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ABSTRACT Developing a reasonable, efficient distributed market transaction mechanism is an important

issue in distribution systems. The gaming relation between distributed transaction market entities has yet

to be fully elucidated in various trading links, and the impact of distributed transactions on distribution

network operations has yet to be comprehensively analyzed. This paper proposes a novel distributed Peer-

to-Peer (P2P) day-ahead tradingmethod undermulti-microgrid congestionmanagement in active distribution

networks. First, a flexible load model for price-based demand response load and an autonomous microgrid

economic scheduling model are constructed. Second, under normal operation of the distribution network,

a non-cooperative gamemodel and Stackelberg gamemodel are employed to separately and comprehensively

analyze gaming relationship among sellers, and between sellers and buyers. Thereafter, a congestion

management method based on market capacity is established from the perspective of distribution network

control centers. Finally, the impact of end energy consumption characteristics on microgrid economic

scheduling and P2P trading is analyzed through a modified IEEE 33-node power distribution system. The

economic and technical benefits such as congestion mitigation and network loss reduction that produced by

P2P trading to the operation of microgrid systems are analysed with specific indicators.

INDEX TERMS Multi-microgrid cluster, active distribution network, peer-to-peer trading, non-cooperative

game, Stackelberg game, congestion management.

NOMENCLATURE

Variables

CPDR
MEP,i Inconvenience equivalent cost, CNY

COM
MEP,i Operation and maintenance cost, CNY

CES
invest One-time

ES purchase cost, CNY

CMEP,i Power deviation cost of the net load demand,

CNY

PB,i,G Quantity of electricity purchased from utility

power grid, kW

PB,i,G Price of electricity purchased from utility

power grid, CNY/kW

The associate editor coordinating the review of this manuscript and

approving it for publication was Amedeo Andreotti .

pB,i Price of electricity purchased from other

MEPs, CNY/kW

PPDRMEP,i(t) Flexible demand after demand response, kW

PMEP,i Power demand before demand response is

adjusted, kW

PMG
MEP,i(t) Total electric power demand during time

period t , kW

POMEP,i(t) Non-flexible power loads during

time period t , kW

PPVi (t) PV output power during time period t , kW

PWT
i (t) WT output power during time period t , kW

PESD,i(t) ES discharge power of MEPi during

time period t , kW

PESC,i(t) ES charge power of MEPi during

time period t , kW
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PS,i,G Quantity of electricity sold to utility

power grid, kW

pS,i,G Price of electricity sold to utility

power grid, CNY/kW

pS,i Price of electricity sold to other

MEPs, CNY/kW

pS,i,max(t), pS,i,min(t) Upper and lower limits of

acceptable transaction price,

CNY/kW

PexS,i Quantity of electricity sold to

other MEPs, kW

PexB,i Quantity of electricity purchased

from other MEPs, kW

PkMS Transaction power set for MEP-S

in k-round iteration, kW

pkMS Transaction price set for MEP-S in

the k-round iteration, CNY/kW

si(t)/bi(t) Identifier of prosumers

S(t) Gradient search direction

SOC(t) Electric quantity of ES during

time period t , kW· h

Parameters

ESOC Rated capacity of ES, kW· h

Mm
max(t), M

m
min(t) Maximum/minimum capacity

of ES equipment of MEPi, kW· h

Pcap Available transmission capacity of

power distribution system, kW

Pm[C/D],max(t) Maximum charge/discharge power

of ES equipment, kW

αi Sensitivity coefficient of the

microgrid-i

β Learning factor

µES Regulating coefficient of ES

µMEP,i(t) Weighting factor related to the

power deviation

ηESC Charging efficiency of ES, %

ηESD Discharging efficiency of ES, %

Indices

i index of the MEP

k index of the iteration

t index of the scheduling period

S Quantity of MEP sellers

participating in P2P transactions

T Total number of scheduling periods

Functions

N (· ) Discharge depth function

z(· ) Buyer MEP’ action strategy based

on seller’s quotation

Abbreviations

BS The bill sharing

DER Distributed energy resource

DR Demand response

DTO Distributed transaction operator

EBI The energy balance index

ES Energy storage

MEP Microgrid energy service prosumer

MMR The mid-market rate

P2P Peer to Peer

PV Photovoltaic components

SDR The supply and demand ratio

TOU Time-of-use

VTI The value tapping index

WT Wind turbine

I. INTRODUCTION

Ever-accelerating advancements in distributed energy

resources (DERs) have introduced an abundance of DERs

connecting terminal users to power systems. This interaction

can facilitate energy security and minimize carbon emissions.

However, the modes of power generation and supply in exist-

ing power systems are still centralized. The grid service and

power market trading mechanism needed for promoting dis-

tributed energy are not yet perfect. This leads to low returns

for DERs projects and drives down their marketization [1].

To this end, many countries have made power distribution

transaction policies, seeking to reform their national power

systems [2]. For example, China issued theNotice on Launch-

ing a Pilot Market for Distributed Power Generation Markets

in November 2017 to further explore grid technology service

management systems that adapted to DERs, power trading

mechanism, and the reform of transmission and distribution

prices, as well as other objectives. This Notice also called for

distributed energy resources to percolate in the competitive

market through distributed transactions.

The P2P transaction is based on computer overly net-

work concept [3] and has been extensively investigated to

realize electricity trading. Some countries, including the

United Kingdom [4], Germany [5] and the United States [6],

have trailed demonstration applications. The P2P transaction

allows local users to conduct distributed transactions directly,

which relieves the burden on the distribution network control

center and streamlines the demand-side response, making

the whole power distribution system more flexible. How-

ever, the distributed energy transaction market is subject to

real-time price fluctuations, dynamic adjustment of power

consumption plans, and frequent electricity bill settlements,

and other issues. An equal, highly-efficient trading mecha-

nism is necessary to manage the fast changes in information

and energy prices during these transactions.

