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Abstract 

The problem of optimal data fusion in multiple detection systems is studied in the 

case where training examples are available, but no a priori information is available 

about the probability distributions of errors committed by the individual detectors. 

Earlier solutions to this problem require some knowledge of the error distributions of 

the detectors, for example, either in a parametric form or in a closed analytical form. 

Here we show that, given a sufficiently large training sample, an optimal fusion rule can 

be implemented with an arbitrary levei of confidence. We first consider the classical 

cases of Bayesian rule and Neyman-Pearson test for a system of independent detectors. 

Then we show a general result that any test function with a suitable Lipschitz property 

can be implemented with arbitrary precision, based on a training sample whose size is 

a function of the Lipschitz constant, number of parameters, and empirical measures. 

The general case subsumes the cases of non-independent and correlated detectors. 

Keywords and Phrases: Distributed decision fusion, empirical estimation, Bayesian rule, 
Neyman-Pearson test. 
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1 Introduction 

The problem of fusing the decisions made by a set of distributed sensors or agents has been 

extensively studied in areas such as political economy models (Grofman and Owen [SI), 

reliability (von Neumann [Zl ] ) ,  forecasting (Granger [7]),  pattern recognition (Chow [4]), 

neural networks (Hashem e t  al. [9]), decision fusion (Dasarathy [5]), etc. One of the well- 

studied problems in the subarea of decision fusion deals with combining the decisions taken 

by the individual detectors or agents (Chair and Varshney [3], Thomopoulos e t  al. [18], 

Drakopoulos and Lee [6]). Typically? in this case the decision rule is in the form of a 
Bayesian rule [3] or Neyman-Pearson test [18, 61. Such rule can be derived both in the 

case of independent and correlated individual decisions. In either case, some knowledge of 

the underlying probabilities is needed for an accurate implementation of the test; typically? 

analytical expressions for the error distributions in a comput ationally convenient form are 

needed. It is generally understood that the knowledge about the system can be utilized by 

the designer to obtain the required information about the probability distributions. In turn, 

this knowledge, could be based on the experience with the system, possibly in the form of 

empirical data generated by the system during experimentation or operation. 

In this paper, we study systematic methods to utilize the empirical data to implement a 

fusion rule in the case no information about the probability distributions is available (along 

the lines of Naim and Kam [ll]). Empirical and structural risk minimization have been 

used to solve a number of problems using empirical data (Vapnik [ZO]), and, more recently? 

similar formulations have been studied under the topic of machine learning (Blumer e t  al. [Z], 

Natarajan [12]). If no constraints are placed on the underlying probabilities, the empirical 

data, which is finite, can only result in an approximate implementation of the required fusion 

rule (which is typically chosen from a class of functions). The degree of approximation 

between a fusion rule that can be obtained if the underlying probabilities are known and 

its empirical implementation based on a finite sample, depends on the sample size. We 

obtain the required sample sizes in order to arbitrarily bound the probability of disagreement 

between a fusion rule its empirical implementation. We wish to emphasize here that the 

proposed technique is to be used mainly when accurate estimates of the probabilities are 

either not available by other means or computationally difficult. For example, for a system 

of independent detectors if the exact analytical form of the probabilities are available, the 

methods of Chair and Varshney [3] and Thomopoulos e t  al. [18] could be used to implement 

the required fusion rule 2; these methods, however, cannot be applied if the probabilities 

are unknown. In some cases, typically in a system of non-independent detectors, even if the 

suitable analytical forms of the distributions are available, the problem of implementing a 

Bayesian test could be computationally intractable (NP-complete) [16, 191. In such cases, 

Monte Carlo simulation can be used to generate the empirical data and the methods proposed 

here can still be used to implement the test in some cases (as illustrated in the example of 

Section 4). However, in some other situations, such as those employing the correlation 

coefficients methods (Drakopoulos and Lee [6]), the proposed empirical estimation method 

is not practical since the sizes of the samples to be generated by Monte Carlo methods grow 

'Solutions to similar problems in the area of pattern recognition [4], and group decision models [SI yield 

almost identical analytical solutions. 
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Figure 1: Parallel sensor suite. 

exponentially with the number of parameters. 

