS"@g autin current buffer;

*"f fsm&atr Start atomic action with Partner"
WANage Of messag from pulbucke (oldpag. Current);

hfrone about recovery End agoloi acton;. PCMIIlt P11010001" P
of one) updat up-Nst; (bre CM-be;-

jrifco.a ltted. partner wl be maponsmble fr

C1 x)uk W propagatng "updat mmqu/ r
lechne 11g1buetf'g do simply remove record

I (remove (z, Current))

hilt- new * nepse;putbucket (oldpage. Wirren);

hilt .> neumgr a machine.
l.Ms rWL~t failure potto putbucket UnxltieA (OICp10);

MWl oewpae Vibage tha wont get cscefled/)

C.7 77ir

Figure 11 (continued) 2

else { / mke) in second of pair 1if (success)
newpage a currenlt .) prow Send user resonse
machine . current -) prevmgr: 411se
UnExciusiveLoCk (oldpage), Send 'request' message to any directory

if (machine a - me)~ manager as it it came from aser;

Aferge on sit*; if (needupdate)(

es(Ppanwer is emowq ExclusaLock (oldpage).

Send "Aergeup" meossage to dellocat (oldp'ge):
Pertnaer's bucket manager; UnExckusivLock (oldp);

meesagel a rIeenomeeg (amesg);caaopcas;
I (timeou) Retransmit "Me'geup- mesag; break;.
I(meaft id a a Mar OOp~pY) break;
I(emergency massage about cas mergedown: 18-pas a g IUhgI

Pflnfer*s bucket Manager) (Excluietock (newpage);
ITIg-Succees a fale; 9stbuso (nauwpage. brother);
break; sceS.brother .) localdath .3meg.ocaldepui;

Send &MeereDown Reply' to Part ner.
U(emergency message about I sces
death of some directory manager or bri AW 4 commonbits a deleted;
mess1ge trom front end about broar next a brother -) pay;
recovery of one) update up-list. broVWer edtmr a brother 4 pravmgr;

Deal with duplicates; Staff atomic action with partner;

psakuckat (newpage. brother;
It (tmsgsuccees) (End atomic action;

/0 not mergable - imply remove record/ it (committed)(
if (remove Mz current)) UnExckwsvoLock (newpa);

%pubkt" (oldpaila, current). I Ura I st~pdOWss;

) ExclusiveLock (nawpag).
Oft (apparently mergable from deuilocale (newpage).
parmes point of view- Check more locally/)

ExclueiveLock (oldpalle):
getbucket (oldWg. current); UnExciusiveLock (newPage);
iN (key to be deleted no tonger break;
belong$ in Current bucker) (

UnExclusivsLock (oldoag); cm mergeup: newpage a meg partneir;
Send "Goahead" message to partner ExclusiveLock (newpage);
with success hlid set to false. galmcka (nawipaga. brother);
Pcancels riefe Vsuccess M rother .> next - -nlg.wrget) L

success * lawee; (brother nextmgr amg-RIMisgeid);

) Send "MargeUp Reply";
e* If (current.)toceldepth N ita=cs)

does not match localdepth in mag H0 I* oAhead" expected/
current no longer "too empty*) ("~ (w) (

It (remove(&, curren)) msaed=rciee a e na);
ptuicket (atspaga cuirrenit), 9 (tout) agauccess a false

tksExcluelyaLk Iedeg) (messagald muOAhee) break.
Send "Goahead" message I (Ofeergncy message about partner manager)(
with $uccesis a ialse; mAucae few;sa
/*Ceel ampe 0/ brow~

elss(I (wmssgsl . Margi) PduplxM-
send ftaco l Retred sIansmit Wergeup"eply".
meas to partner.)
/on Partwrs mesqer ID mapg a/ I ""MaOG"s (/0 meap
wurn 4 ied a Curlt .) Pare Construct merge Mucke in broer;

atnirst -a I'6 e aSean atomic action w~b Partner;
sewee -30 PNO . Piuuehat (Meee w ~ier

GUIFrM 4 -) eMMrta del~~; End atomic action.
Start atowi setwn with partner;

'4'Pu el" (a11 oe rent;
End atomic action; U ubeek(apg)
I (commte nsailadale a w Unakilrwe.Mwpo)

a"n Success own kese. breeti;

)ra

%1

Figure 11 (continued) 29

BroadCastUpdatws) Get WrorgbuCketReply(

whl (nloe Mmgi - eovms (I: wjdL

Send "update" massages to ant f (timeot) Retransmit "wrongbucker" message;
dirctoy mnaerson p-mt;it (mesasged muWrongbucketReply break;

Wiretor maIN) gr It UP-hal;c Mo"P about next bucket manager) f
Menaaida rcelerne~gearng);send user a failure response;

Nf (timeout) breek; rek
it (meeeageid -u -udatsack))

Mark that manager on up-lost. If (meeageid ama wrorngbucket) /*duplicate/
it (relevant emergency message) Send sack"

update up-hat; if (mneeageid u-request) duplicate/
I(recovered directory manager) M /Y3end "bucklone";

update up-lit;)
Send "update* mossage.

if (megegei ur wongbucket) Pdupbicatel ClearuplicatWOr
Send a@ck;

if (mesaged m request) /*duplicate/ while (any messages pending)(
/f3Sed "buCketdone"; mesgel a ceivemnesge (ameg);

it (all directory mayager aCCounted for) (swilth (mesagei)(
done a true; cwm wrongbucket: Send 'ackt'

bak; clime request: Send "buCketdone";

) cecms plucketroply: P only possible in iuert
/Iglofe irrelevant unerg. nap/ If (from other than chosen partner)

) Send "cencelsphtf";

/*Odwe possible duplicates
(q g Mergeup. MereUpReply)
require no action/

P)

%i

W Nn -7 KT

30

4. Conclusions

In this paper, we have presented a solution for distributing an extendible hash file
with replication of the directory component of the structure. The solution is
interesting in its own right for use in a distributed data base system that is expected
to frequently change size and be available from various points in the network.