Two major trading mechanisms are now used in P2P trans-

action markets [7]. The first trading mechanism is ‘‘united’’

P2Pmarket supported by a centralized pricing clearing mech-

anism. The supply-demand balance inside the ‘‘union’’ is

realized by distributed transactions organized by the aggre-

gator. The second mechanism is a P2P market wherein

market participants can adjust transaction prices according to

actual market environment. For the first trading mechanism,

Zhou et al. [8] comprehensively summarized the concept,

simulation framework, and evaluation methods of
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P2P transaction mechanisms. Three typical transaction price

settlement mechanisms were also discussed including the

supply and demand ratio (SDR), the mid-market rate (MMR),

and the bill sharing (BS). This work established a solid

theoretical foundation for further explorating subsequent P2P

trading mechanisms. Liu et al. [9], for example, studied

P2P transactions between photovoltaic prosumers based on

transaction price clearing via SDR, transaction user satisfac-

tion, and price-based demand response (DR) factors. Kumar

Nunna and Srinivasan [10] established a comprehensive

energy management system (CEMS) under which optimiza-

tion is achieved via scheduling aggregators deployed on

microgrid clusters and transacted electricity prices. Internal

trading can be managed by CEMS with multi-microgrid dis-

tribution systems and DR strategies can be formulated based

on different types of loads. Yazdani-Damavandi et al. [11]

established a multi-energy system embodying energy mar-

kets, regional energy operators, microgrid systems, and load

users (i.e., a four-layer operational framework). Based on

the optimized scheduling strategies within the energy micro-

grid system, the regional energy operator clears the trans-

action price of the microgrid cluster in the region, thereby

balancing regional energy sources and reducing operating

costs. Alexandra et al. [12] focused on the role of battery

storage equipment in distributed transactions and proposed

a Flexi User and a Pool Hub market for the community of

prosumers incorporating battery storage systems respectively,

the economic benefits of the community through distributed

transactions were compared and analyzed by practical cases.

Nguyen et al. [13] presented an optimization model for

rooftop PV distributed generation with battery storage in

P2P energy trading, aiming at the net energy cost optimality

of all households. It also analyzed the impact of different

PV system scales, different generation scenarios, and other

factors on user costs. Long et al. [14] proposed a two-stage

control method that includes optimizing the energy costs of

the community and developing the control set-points to real-

ize P2P energy sharing in community microgrids. This paper

used the SDR method to clear P2P buying and selling prices

to ensure that each prosumer and consumer is able to obtain

economic benefits. The comparison of energy costs, self-

consumption of PV energy, self-sufficiency ratio, electricity

bills of individual consumers were analyzed through actual

cases.

In above reference, transaction prices were optimized

and cleared based on the operation of each microgrid sys-

tem. Previous researchers have also introduced game theory

into P2P transactions to enhance the autonomy of trading

users [15]. Thus, the profits are guaranteed to be fairly

distributed between microgrid systems participating in the

transaction. Some studies have also explored the economic

benefits of transaction users under the second trading mecha-

nism described above. By using non-cooperative game the-

ory, Liu et al. [16] analyzed ‘‘selfish’’ strategies adopted

by different microgrid systems in the sole pursuit of profit,

which involves adjusting the charge and discharge states of

energy storage. The cooperative game theory was used to ana-

lyze the trading strategies of microgrid systems to optimize

the overall economy of the microgrid cluster. A distributed

algorithm was proposed for solving and proving the Nash

equilibrium of the game. Paudel et al. [17] proposed the utility

function of producers in P2P trading. The non-cooperative

game and evolutionary game were used to analyze seller and

buyer choice competition in P2P transaction. The economic

and technical benefits of P2P trading were validated via an

iterative algorithm. In a study on the internal transactions

between multi-energy hubs, Songli et al. [18] targeted at the

optimal economics of various energy hubs and realizedmulti-

energy hub coordinated scheduling by solving the Pareto opti-

mality as the balanced, feasible solution of the cooperative

game. The economic benefits of coordinated operation of

multi-energy hubs have also been comprehensively explored.

Apart from transaction pricing and clearing mechanism

and the autonomous optimization scheduling strategies of

microgrid systems, the energy utilization behaviors of end

customers also affect transaction outcomes. Some studies

have shown that clean energy accommodation rate can be

increased by 2-15% through demand-side management [19].

Several researchers have considered the impact of user DR in

studying P2P transaction patterns [9], [10]. Jalali et al. [20],

for example, considered the load DR factor in a study on

the coordinated operation of the multi-microgrid system.

Noor et al. [21] investigated a demand-side management

method in a domestic microgrid system, containing energy

storage equipment and electric vehicles. They also explored

the application of blockchain technology in the energy

management of the microgrid system. The effect that the

demand-side management wields on ‘‘peak load shifting’’

and amelioration of the grid load distribution was proven

by analyzing real-world cases. Alam et al. [22] investigated

P2P transaction modes among smart home users. Transaction

optimization and price clearing were achieved to enhance the

economic efficiency of each household user in the region. The

DR factors of energy-using load were explored in the study as

well. P2P transaction modes and DR factors are also analyzed

in details according to real-world cases of economic benefit

among smart home users.

There is indeed a sound theoretical and model founda-

tion for the research conducted in the present study. How-

ever, existing research has some limitations. First, some

research considers the impact of DR but do not recognizes

the effects of flexible load regulation strategies on the trans-

action of microgrid systems. Diverse load demands in the

microgrid system often create a large schedulable space. The

composition varies corresponding to the cost and benefit

due to the distinct compositions of the internal equipment

and loads of different microgrid systems. Unified pricing

modes may also sabotage the interests of certain entities in

exchange to maximize the union’s interests. The aggregators

require each microgrid system to report its own production

and energy consumption information, which may interfere

with the autonomy and privacy of the microgrid system.
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Despite some research on applying game theory in P2P trans-

actions, the game relationship involved in multi-microgrid

distributed P2P transactions has yet to be fully understood.

A simple cooperative game or non-cooperative game do

not fully reflect the relationship between participants in all

aspects of the transaction. Many extant studies on multi-

microgrid transactions only involve the transaction mode

from the economic point of view, but do not explicitly study

the impact of distributed transactions between microgrid sys-

tems on the operation of distribution networks in a specific

region.

To resolve these problems, a distributed day-ahead

P2P trading for multi-microgrids is investigated in this study.

Single microgrid autonomous scheduling, microgrid clus-

tering distributed transactions, and distribution networks

are considered to comprehensively analyze the impact of

P2P transactionmodes on the active distribution networkwith

multiple microgrids. The main contributions of this paper are

summarized as follows.

(1) A non-cooperative game model and Stackelberg game

model are constructed to analyze the relationship among

sellers and between sellers and buyers of microgrid systems.

The interest of each microgrid system is guaranteed as the

game model is improved from the ‘‘sell’’ and the ‘‘buy’’ link.

(2) The technical and economic benefits brought by P2P

distributed transaction mode to the microgrid system and

distribution network are quantitatively analyzed with specific

indicators, i.e., the value tapping index and the energy bal-

ance index. While exploring the advantages of P2P trading,

the factors affecting the benefits are also analyzed.

(3) Methods that based on the market capacity for con-

trolling distribution network congestion are considered in the

context of real-world distributedmarket operation and trading

scenarios. The effect of P2P trading on distribution network

operation is further explained.