Consider a distributed detection system consisting of N sensors or detectors and a fusion 

center in the form of a parallel suite [5] as shown in Fig. 1. Only the fusion problem is 

addressed here in that the local detectors are given (i. e., we do not address the problem 

of designing the local detectors). We consider a simple hypothesis testing problem whereby 

the hypothesis HO is to be tested against the alternative hypothesis H I .  Each detector 

Di, for i = 1,2 , .  . . , N makes a decision ui 6 {Ho,  H I } ,  and the fusion center receives 

u = (u1, u2,. . . , u ~ )  and outputs either Ho or H I  by suitably using the information u. Let 

T T ~  denote the a priori probability of Hi, for i = 0 , l .  For example, in one of the general 

formulations, the average-cost criterion is optimized by the likelihood ratio test [lo] given by 

where C k j  denotes the cost of deciding H k  when Hj is true, k , j  = 0,1, and P({ulHi}) = 

P(ulHi) denotes the conditional probability of u given Hi, i = 1,2.  The decision of fusion 

center is HI if the above test evaluates to true and is Ho otherwise. If the underlying 

probabilities are available in a convenient form, then T ( u )  can be computed at given u. 

One of the most studied formulations of this problem deals with the case where ui's are 

independent, in which case T(u)  takes a simple form in terms of products [ 5 ] .  
In this paper, we consider that the probabilities needed to evaluate the tests of the form 

(T. l )  are unknown, but a sample is available in the form of ( u l ,  H I ) ,  (u2,  H 2 ) ,  . . . , (u', H') ,  

where ui E {Ho,   HI}^ is the ith example and Hi E {Ho, H I }  is the corresponding correct hy- 

pothesis. In object recognition systems that are required to detect when an object belonging 

to a certain object class enters a workspace, each individual detector could base its decision 

on possibly different object features. Examples in such system can be obtained by sensing 

the objects that belong to the object class and also the objects that do not. This formulation 

has been motivated by the sensor fusion problems that arise in robotic applications, where 

the individual sensors have been built and mounted on the robot. As an example, consider 

3Here P(A)  denotes the probability measure of A which is a set belonging to  a a-algebra on the underlying 

event space ([l]). For a singleton A = { a } ,  we denote P(A)  by P(a) with the usual abuse of notation. 
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training a mobile robot system equipped with an array of ultrasonic and infrared sensors to 

distinguish between the doors that are wide enough to go through from the narrower ones. 

An accurate probabilistic model of sensor errors is difficult to obtain, but a training sample 

can be easily obtained in a laboratory, for example, by placing boxes to create doors of 

required widths. Typically in these applications, obtaining accurate probabilistic models of 

the sensors is a more challenging task than performing experiments by sensing objects with 

known features and collecting the empirical data (situation in other applications, however, 

could be significantly different). 

In our formulation only a finite sample is given as opposed to the formulae for the 

underlying probabilities required to implement Bayesian rule or Neyman-Pearson test. As a 

result only an approximate implementation of the required test is possible. We characterize 

the degree of approximation in terms of a confidence parameter which is a function of the 

sample size. 

The fusion rule for decision problems is often expressed in terms of the probabilities, 

p = (p1 ,p2 , .  . , ,p,), and the data, u = (u1, u2,. . . ,u~), in the form 

where the decision is H I  if the inequality is true and is Ho otherwise. This form of the test 

captures many decision rules, for example, the test (T.l) can be easily converted into this 

form. In some typical cases, n = 2N or n = 2 N .  In the case the underlying probabilities are 

known, these expression for R(p, u) for given u can be explicitly evaluated. In our case, we use 

estimators pi based on the sample ( u l ,  H I )  , ( u2 , H 2 ) ,  . . . , (u' , H ' ) ,  and employ the empirical 
implementation R(6, u )  of R(p, u), where 1; = ($1,. . . , $ N ) .  If some of the probabilities are 

known in suitable forms, they can be directly used in the test, and the empirical estimates 

are used only for the unknown ones. Now we consider the performance measure 

which is the expected error associated with R($, u), where @[XI is 1 if x is non-negative and 

0 otherwise. We define that R(@, u)  implements R(p, u )  with confidence 1 - X if 