The solution also serves to illustrate several points that may apply to other
problems that can be viewed primarily as data structures to be partitioned and
possibly replicated across sites of a distributed system. The first point concerns the
features of sequential data structures that make them amenable to distribution. In
ti study, we chose a shallow (2-level) linked structure as a starting point. For
comparison, we can consider the deeper structure such as a B-tree or a logically
contiguous one such as linear hashing [Litwin 80). First of all, a multilevel linked
structure offers several advantages. The links map naturally onto a port-based
communication mechanism and the indirection provided by the directory allows
flexibility in assigning buckets to sites. It is especially convenient if the top level
component is reasonably small. In our case this allows the hash function to calculate
a location in the addresss space belonging to a single logical processor. By contrast,
linear hashing lacks the directory component and therefore requires that a naming
convention be adopted to give the appearance of a network-wide address space

* appropriate for direct calculation of bucket locations. Of course, if the directory
outgrows a single manager, extendible hashing requires a similar convention.

* The major complexity of our solution arise from the replication of the directory
to enhance availability. Although the absence of a directory in the linear hashing
scheme seems at first glance to provide availability easily, there is a small set of data
required for bucket address calculation that should be replicated. In the naive
solution, this information should also be accurate, suggesting a need for strict
synchronization among copies. Thus eliminating the directory component does not
trivialize the problem as some researchers have claimed. The shallowness of our
multilevel structure is an asset in that the short average search path makes an optimal

asinent of buckets to managers relatively unimportant. For a deeper structure
*such as a B-tree, one might want to address the hard problem of grouping pages

within servers to improve locality.

The second point demonstrated by our solution is the value of making
modifications, in the implementation of the data structure that allow recovery from L
the use of inconsistent information (e.g. next links) and improved locality (e.g. prey
links). There are opportunities for taking this idea even further in the solution
presented.

Another point has to do with methodology. Developing a distributed solution
raises a number of issues; although some are unique to this particular model of
computation, the aspect of achieving a degree of concurrency is common to both
distributed and shared data systems. Thus a correct centralized solution should prove
to be a good starting point in determining how to partition structured data. The
approach successfully used here was to first solve the problem of concurrent access
and then use that result as the basis for distributing the computation.

°~7 7 , • %- -• --- .-v - - ". .

0. ... %

Finally, it bears repeating that a fundamental characteristic of a distributed
system is the impracticality of gathering a true instantaneous global view of the
world. Successful distributed applications must be able to accommodate inconsistent
and inaccurate information.

5. References

[Ellis 831 C. Ellis,
"Extendible hashing for concurrent operations and distributed data,"
ProfcwJngs, 2nd SIGACT-SIGMOD Symp. on Principles of Database
Systems, March 1983.

[Fagin 791 R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong,
"Extendible hashing - A fast access method for dynamic files,"
ACM TODS, Vol. 4, No. 3, September, 1979, 315-355.

[Gifford 791 D. Gifford,
"Weighted voting for replicated data,"
Proceedngs, 7th Symp. on OS Principles, December, 1979.

[Kernighan 781 B. Kernighan and D. Ritchie,
The C Programming Language,
Prentice-Hall, 1978.

[Larson 781 P.A. Larson,

"Dynamic hashing."
BIT, Vol. 18, No. 2, 1978, 184-201.

[Lehman 811 P. Lehman and S.B. Yao,
"Efficient locking for concurrent operations on B-trees,"
ACM TODS, Vol. 6, No. 5, December 1981, 650-670.

[Litwin 78) W. Litwin,
"Virtual hashing: A dynamically changing hashing,"
Proceedings, 4th Conf. Very Large Data Bases, 1978, 517-523.

[Litwin 80] W. Litwin, '1"
"Linear hashing: a new tool for file and table addressing,"
Proceedings, 6th Conf. Very Large Data Bumes 1980, 212-223.

Loaet 831 D. Lomet,
"Bounded index exponential hashing,"
ACM TODS, VoL 8, No. 1, March 1983, 136-165.

[Rashid 801 R.Ruhid,
"An interprocess communication facility for UNIX,"
CMU-CS-80124, Carnegie-Mellon University, June 1980.

"..

=%%

. -.. "-..

32

16%[Stonebraker 791 M Stonebraker,
* "Concurrency control and consistency of multiple copies of data in distributed

INGRES,"
IEEE Transactions on Software Engineering, Vol SE-5, No. 3. May 1979.

* [Thomas 79] R.H. T7homas,

"A majority consensus approach to concuffency control for multiple copy
databases,.,
ACM TODS, Vol. 4, No. 2, July 19179, 180-09.I

'4I

4

4

4 -

.4

-p

\ 4.

.4...

?

.4

S 4.

IOAt
'S.' .I.4.

'4
4..

U

.4 p..,.

.ft

.4.

4*J

~N

b

444-v -.1

4 ~-*-L~ ~