The rest of this paper is organized as follows. Section II

describes the overall framework of distributed P2P trans-

actions for multi-microgrids in the active distribution net-

work. Section III presents the terminal flexibility load DR

model, which includes price DR load, and the autonomous

operation scheduling optimization model of the market

entity. Section IV applies a non-cooperative game model

and Stackelberg game model to P2P distributed transactions

in the microgrid cluster under normal operating conditions.

Section V discusses the control methods adopted by the

distribution network control center in the case of conges-

tion. Section VI comprehensively analyzes the autonomous

operation scheduling results, P2P transaction results, and the

impact on the microgrid system and power distribution net-

work through simulation analyses. Section VII summarizes

the work.

II. OVERALL SYSTEM FRAMEWORK

The framework of the P2P transaction model proposed in this

paper is shown in Figure 1. The microgrid is the primary

market participant, consisting terminal users and DES, such

FIGURE 1. Overall framework of active distribution system with multiple
microgrids.

as wind turbine (WT) and photovoltaic (PV) components.

Only some microgrid systems are equipped with energy

storage (ES) devices in the system framework discussed

here, as per the economic cost of the device. All micro-

grids are connected to the utility grid via local distribution

networks, and support bilateral transactions. Each microgrid

system is equipped with intelligent measurement devices and

a microgrid energy service prosumer (MEP). The intelligent

measurement devices meter the energy production and load

demand of the system, as well as the trading of other systems

or the utility grid before sending the data to the MEP for

processing. By rationalized P2P transactions, ES equipment

and flexible load scheduling, the MEP balances the demand

for distributed generation and terminal load in the micro-

grid system to economically optimize the operation of the

microgrid.

Suppose that there is also a distributed transaction opera-

tor (DTO) in the local area which is responsible for assist-

ing P2P transactions between microgrid systems. In the

P2P transaction, each MEP first embarks on an opti-

mal scheduling for its internal grid consumption demand,

ES equipment, flexible load, P2P transacted power, and elec-

tricity to the access grid. Based on the internal optimal

scheduling, the MEP then submits the quantity of tradable

electricity and the quotation to the day-ahead distributed

trading market and the DTO, while considering the electricity

price signals of the distribution network. The DTO publi-

cizes the information after receiving the transaction informa-

tion from MEPs. Considering the gaming behaviors between

MEPs, the DTO updates the transaction information continu-

ously and assists the MEPs to achieve final P2P transactions

under all relevant safety constraints for practical operation in

the distribution network.
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III. MICROGRID SYSTEM MARKET ENTITY MODEL

A. TERMINAL FLEXIBLE LOAD MODEL

The advancements in energy-utilizing equipment allow flexi-

ble loads to effectively realize DR responding to price signals.

Given that users have distinct sensitivity to different types

of load shifts, the price-based DR load can be considered a

relevant example here. The incomfort of DR was measured

by the changes in the power and time of flexible load [23].

The equivalent cost of DR from flexible load inconvenience

is defined as:

CPDR
MEP,i = αi

T
∑

t=1

(

PPDRMEP,i(t) − PMEP,i(t)
)2

(1)

In summary, the total electrical power demand of the micro-

grid system during period t is: PMG
MEP,i(t) = PPDRMEP,i(t) +

POMEP,i(t), where POMEP,i(t) is the power demand of other

non-flexible loads during time period t .

B. MICROGRID SYSTEM AUTONOMOUS OPERATION

SCHEDULING MODEL

The microgrid system discussed here is under uniformed

scheduling andmanagement by theMEP. Regarding the inter-

nal scheduling of the microgrid system, the MEP takes opti-

mized costs as the operation goal. Relevant factors include the

cost of purchasing energy from the utility grid, the operating

costs of equipment, the DR cost of flexible load, and the

benefits of selling electricity to the utility grid. In microgrid

system i, the benefit function of MEPi can be expressed as:

ui =

T
∑

t=1





(

pB,i,G(t)PB,i,G(t)
)

+

(

COM
MEP,i(t)

)

+

(

CPDR
MEP,i(t)

)

−
(

pS,i,G(t)PS,i,G(t)
)



 (2)

The operation maintenance cost COM
MEP,i of the MEPi

mainly refers to the life loss cost of ES equipment in the

microgrid system [24]:

COM
MEP,i =

µESCES
invest

N (|ES(t − 1) − ES(t)|)
(3)

where ES(t) denotes the charge state of the energy of the

current ES equipment, and is calculated as follows:

ES(t) =
SOC(t)

ESOC
(4)

When conducting autonomous scheduling management of

the microgrid system, the MEP should consider the following

constraints.

(1) Power balance constraint: When ES is considered,

the power supply and demand in the microgrid system should

achieve real-time balance.

PPVi (t) + PWT
i (t) + PESD,i(t) + PB,i,G(t)

= PMG
i (t) + PESC,i(t) + PS,i,G(t)

⇒ PPVi (t) + PWT
i (t) + PESD,i(t) + PB,i,G(t)

= PPDRi (t) + POi (t) + PESC,i(t) + PS,i,G(t) (5)

(2) ES constraints: ES must meet rated charging and

discharging power and rated capacity constraints when in

operation:

MES
i,min(t) ≤ MES

i (t) ≤ MES
i,max(t) (6)

PES[C/D],i(t) ≤ PES[C/D],i,max(t) (7)

In addition, in order to meet charge and discharge require-

ments of ES at the beginning of the next scheduling day,

the charge state needs to be consistent at the beginning and

end of each scheduling day [25], i.e.,:

ηESC

T
∑

t=1

(

PESC,i(t)1t
)

− ηESD

T
∑

t=1

(

PESD,i(t)1t
)

= 0 (8)

(3) Flexible load constraints

(3a) The total amount of load flexibility is constant. Based

on the external price signal, flexible load can be transferred

by the MEP to different time periods but the demand for

load power is constant [26]. The specific expression of the

constraint is as follows:

T
∑

t=1

PPDRMEP,i(t) =

T
∑

t=1

PMEP,i(t) (9)

(3b) Load energy consumption constraint: The load

adjusted by DR should meet the actual power usage. It means,

neither the basic power load of users can be shed nor can

the supply capacity of the microgrid system be violated. The

specific expression is as follows:

min
(

PMEP,i(t)
)

≤ PPDRMEP,i(t) ≤ max
(

PMEP,i(t)
)

(10)

where the maximum supply capacity of the microgrid system

is constrained by equipment configuration and the tie-line

capacity with the utility grid.