P[@[R(p,u)I # @[R(1;74ll < A 

or equivalently 

for sufficiently (but finite) large sample of size E < m. Informally, this condition means that 

based on a sufficiently large sample, it should be possible to ensure that both R ( p ,  u) and 

R@, u) yield the same result with a probability of at least 1 - A. 
In this paper, we show that the above criterion can indeed be guaranteed under the 

assumption that the function R(p,u)  is Lipschitz with respect to p ,  i. e. these exists a 

positive constant L. such that 

Eu[I@[R(P, .>1 - @[R($, .>I11 < 
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for all A p ,  u, where 1 1  Apl I denotes the Euclidean norm of A p  in !JF. The sample size required 

to ensure a confidence of 1 - X is given by (see Section 3.2 for details) 

for any T > 1, where [XI, for real x, denotes the smallest integer larger than or equal to 

x. We show that several existing fusion rules satisfy the required Lipschitz condition. In 

particular, in the case of independent detectors this condition is satisfied for the Bayesian 

case [3] and also for Neyman-Pearson test [18]. Also this condition is satisfied in the case of 

non-independent detectors formulated in terms of correlation coefficients [6]. 

In several simple cases, the required test may not satisfy Lipschitz condition. For example, 

consider a decision rule Rl(u,p) that returns 1 if p 2 1/2 and 0 otherwise. This function 

has a discontinuity at p = 1/2 which violates the Lipshitz condition since L is unbounded. 

In several cases, a practical solution could be obtained by using a smoothing function. For 

for a suitably large C 2 1, 
l+e-c(P- l /2) ,  

which yields the Lipschitz constant L = C/4; this solution is useful if the likely values of p 

are away from 112. 

Our sample size estimate may not be tight in specific cases. Tighter bounds on the 

sample sizes than that indicated above can be obtained by exploiting the specific structure 

of R(p, u) rather than using the general formula (as illustrated in Section 3.1). 

The present formulation is very similar in spirit to that of Naim and Kam [ll]. Our 

results are applicable to any test that satisfies the Lipschitz condition, including cases where 

the statistical independence is not satisfied, whereas the formulation of [ll] is based on 

independence. In terms of the nature of  the results, we provide finite sample estimates for 

guaranteeing specified confidence levels, and no small sample analysis is presented for the 

method of [ll] (asymptotic convergence of their method can be asserted using the law of 

large numbers). 

The organization of this paper is as follows. Some preliminaries are presented in Section 

2. The solution to the decision fusion problem is presented in Section 3. In section 3.1, we 

consider the well-studied cases of independent detectors; although these cases can be derived 

as corollaries to the general result, we illustrate how the special nature of this formulation can 

be used to get sharper bounds on the sample size. In Section 3.2, the sample size estimates 

are derived for the empirical implementation of any test with the Lipschitz property. In 

Section 4, an example is illustrated to compare the proposed fusion rule with the existing 

rules based on Bayesian rule. 

instance, here Rl(u,p) can be replaced by Rz(u,p) = 1 

2 Preliminaries 

We now present two lower bounds for the probability of simultaneous occurrence of a set 

of events in terms of the bounds for the occurrence of the individual events; one bound is 
tighter for small number of events and the other for large. 
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Lemma 2.1 Consider events Ai, i = 1,2 , .  , . , N such that P(Ai) 2 1 - 6, where Ai is a set 

belonging to  a suitable a-algebra. Then we have 

(2) P(A1 n A 2 n . .  . n A ~ )  2 1 - N S  

(ii) P(A1 n A2 n . . . n AN) >_ 1/2N - S(1- 1/2N) 

(iii) The estimate in (ii) i s  increasingly better than (i) for large values of N ,  in particular 

f o r  anv N such that - 
(1 - 1/2N) 

N - (1 - 1/2")' 
S >  

Proof: We have P(&) < 6, for i = 1 ,2 , .  . . , N ,  where Ai is the complement of the event Ai. 

Then P(A1 U . . . U AN) < N S  which shows Part (i). 

We show Part (ii) by induction on N .  As a base case, N = 1, we have 

which is true since 6 5 1. For N = 2 we have 2P(A1 n A2) + P(A1AA2) = P(A1) + P(A2) 
which yields 

P(A1 n A2) 2 -[P(A1) + P(A2) - 11 = 1/2 - 6. 

Now we have 1/2 - 6 2 1/4 - 63/4 which shows that the claim is true for N = 2, For the 

inductive step assume that the claim is true for N = k .  We now show that the calim is true 

for N = k + 1 as follows. 

1 

2 

1 
-[P(A1 n A2 n . . . n Ak) + P(Ak+l) - 11 
2 
1 

2 

P(A1 n A2 n . . . n A k  n Ak+l) 2 

2 - [1/2k - S(1 - 1 / 2 9  + 1 - S + 11 
= 1/2"+1 - S(1 - 1/2h+1). 

Hence part (ii) is true. Part (iii) follows by direct algebraic manipulation. 0 

lower bound on S are shown in Table 1. 

Notice that the condition in (iii) above becomes S > 0 as N + 00; some values for the 

3 Empirical Implementation of Fusion Rules 

We obtain the sample sizes needed to ensure that a fusion rule can be implemented based 

on a sample with a given value of confidence. We first consider the cases of independent 

detectors and then discuss the general case applicable to any fusion rule that satisfies the 

Lipschitz condition. 

*One can also derive the bound P(A1 n A2 n . . . n A N )  2 1/2N-1 - 6 in an identical fashion as suggested 

by an anonymous reviewer; the present formulae are chosen for their convenient form in the present context. 
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- 
N 

1 

2 

3 
4 

5 

10 

20 

30 

40 

50 

60 

70 

- 

- 

lower bound 

1 .oooooo 
0.600000 

0.41 1765 

0.306122 

0.240310 

0.110991 

0.052632 

0.034483 

0.025641 

0.020408 

0.01 6949 

0.014493 

N lower bound 

80 0.012658 

90 0.011236 

100 0.010101 

200 0.005025 

300 0.003344 

400 0.002506 

500 0.002004 

600 0.001669 

700 0.001431 

800 0.001252 

900 0.001112 

Table 1: Some values for the lower bound of 6. 

3.1 Independent Hypotheses 

We consider the formulation of Chair and Varshney [3] for a. system of independent learners. 

In the case the a priori distributions of the hypotheses are known, the fusion rule can be 

expressed in the form, for n 2 1 
n n 

nqi - J-Js i  > 0 
i=l i=l 

(T.3.1) 

where qi and si are the probabilities of suitable events (defined precisely in [3]), say denoted 

by Qi and Si respectively. An empirical implementation of (T.3.1) is given by 

i=l i=l 

where qi  and .Gi are empirical estimates of qi and si respectively based on the 1-sample (i. e. , 
& is the fraction of the times the event Qi took place in the sample). For this rule the sample 

size to ensure the required confidence is given in the following theorem. 

Theorem 3.1 For any r > 2, consider a sample of size 

where 

n n 

i=l i=l 
Then the test n qi - fl si > 0 can be implemented by the empirical measures ofqi  and si 

computed based on the sample with the confidence 1 - 2n6 or 1/22n - S(1 - 1/22n). 
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Proof: The proof is separated into two parts. First, we compute sufficiency conditions on 

Iqi - @i - n ŝ i > 0 yield the same result. 

Second we compute the sample size require to ensure the required sufficiency conditions. 

The test (T.3.1) and its empirical implementation yield the same result under the con- 

ditions 

n n n n 

i=l i=l i= 1 i=1 
and Is i  - iil such that n qi - n si > 0 and 

n n i n  n 

and 

(3.1.1) 

(3.1.2) 

for any T > 2. Consider the constraint lqi - &I  < E for all i = 1,2,. . . , n which implies 

(Theorem 3.1 of [17]) 
n n 

I n4i - J-JGil < - (1 + E)" - 1. 
i=l i=l 

Thus the condition Iqi - & I  < E and /si  - iil < E ,  for all i = 1 , 2 , .  . . , n, and 

(3.1.3) 

ensures that conditions (3.1.1) and (3.1.2) are satisfied. 