To summarize, the MEP models the minimization of ben-

efit function in Equation (2) as the objective function, but

P2P transactions are not considered. With the strategies of

utility power purchase strategy, ES equipment operation,

and flexibility load adjustment as decision variables, the

MEP performs autonomous scheduling and management of

the microgrid system. The specific scheduling framework

of the MEP is shown in Figure 2, where the red outline

represents the schedulable part of the MEP. This model has

a relatively sophisticated solution algorithm, which can be

solved in CPLEX/GUROBI/LINGO. In this study, CPLEX

was used to obtain solutions based on the YALMIP platform

in MATLAB [27].

IV. MARKET GAME MODEL AMONG MICROGRID

SYSTEMS

A. MARKET ROLE AND UTILITY FUNCTION OF MEP

UNDER P2P TRADING MODE

Under normal operating conditions, MEPs may have insuf-

ficient or surplus power when participating in autonomous

scheduling and management due to the fluctuation of dis-

tributed power output and terminal load demand. Under the

traditional trading mode, they trade directly with the DTO.
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FIGURE 2. MEP autonomous scheduling framework.

Conversely, in P2P distributed transactions, MEPs can con-

duct nearby distributed transactions among them, thus facili-

tating the accommodation of local distributed energy.

When P2P distributed transactions are considered, the util-

ity function of MEPi is further considered the impact of

transactions with other MEPs according to Equation (2). The

specific expression is as follows:

ui=

T
∑

t=1









(

pB,i,G(t)PB,i,G(t)
)

+

(

COM
MEP,i(t)

)

+

(

CPDR
MEP,i(t)

)

+bi(t)
(

pB,i(t)P
ex
B,i(t)

)

−si(t)
(

pS,i(t)P
ex
S,i(t)

)

−
(

pS,i,G(t)PS,i,G(t)
)









(11)

where si(t) and bi(t) are respective prosumer identifiers. Dur-

ing time period t , there are bi(t) = 1 and si(t) = 0 if theMEPi
is a buyer; or, bi(t) = 0 and si(t) = 1 if the MEPi is a seller.

The MEPs participating in the P2P transaction are also

required to meet the power price constraints and power flow

constraints [25] of power distribution systems, apart from

autonomous operation constraints shown Equations (5)-(10).

With electricity price constraint, the response of other

MEPs to the price is taken into account when setting prices

at which they sell or purchase to/from other MEPs so as to

maximize profits. When determining the price of electricity,

MEPs are under the following constraints:

pS,i,min(t) ≤ pS,i(t) ≤ pS,i,max(t) (12)

1

T

T
∑

t=1

pS,i(t) ≤
1

T

T
∑

t=1

pB,i,G(t) (13)

The power flow constraints serve mainly to prevent

network congestion problems that may occur in the actual

operation of the distribution network.

B. GAME RELATIONSHIP AMONG SELLERS

In distributed P2P transactions among MEPs, it is assumed

that each seller MEP tries to maximize its own profits by

selling electric energy to the buyer MEPs or to the utility

power grid. The seller MEPs are independent from each

other and there is no cooperative relationship among them.

It is also assumed that the seller MEPs act rationally during

transactions. Under these assumptions, a non-cooperative

game model can be developed to describe the competitive

relationship among the seller MEPs. Here, the game partici-

pants are the seller MEPs participating in the P2P transaction.

The game strategy is the tradable electricity price and quantity

〈PM, pM〉 for each seller MEP. Based on the cost utility

function of autonomous operation, the MEP divides the final

acceptable quotation interval by n together with the range

interval in Equation (12) to determine the feasible quotation

of the MEP. The game utility is the cost/benefit of each

seller MEP.

The game process among seller MEPs is a dynamic pro-

cess. The Nash equilibrium is finally achieved by the game,

including electricity price and electricity quantity sold by

each seller MEP. The conditions for its existence include:

1) The number of players in the game is limited and the

participants are denoted as j ∈ S; 2) the quote range for

each MEP is certain. After being equally divided into n sub-

intervals, the new quote scope can guarantee that the game

strategy is closed and bounded; 3) The utility function is

continuous in the game strategy space. The non-cooperative

game environment set between seller MEPs satisfies the exis-

tence condition of Nash equilibrium state [17]. The improved

iterative search algorithm [28] is used here to solve this Nash

game problem. The iterative process of the game is as follows.

In the first iteration, each seller submits tradable electricity

price and electricity quantity to the DTO according to its

autonomous scheduling. While satisfying the system security

level constraint, the DTO publishes the first-round iteration

results and feeds back the information to each seller. Each

seller modifies the bidding according to the feedback infor-

mation and then bids again, completing one iteration. Assume

that the bidding power and price of each MEP in the k-round

iteration are as follows:
{〈

PkM1, p
k
M1

〉

,

〈

PkM2, p
k
M2

〉

, · · · ,

〈

PkM(S−1), p
k
M(S−1)

〉

,
〈

PkMS , p
k
MS

〉}

(14)

Similarly, the bidding power and price of each MEP in the

k + 1th iteration are:
{〈

Pk+1
M1 , pk+1

M1

〉

,

〈

Pk+1
M2 , pk+1

M2

〉

, · · · ,

〈

Pk+1
M(S−1), p

k+1
M(S−1)

〉

,
〈

Pk+1
MS , pk+1

MS

〉}

(15)

Set uMj to be the utility function value of the j-th MEP, then

argmax
〈

PkMj,p
k
Mj

〉

uMj
(〈

PkM1, p
k
M1

〉

,
〈

PkM2, p
k
M2

〉

,· · · ,
〈

PkM(S−1), p
k
M(S−1)

〉

,

〈

PkMS , p
k
MS

〉)

is the bidding tradable power and price corre-

sponding to the j-th MEP in the k-th round. The k-th iteration

equation is expressed as follows (16), as shown at the bottom

of the next page.

When the tradable electricity and price in two rounds of

iterations are equal, then:
{〈

Pk+1
M1 , pk+1

M1

〉

,

〈

Pk+1
M2 , pk+1

M2

〉

, · · · ,

〈

Pk+1
M(S−1), p

k+1
M(S−1)

〉

,
〈

Pk+1
MS , pk+1

MS

〉}

=

{〈

PkM1, p
k
M1

〉

,

〈

PkM2, p
k
M2

〉

, · · · ,
〈

PkM(S−1), p
k
M(S−1)

〉

,

〈

PkMS , p
k
MS

〉}

(17)
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In effect, no seller MEP can obtain a higher utility function

value by changing the bidding power or price. The solution

can be regarded as a Nash game equilibrium solution. Once

the non-cooperative game reaches its Nash equilibrium point,

any change in the equilibrium quoted behavior will result in

a loss of benefit.

C. GAME RELATIONSHIP BETWEEN SELLERS AND

BUYERS

At the time of pricing, the seller MEPs consider not only their

own interests but also the price elasticity of the buyer MEPs.