Appendix B of Pollard [13]) we have 

For the second part, by Hoeffding's inequality (for example, we use the form given in 

and 

for any i E { 1 , 2 , .  . . , n}. Then 2e-2621 = S yields the sample size of 

P[lSi - i i l  > E] < 2e-2E21 

(3.1.4) 

Hence by Part (i) and (ii) of Lemma 2.1, with confidence 1 - 2726 or 1/22n - S ( 1 -  1/22n)  we 
have 1qi - &I < E and Isi - &I < E simultaneously for all i = 1,2,. . . , n. 

Now to obtain the sample size stated in the theorem, we employ EL 5 E in (3.1.4) which 

guarantees the required condition. Notice that from (3.1.1) and (3.1.2) we have 

n - r + 2  
- -I m n 4i - n Sil. 

n n n n 

i=1 i=l t=1 i=l  

Now EL is obtained by replacing I n qi - n si1 in the expression for E by -&I .fl & - n iil. 0 
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Remark 3.1 The sample size given by the expression (3.1.4) based on E yields smaller sam- 

ple size compared to the one based on E L  given in Theorem 3.1. But the latter has more 

practical utility in that it can be used to estimate the precision with which the test is imple- 

mented with a given sample of size E .  Notice that the expression for E based on E L  involves 

only the estimated quantities; thus, using qi and & one can compute E L  which can be used 

in the expression for l to compute the confidence achieved at a given sample size. Such 

computation is not possible based on (3.1.4) since it involves the unknown E .  

Remark 3.2 By denoting the confidence 1 - 2n6 or 1/22n - S(1 - 1/22") by 1 - X one can 

obtain following expressions for the sample sizes 

or 

respectively where the sample sizes are expressed directly in terms of A. 

We now consider the formulation of Thomopoulos e t  al. [18] which does not require the 

a prori probabilities. In this case the fusion rule can be expressed as the Neyman-Pearson 

test in the form 
n n 

(T.3.2) r I q i - r n s i > O  
i=l i=l 

where the positive real r is fixed by the type I and I1 errors. The empirical implementation 

of this test can be obtained as in the above case. 

Corollary 3.1 Consider a sample of size 

where 

n n 

i=l i=l 
Then the test n qi - r n si > 0 can be implemented by  using the empirical measures qi and 

& based on the sample with confidence 1 - 2n6 or 1/22n - 6(1 - 1/Z2"). 

Proof: The outline of the proof is identical to that in Theorem 3.1. The condition Iqi-cjiI 5 E 

and /si  - &I 5 E for all i = 1,2,. . . ,n yields 
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Under this condition the test (T.3.2) and its empirical implementation yield the same result 
n n 

i=l i=l 
if (1 + r)[(l + - 11 5 I n qi - r n sit. This yields an expression for E as in Theorem 3.1. 

i=l 

n 
Then, the value of E L  is obtained by noting that 2 

i=l i=l 

Remark 3.3 A slightly different execution of Corollary 3.1 can be obtained by using r > 2 

which vields 

Compared to the quantity in the Corollary 3.1, this yields a smaller value and hence requires 

a larger sample to ensure the same confidence. 

3.2 General Case 

In this section, we consider an empirical implementation of a general test 

where p = (p17p2,. . . ) p n )  is the vector of probabilities with respect to which R ( p , u )  is 

Lipschitz with constant L. Let pi correspond to an event Pi and let the empirical estimate 

pi of pi be the fraction of the time the event Pi takes place in the sample. 

Theorem 3.2 Consider a decision rule R ( p , u )  with Lipschitz constant L. For any r 2 2, 

given a training sample of size 

the empirical implementation R(fi,u) > 0 implements the test R ( p , u )  > 0 with confidence 

1 - nS or l / Z n  - S ( l  - 1/2"). 

Proof: The outline of the proof follows that of Theorem 3.1. First, we show that the 

conditions sup lpi - fiil < E and IR(p)I 2 L f i ~ ,  ensure that R ( p , u )  > 0 and R(fi,u) > 0 

yield the same result. Notice that supIpi -pi] < E implies llp -PI1 < L f i ~ .  Then by the 

Lipschitz property 

Thus if IR(p,u)l 2 L ~ E ,  both R ( p 7 u )  and R(@,u) yield the same result. 

i 

z 

IR(fi, 4 - R(P,4l I IIP - fill I LJnE. 