Namely, there is also a profit game relationship between the

seller MEPs and the buyer MEPs. The seller MEPs act as the

management party and have priority pricing power. The game

relationship between seller and buyer MEPs is described as

a Stackelberg game. At the upper level, the seller MEPs

are the leader in setting the transaction price. At the lower

level, the buyer MEPs play the role of a follower, responding

to the transaction price signal and sending energy demand to

the sellerMEPs. In general, the participants in the Stackelberg

game are the seller MEPs and buyer MEPs participating in

the P2P transaction. The game strategy is electricity price and

quantity of electricity sold for each seller MEP and the choice

of each buyer MEP to the seller MEPs; the game utility is the

respective income/cost of the seller/buyer MEPs.

If the sum ŴMEP
S,j and ŴMEP

B,l are the strategy set of the seller

MEPj and the buyer MEPl , respectively, then the strategy sets

of all seller and buyer MEPs are: ŴMEP
S = ŴMEP

S,1 × ŴMEP
S,2 ×

· · · × ŴMEP
S,j ; ŴMEP

B = ŴMEP
B,1 × ŴMEP

B,2 × · · · × ŴMEP
B,l . For the

seller MEPj, assuming that
〈

P∗
j , p

∗
j

〉

∈ ŴMEP
S is a Stackelberg

game equilibrium strategy, then:

uMEP
S,j

(〈

Pk∗, pk∗
〉

; z(
〈

Pk∗, pk∗
〉

)
)

≥

uMEP
S,j

(〈

Pkj , p
k
j

〉

,

〈

Pk∗−j, p
k∗
−j

〉

; z(
〈

Pkj , p
k
j

〉

,

〈

Pk∗−j, p
k∗
−j

〉

)
)

(18)

The upper-level seller MEPs reach Nash equilibrium

via price competition after they receive the feedback of

z(
〈

Pk∗, pk∗
〉

). The equilibrium price is once again reported

to all the buyer MEPs, and the above processes 〈P∗, p∗〉

& z(〈P∗, p∗〉) are repeated until the sum remains stable.

The vector (〈P∗, p∗〉 , z(〈P∗, p∗〉)) is then the Stackelberg

game equilibrium.

The gamemay not reach the Nash equilibrium or the Stack-

elberg game equilibrium if themaximum number of iterations

is small or the MEP default bid range is unreasonable. The

bid interval may be affected by weather or related policies.

The process ends if the Nash equilibrium is not reached at a

specified maximum number of iterations. The transaction in

the distributed P2P market thus fails. Each MEP in this case

still achieves internal power balance in a traditional manner

of bilateral transaction with the DTO.

V. CONGESTION MANAGEMENT MODEL BASED ON

MARKET CAPACITY

Under normal operating conditions, the DTO participates in

market transactions at a predetermined time-of-use (TOU)

price. The traditional distribution network is affected by the

vertical regulation of the power system scheduling organi-

zation and its own structural characteristics, so the network

capacity is sufficient to meet the power demand of the dis-

tribution network without congestion [29]. However, with

the wide access of the user-side microgrid system, renew-

able energy, and various flexible loads, most users prioritize

their own economy in conducting transactions or developing

scheduling plans, which complicates the power market envi-

ronment. There are often a large-scale ‘‘aggregation’’ of loads

in time and the unbalanced distribution of power flows in

space which can congest the system [30]. High-permeability

penetration of renewable energy and demand for low-carbon

replacements can create power reverse peaks and load

demand peaks in the network [31].

The DTO take two typical responses to any congestion in

the distribution network [32]. One is direct control based on

distribution network reconfiguration, reactive power control,

load shedding, and installation of soft open point (SOP) [33].

The second involves indirect control, where market mecha-

nisms are employed to regulate the system [34]. Given that

the scope of this study is distributed market transactions,

the distribution capacity market approach is used to solve the

congestion problem here.

The power flow is calculated by DisFlow algorithm [35].

When congestion occurs, the congestion cost function is first

constructed from the perspective of the DTO. This function



























































〈

Pk+1
M1 , pk+1

M1

〉

= arg max
〈

PkM1,p
k
M1

〉

uM1

(

〈

PkM1, p
k
M1

〉

,
〈

PkM2, p
k
M2

〉

, · · · ,

〈

PkM(S−1), p
k
M(S−1)

〉

,
〈

PkMS , p
k
MS

〉

)

〈

Pk+1
M2 , pk+1

M2

〉

= arg max
〈

PkM2,p
k
M2

〉

uM2

(〈

Pk+1
M1 , pk+1

M1

〉

,
〈

PkM2, p
k
M2

〉

, · · · ,

〈

PkM(n−1), p
k
M(n−1)

〉

,
〈

PkMn, p
k
Mn

〉

)

· · · · · ·
〈

Pk+1
M(S−1), p

k+1
M(S−1)

〉

= arg max
〈

PkM(S−1),p
k
M(S−1)

〉

uM(S−1)

(〈

Pk+1
M1 , pk+1

M1

〉

,

〈

Pk+1
M2 , pk+1

M2

〉

, · · · ,

〈

Pk+1
M(S−1), p

k+1
M(S−1)

〉

,
〈

PkMS , p
k
MS

〉

)

〈

Pk+1
MS , pk+1

MS

〉

= arg max
〈

PkMn,p
k
Mn

〉

uMn

(〈

Pk+1
M1 , pk+1

M1

〉

,

〈

Pk+1
M2 , pk+1

M2

〉

, · · · ,

〈

Pk+1
M(S−1), p

k+1
M(S−1)

〉

,
〈

PkMS , p
k
MS

〉

)

(16)
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represents the power deviation cost of the net load demand of

the microgrid system during each scheduling period, which

is:

CMEP,i(t) = µMEP,i(t)
[

P̃i(t) −
(∣

∣PB,i,G(t)
∣

∣

+
∣

∣PS,i,G(t)
∣

∣ +
∣

∣PexB,i(t)
∣

∣ +
∣

∣PexS,i(t)
∣

∣

)]2
(19)

where P̃i represents the decision variables of each microgrid

related to the exchange of power with the utility power grid

or other microgrid systems, which is related to PB,i,G, PS,i,G,

PexS,i, and P
ex
B,i.

In a network congestion situation, the main goal of each

microgrid is to minimize the congestion cost while meeting

the DTO operating requirements. That is:

min

T
∑

t=1

µMEP,i(t)

[

P̃i(t) −
(∣

∣PB,i,G(t)
∣

∣ +
∣

∣PS,i,G(t)
∣

∣ +
∣

∣PexB,i(t)
∣

∣ +
∣

∣PexS,i(t)
∣

∣

)

]2

s.t.