Then for E = w, given a sample of size 

(3.2.1) 

R(fi, u)  implements R ( p ,  u )  with the required precision. Now we obtain a lower bound for E 

by noting that 21R(p, .)I 2 IR@, u)/ which implies ( R ( p ,  u)I 2 :IR(fi7 u)I for any T 2 2. The 
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sample size in the hypothesis is obtained by using the lower bound for E. 0 

Remark 3.4 The test (T.3.1) can be shown to be Lipschitz and the Theorem 3.2 can be 

applied. For a scalar E ,  let p + E denote the vector obtained by adding E to each component 

of p. For example, we can show that IR(p + E , U )  - R(p,u) l  5 2[(1+ E ) ~ / ~  - 11, where n / 2  

refers to the quantity in test (T.3.4). By noting that (1 + E ) ~ / ~  - 1 = (nl2)ei  which is 
4 2  

i=l 
4 2  

upper-bounded by E ti2) 5 2n/2~,  we can obtain L = 2"12 which can be used to obtain 

the sample size based on Theorem 3.2. The result of Theorem 3.1 based on the special 
structure of (T.3.1) yielded us a sharper result on the sample size. 

i=l 

Now consider the following particular form of the test, for a positive real r, 

(T.3.4) 

which is the Neyman-Pearson test from which several specific tests (including the ones in 

the last two sections) can be derived. 

Corollary 3.2 Consider a decision rule P(ulH1) - ~ P ( u l H 0 )  > 0 ,  where r i s  a positive real 

number. Let the empirical estimate P(A)  of P(A)  be the fraction of t imes the event A took 

place based on  the sample. 

(i) Given a training sample of size 

the empirical rule P(ulH1)-T@(ulHo) > 0 implements the test P(ulH1)-rP(uIHO) > 
0 with confidence 1 - A. 

(ii) Given a training sample of size 

the empirical test P(u n Hl)P(Ho) - r@(u n Ho)P(H,) > 0 implements the test 

P(ulH1) - rP(u/&) > 0 with confidence 1 - A. 

Proof: For Part (i), the sample size is estimated based on the two probabilitiespl = P(ulHl) 

and p2 = P(u/Ho) (hence n = 2), and noting that for 161 -p11 < E and 192 -p21 < E ,  we have 

7 ) E .  lljl - TP2 - (p1 - rp2)I = lljl - p1 - 7(lj2 - p 2 ) 1  = (1 + 

Now 1 + r is used in the place of the Lipschitz constant in the Theorem 3.2 (with r = 2) 

to show Part (i) (in a strict sense, we have not established that 1 + r is a suitable Lipschitz 

constant , but the derivation is valid under slightly weaker condition). 
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For Part (ii), we use the following form of the given test 

P(u n Hl)P(Ho) - ~ P ( u  n Ho)P(H1)  > 0 

where we estimate the probabilities p1 = P(u  n H I ) ,  p2 = P(Ho),  p3 = P(u n Ho) ,  and 

p4 = P(H1) (hence n = 4). Now we have 

and sample size is obtained by using 3(1+ r )  in place of the Lipschitz constant. U. 

Remark 3.5 In the two cases of the Corollary 3.2 it can be shown that the quantities (1 + r )  

and 3( 1 + r)  respectively yield the required Lipschitz constants. 

Remark 3.6 In Corollary 3.2, n = 2 for (i) and n = 4 for (ii), for which the bound in Part 

(i) of Lemma 2.1 is better than the bound in Part (ii). 

We now consider the fusion rule of Drakopoulos and Lee [6] which makes use of the 

correlation coefficients to obtain the fusion rule. The set of correlation coefficients are given 

bY 
C = {P[~,~ . . .u i~IHj] l{ i l , .  . . , i k }  (1,. . . , N } ,  j = 0,1}. 

The fusion test is given by 

for suitable r such that for j = 0 , l  

P(ulH1) - rP(ulH0) > 0 (T.3.5) 

r 1 

where AI, = {i : ui = k }  (see [6] for details), and I ,  of cardinality 111, varies over all subsets 

of Ao. In our method, we estimate the correlation coefficients based on empirical data and 

use them to implement the test. 