P̃i(t) ≤ Pcap(t) (20)

The above optimization model is a convex optimization

problem. The shadow price 3(t) is then introduced as a

Lagrangian multiplier [36]. The above optimization model

can be converted into the following Lagrangian problem:

L =

T
∑

t=1

µMEP,i(t)

[

P̃i(t)−
(∣

∣PB,i,G(t)
∣

∣+
∣

∣PS,i,G(t)
∣

∣+
∣

∣PexB,i(t)
∣

∣+
∣

∣PexS,i(t)
∣

∣

)

]2

+

T
∑

t=1

3(t)
(

P̃i(t) − Pcap(t)
)

(21)

Each microgrid thus re-optimizes the external exchange

power P∗
i (3) based on the shadow price set by the DTO.

The optimization shown in Equation (20) can be dualized

as (22), as shown at the bottom of the next page.

The above dual problem is solved by the projection gradi-

ent method [37], and the direction of search of the optimiza-

tion variable 3(t) is:

3(t)k+1 = 3(t)k + βk · S(t) (23)

where β is the learning factor, and S(t) is the sub-gradient

search direction.

The specific calculation method is:

S(t) = P∗
i (3) − Pcap(t) (24)

In summary, the flow of distributed algorithms involved

in DTO and MEP in the P2P trading market and distribution

network is as follows. The relation between DTO and MEP

is in Figure 3.

Algorithm 1 MEP autonomous operation scheduling plan

Input: Predicting curve of load demand and distributed

power output, configuration, capacity and constraints of ES

equipment.

Output: Tradable power and demand power during the

scheduling period.

for all t ∈ T do

Based on the objective function (Equation (2)), opti-

mize the operating economy of the microgrid system by

adjusting the operating state of the ES device and the

flexible load supply.

On the basis of autonomous operation optimization in

a microgrid system, calculate the tradable and demand

power during different time periods.

end for

Algorithm 2 Stackelberg game equilibrium between seller

MEPs and buyer MEPs

Input: SellerMEPs provide the tradable power and trading

price. Buyer MEPs provide the demand of power.

Output: Seller MEPs and buyer MEPs eventually

reach the equilibrium state of Stackelberg game:

(〈P∗, p∗〉 , z(〈P∗, p∗〉)).

k = 0

do

k = k+1

for all j∈S; i∈B do

Execute Algorithm 3 and based on Equation (18),

calculate:

uMEPS,j

(〈

Pk∗, pk∗
〉

; z(
〈

Pk∗, pk∗
〉

)
)

end for

Algorithm iteration is conducted based on Equa-

tion (16). The electricity price for trade and the tradable

power offered by the seller MEPs are updated.

While

uMEP
S,j

(〈

Pk∗, pk∗
〉

; z(
〈

Pk∗, pk∗
〉

)
)

≥ uMEP
S,j

(〈

Pkj , p
k
j

〉

,

〈

Pk∗−j, p
k∗
−j

〉

; z(
〈

Pkj , p
k
j

〉

,

〈

Pk∗−j, p
k∗
−j

〉

)
)

VI. CASE ANALYSIS AND COMPARISON

A. CASE OVERVIEW

In this study, a modified IEEE 33-node power distribu-

tion system [38] in Fig. 4 is adopted for demonstrat-

ing the proposed scheme. Several nodes are connected

with microgrid systems [39] including smart buildings,

DES, and ES equipment. The load types in microgrid

systems and the configuration of devices are shown

in Table 1.

The specifications of the ES equipment in the microgrid

system are shown in Table 2. Its initial capacity is set as

50% of the total capacity, and the maximum charge and

discharge power as 20% of the capacity [24], [40]. The typical

daily load curves and distributed power output curves for
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Algorithm 3 Non-cooperative game equilibrium among

seller MEPs
Input: Seller MEPs offer the tradable power and the price

for trade.

Output: Seller MEPs eventually reache the Nash equilib-

rium state:

{

〈

P∗
M1, p

∗
M1

〉

,
〈

P∗
M2, p

∗
M2

〉

, · · · ,

〈

P∗
M(S−1), p

∗
M(S−1)

〉

,
〈

P∗
MS , p

∗
MS

〉}

Each seller MEP submits the initialization trade price and

the tradable power to the bidding system

k = 0

for all t ∈ T

do

k = k+1

for all j∈S do

Execute Algorithm 2 and based on Equation (17), calcu-

late:

〈

PkM1, p
k
M1

〉

,

〈

PkM2, p
k
M2

〉

, · · · ,

〈

PkM(S−1), p
k
M(S−1)

〉

,
〈

PkMS , p
k
MS

〉

end for

Algorithm iteration was conducted based on Equa-

tion (16). The trade price and the tradable power offered

by the seller MEPs are updated.

While

{〈

Pk+1
M1 , pk+1

M1

〉

,

〈

Pk+1
M2 , pk+1

M2

〉

, · · · ,

〈

Pk+1
M(S−1), p

k+1
M(S−1)

〉

,
〈

Pk+1
MS , pk+1

MS

〉}

=

{〈

PkM1, p
k
M1

〉

,

〈

PkM2, p
k
M2

〉

, · · · ,

〈

PkM(S−1), p
k
M(S−1)

〉

,
〈

PkMS , p
k
MS

〉}

different microgrid systems are in Figures 5 and 6, respec-

tively, where 20% of the load demand of MG1, MG2, and

MG4 is flexible; 30% of the load demand of MG3 is flex-

ible. The sensitivity coefficients of load are αMG1 = 0.01,

αMG2 = 0.01, αMG3 = 0.03, and αMG4 = 0.01. The

TOU price set by the DTO is shown in Figure 7. The power

system includes three types of lines with the current upper

limits of 400A, 300A, and 200A [41]. The voltage level

Algorithm 4 Market-based active distribution network con-

gestion management

Initialization: For the dual variable 3(t)k : = 30(t) ≥0,

for example, let 30(t) = 0 or 30(t) = 3(t − 1).

Output: The shadow price 3(t) and the optimal exchange

power P∗
i (3) of each microgrid system following the end

of congestion management.

for all t ∈ T , i ∈MG do

loop

Based on the result P∗
i (3) of Equation (22), DTO

adopts Equation (24) to calculate the search gradient direc-

tion and Equation (23) to update until the shadow price

3(t) is converged.

The new shadow price, together with the conventional elec-

tricity price determined by the DTO, make up the electric-

ity price at the congestion period. The DTO announces the

price to each MEP. In accordance with the price, the MEP

then amends its autonomous scheduling strategy. The iter-

ation ends when 3(t) < 0.

end

FIGURE 3. Game relationship in P2P trading market.

FIGURE 4. Architecture of the test system.

is 12.66 kV and the power factor is 0.8. The upper limit of

the active power of line is 7017 kW, 5263 kW, and 3508 kW,

respectively.

max f (3) = inf









T
∑

t=1

µMEP,i(t)
[

P∗
i (3) −

(

∣

∣PB,i,G(t)
∣

∣ +
∣

∣PS,i,G(t)
∣

∣ +

∣

∣

∣PexB,i(t)

∣

∣

∣ +

∣

∣

∣PexS,i(t)

∣

∣

∣

)]2

+
T
∑

t=1

3(t)
(

P∗
i (3) − Pcap(t)

)









(22)
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TABLE 1. Microgrid system information.

TABLE 2. Device parameters.

FIGURE 5. Typical load curves of different microgrid systems.

FIGURE 6. Distributed power output of different microgrid systems.

B. ANALYSIS OF AUTONOMOUS SCHEDULING AND

TRANSACTION RESULTS

The daily autonomous scheduling operation and P2P trans-

action outcomes of the multi-microgrid system are analyzed

based on the case setting with a scheduling time step of

1t = 1h. The autonomous scheduling results of different

microgrid systems are shown in Figure 8. As seen, MEPs use

FIGURE 7. Regional TOU power price.

as much clean energy as possible to meet user demands for

electricity and reduce the cost of purchased electricity, as WT

and PV are cost-effective clean energy sources [42].

Two microgrid systems with ES devices, MG1 and MG3,

are analyzed in details here. In the energy schedule of MG1,

PV output is abundant from 11:00 to 14:00. During this

period, MG1 is self-sufficient and has excess power avail-

able for trading. At other time, insufficient PV output forces

MG1 to purchase power from outside sources to meet its own

demand. The ES equipment is discharged when electricity

price is higher (from 16:00 to 20:00) to satisfy part of electric-

ity load demand and reduce the cost of purchased electricity.

ES charging is initiated at the moment when the output of

the distributed power source is higher or the electricity price

is lower than a threshold. The MEP then keeps load require-

ments flexible to the greatest extent when TOU price is low

or the distributed power output is sufficient to keep costs

low. All MEPs take operating economy as the scheduling

objective; the scheduling strategies of MG3 and MG1 are

similar. Because the flexible load in MG3 is relatively large,

the energy consumption characteristic of the flexible load is

not as obvious as that in MG1 because of the high sensitivity

of the load.

Based on the analysis of the autonomous scheduling results

of each microgrid system, the transaction results at a typ-

ical time point in regards to P2P transactions are shown

in Figure 9.

At 1:00, MG1 and MG4 have 127.7 kW and 128.7 kW

demand for electricity, respectively. However, MG2 and

MG3 have 231.4 kW and 170.6 kW of tradable elec-

tricity. Considering the circuit network transmission loss,

the tradable power MG2 and MG3 possess separately at this

time does not satisfy the entire transaction demand of the

buyer MEPs. Compared with MG3, MG2 has more trad-

able electric energy and is more active in the transaction.

Therefore, MG2 continuously reduces prices to sell as much

electricity as possible at the beginning of the sellers’ game

to optimize profit. MG3 has less tradable electric energy
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FIGURE 8. Autonomous scheduling results of different microgrid systems.

and continuously reduces the electricity selling price in the

early stage of the game to attract other microgrid systems to

conduct P2P transactions. However, the buyer MEP prefers

to trade with MG2 due to its relative abundance of tradable

electric energy; considering that the tradable electric energy

owned byMG2 can onlymeet the trading requirements of one

microgrid system, MG3 can gradually increase its electricity

selling price in the later stage. Both MG1 and MG4 are more

inclined to trade with MG2, as it announced a lower electric-

ity sales price which was cleared through the non-cooperative

game among seller MEPs. But with limited tradable power,

MG2 decides to preferentially trade with MG4 as it demands

a larger amount of power. In addition, MG1 will trade with

MG2 and MG3 concurrently while trading its remaining

power demand with the DTO.

At 3:00, MG1 and MG4 have demand for 300.9 kW

and 427.8 kW, respectively. However, MG2 and MG3 have

230.1 kW and 57.6 kW of tradable electricity, respectively.

At this time, there are multiple sellers and multiple buyers

are in short supply. Compared to the transaction demand of

MG1 andMG4, MG2 andMG3 have less tradable electricity.

To secure profits, MG2 and MG3 raise their electricity sales

prices asmuch as possible within the feasible quotation range.

Compared to the TOU electricity price of the distribution net-

work, MG2 and MG3 have relatively low electricity selling

prices; MG1 and MG4 give priority to trading with MG2 and

MG3 to meet some of their own electricity demand while the

remaining demand is satisfied by the DTO.

At 6:00,MG1 andMG4 have power purchase requirements

of 483.86 kW and 538 kW, respectively; MG2 has 27.5 kW

of tradable power. This is a single-seller and multi-buyer

‘‘short supply’’ scenario, where MG2 preferentially chooses

to trade with MG4 with greater demand for electricity. The

relatively small PV output during this period and gradual

increase in power load demand create a higher-load demand

that congests the distribution network. The shadow price set

by the DTO to ease congestion results in a higher transaction

price for P2P during this time. MG4 is located at the end node

of the feeder line, so it is greatly affected by this and presents

a power shortage.

At 12:00, MG2 has a power demand of 44.2 kW.

MG1, MG3, and MG4 have 267.1 kW, 21.1 kW, and
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FIGURE 9. P2P distributed transaction results.

FIGURE 10. The load cover factor of different microgrid systems.

FIGURE 11. The supply cover factor of different microgrid systems.

14.1 kW of tradable power, respectively. This is a multi-

seller, single-buyer ‘‘supply exceeds demand’’ scenario.

MG1 has more tradable electricity than MG3 or MG4 at this

time. To ensure priority in participating in the transaction,

MG1 continuously reduces the transaction price during the

game phase; the tradable energy owned by MG1 satisfies the

power demand of MG2, therefore, MG3 and MG4 trade only

with the DTO.

C. TRANSACTION MODE EVALUATION

The overall transaction of each microgrid system is discussed

in this section. Given that the inherent device configuration of

the microgrid system may impact the P2P transaction results,

the ‘‘source-load’’ matching of different microgrid systems

is first analyzed. The load cover factor γload and supply

cover factor γsupply are selected as evaluation indicators [43]

shown in Figures 10 and 11, respectively. Per analysis of

γload and γsupply, the configuration capacity of energy supply

equipment in all microgrid systems is generally low. This also

creates the possibility of P2P transactions between microgrid

systems. The ‘‘source-load’’ matching indicators ofMG2 and

MG3 are relatively good according to device configuration.

The distribution of power purchased/sold by different

microgrid systems is shown in Figure 12. The electricity

purchased by each microgrid system through P2P distributed

transactions accounts for 7%, 16%, 10%, and 22% of the total

purchased electricity, respectively. The power sold by micro-

grid systems through P2P distributed transactions accounts
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FIGURE 12. Trading power distribution in different microgrid systems.

for 31%, 92%, 60%, and 38% of the total sold electricity,

respectively. Each microgrid system is in the same distribu-

tion network area, so the output of distributed power genera-

tors is intermittently similar. Moreover, the configuration of

the distributed power supply in the microgrid system is more

concerned with the problem of self-sufficiency. Therefore,

the proportion of the power purchased by the microgrid sys-

tems through the P2P distributed transaction is not high. How-

ever, the electricity sold by the microgrid systems through

P2P distributed transactions accounts for a large proportion

of the total sold electricity. Excess power in the microgrid

system can be effectively consumed in the area. The P2P

distributed transaction maximizes the local accommodation

of distributed clean energy and alleviates the congestion

TABLE 3. Evaluation indicators of P2P trading mode.

problems in the distribution network caused by a large

amount of reverse power.

Further quantitative analysis was conducted on the effects

of P2P distributed transaction through economic and tech-

nical indicators [8]. The value tapping index (VTI) is

the economic evaluation indicator and the energy balance

index (EBI) is the technical indicator [8]. The indicators are

shown in Table 3.

Both VTI and EBI are in the range [0, 1], suggesting a

certain economic and technical benefit to the P2P transaction

remitted to each microgrid system. A larger VIT indicates

greater economic benefit from P2P transactions; a smaller

EBI means that the microgrid system effectively meets the

internal power demand through P2P transactions. These indi-

cators are favorable when the interaction with the utility grid

is low, promoting the utilization of renewable energy.

The effective cooperation of WT, PV, and ES equipment

in MG3 provides the system very high operational flexibility.

Although MG2 is not equipped with ES, the economic and

technological benefits through P2P transactions are relatively

large as the diversified distributed power supply of WT and

PV complements the electric energy production within a

given one-day period. Although MG1 is equipped with ES

equipment, the inherent intermittence of PV output constrains

its role and the ‘‘source-load’’ matching degree is poor. The

inherently high cost of ES also makes the economic and

technological benefits of MG1 less obvious compared to

those of other microgrid systems. In conclusion, the P2P dis-

tributed transaction comprehensively improves the economic

and technical benefits of the microgrid systems tested here.

D. DISTRIBUTION NETWORK IMPACT ANALYSIS

The impact of the P2P transaction on typical operational

problems, such as network congestion and network loss, are

also discussed in this section.

For the distribution network in Figure 4, in the traditional

transaction without considering P2P transactions, the distri-

bution network is prone to congestion at 3:00, 6:00, 8:00,

13:00, and 18:00. There is a vigorous WT output at 3:00 and

the system has less power demand, thus a large amount of

reverse power causing congestion. At 6:00, 8:00, and 18:00,

insufficient PV output creates a large demand for electricity,

leading to congestion. At 13:00, vigorous PV output creates

a large amount of reverse power leading to congestion. The

network congestion problem at 3:00 can be alleviated by a

distributed P2P transaction between the microgrid systems

(Section VI. B). However, network congestion occurring at

other time is not readily alleviated by P2P transactions but can

be mitigated by the congestion scheduling method described

in Section V.
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FIGURE 13. Changes of TOU power price and shadow price.

FIGURE 14. The comparisons of line power change.

The shadow price and changes in line powers in this sce-

nario are shown in Figures 13 and 14. The initial price at

the first iteration in Figure 13 is the TOU price set by the

DTO under normal operating conditions. The initial value

of the first iteration in Figure 13 is the line power after the

congestion occurs. Figure 13 shows that the DTO sets the

shadow price to increase electricity price during the con-

gestion period. Each MEP, after receiving the shadow price

signal, adjusts its power usage plan through load flexibility.

Congestion in the power system is thus relieved while oper-

ation costs are consistently low. After 12 iterations, the pro-

posed scheduling method effectively alleviates congestion in

the distribution power system.

The network loss of one-day operation in the microgrid

system under different transaction modes is shown in Table 4.

Compared with the traditional direct trading with DTO, tak-

ing the P2P distributed transaction mode into consideration

reduces the network loss of all microgrid systems by 19.1%,

30.6%, 33.7%, 8.6%, respectively. Though MG1 is close

to the main transformer, the intermittent nature of internal

PV output and the inherent defects in the ‘‘source-load’’

matching still produce high power purchase dependence on

the utility power grid, resulting in relatively large network

loss. MG2 and MG3 are less dependent on utility power

purchases due to the complementarily of WT and PV, and

the flexibility of ES. Thus, their network loss is relatively

small. MG4 is located at the end of the distribution feeder,

TABLE 4. Network loss of different transaction modes.

i.e., its power transmission distance is long, thus resulting in

substantial network loss as well. After considering the P2P

transaction mode, the network loss of each microgrid system

is reduced to varying degrees. P2P transactions shorten the

trading distance of electric energy, promote the circulation

of local electric energy and cash flow, and reduce the dis-

tribution network loss, thereby improving the operational

efficiency of MEPs and the DTO.

VII. CONCLUSION

A distributed P2P day-ahead transaction in active distribu-

tion network with multi-microgrid was investigated in this

paper. The P2P transactions of various market entities was

coordinated to promote the accommodation of clean energy

and the internal circulation of local cash flow. In a com-

prehensive simulation, network congestion was relieved and

network loss was mitigated while ensuring economic and

technological benefits across various market entities. The

main conclusions can be summarized as follows.

(1) The proposed terminal flexible load model can pro-

vide scheduling space for the autonomous operation of the

microgrid system. This saves operation costs while providing

schedulable space for P2P transactions;

(2) Compared with the traditional transaction mode of

direct bilateral transaction with the DTO, P2P transactions

effectively improve the economic and technical benefits of

market participants;

(3) The benefit of P2P transactions can be further enhanced

when the degree of ‘‘source-load’’ matching is considered in

the microgrid system planning and scheduling;

(4) P2P transactions can effectively relieve network con-

gestion and mitigate network loss in the distribution network.

In the future, a daytime P2P transaction market will be

added to the proposed transaction model to account for the

uncertainty of distributed power output and terminal load

demand. A deeper analysis will also be performed on the

influence of trading habits and preferences on the results of

games among market entities. ‘‘Credit’’ labeling will also be

introduced in gamemodels betweenmarket entities to resolve

the irrational quotation behaviors that may be generated by

each entity due to information asymmetry.
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