Corollary 3.3 Consider a decision rule P(ulHl) - rP(ulH0) > 0 implemented in terms of 

the correlation coeficients. Let empirical estimate P(A)  of P(A)  be the fraction of times the 
event A took place based on the empirical sample, and for j = 0 , l  

Given a training sample of size 

the empirical rule implements P(ulHl) -rP(uJHo)  > r with confidence 1/2N -S(l- 1/2N). 
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Proof: Here the critical point is that the Lipschitz constant is given by (1 + ~ ) 2 ~  as shown 

below. First we have for lP(.) - p(.)l < E 

IP(UlHj) - P(U1Hj)l = (-1)'Il ( P ( J-J 4.) - P  ( I-J U i I H j ) ]  5 f 1 2 N E .  
IGAo ;€Ai U I  iEAlUI  ICAo 

This condition yields 

P(UJH1) - T P ( u p o )  - [P(UlHl) - .rP(ulHo)] 5 2 y 1  + 7 ) E .  

The rest of the proof follows by the application of Theorem 3.2 with n = Z N .  0 

Remark 3.7 In Corollary 3.3, n = 2N for which the bound in Part (ii) of Lemma 2.1 is 

better than that in Part (i). 

4 Example 

We consider a system with 5 detectors, D1,. . . , D5. All simulations are carried out using 

pseudo random number generators. The hypotheses H1 and Ho are generated with equal 

probabilities. This behavior is simulated by generating a uniformly distributed random 

variable over the interval [0, 11 and checking to see if it lies in the interval [0,0.5]. Each 

detector is given the hypothesis as input and it produces an output that disagrees with the 

input according to a probabilistic strategy. The detectors Di, i = 1,2 , .  . . , 5 introduces an 

error as follows: with probability of 1 - 2/10 it passes on the input to output, and with 

probability 2/10 it passes on the opposite of the input. The individual detector behavior is 

implemented by generating a uniform random variable in the range [0, D] and checking if it 

falls in the interval [0, iD/lO]. It is assumed that the pseudo random number generator yields 

independent outputs and the error processes of the individual detectors are probabilistically 

independent. 

A sequence of examples has been generated and given as input to both the Bayesian 

fuser and the proposed empirical fuser. The Bayesian fuser is implemented by using the 

analytical formulae for the distribution of errors under the assumption of independence 

between the various detectors. The Bayesian test is given by P(H0lu) >_ P(H1lu) where 

u = (ul, uz,, . . ,us) and ui is the output of Di. Due to the independence and the property 

P(H0) = P(H1) = 1/2, this test is equivalent to the test: 

5 5 

n Pi(UilH0) 2 J-J Pi(uilH1) 
i= l  i=l 

where the Pi(.) corresponds to Di,  2 = 1,2,. . . 5 ,  such that, for j ,  k E {Ho, H I } ,  

i f j # k  

Pi(jlk) = { i'yoi/10 if j = k . 

For the empirical fuser, the probabilities are estimated based on the sample seen so far. Each 

example is given as input to both the fusers and their outputs are computed. An average 
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Figure 2: Relative performance of the Bayesian fuser and empirical fuser with training. 
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percentage of correctly classified examples (among the sample seen so far) is computed and 

shown in Fig. 2. The plots in Fig. 2 (a), (b) and (c) as shown for 1,000, 10,000, and 100,000 

examples respectively. The performance of the empirical fuser has shown an improving trend 

as the training progressed. After 1,000 examples, the empirical fuser achieved the perfor- 

mance within 10% of that of the Bayesian fuser as shown in Fig. 2(a). After 10,000 examples 

the performance of the empirical user is approximately within 1% of that of Bayesian fuser 

(Fig. 2(b)). After 100,000 examples, the performance of the empirical fuser is within 0.1% of 

that of the Bayesian fuser. This simulation has been repeated with different starting seeds 

for the pseudo random number generator with almost identical qualita.tive behavior. 

The estimates for the sample sizes needed to ensure a confidence of 90% is of the order 

of few millions for this system. Thus the performance of the method is better than that 

indicated by the samples estimates; it is, however, unclear if it an artifact of this specific 

example. 

The training program has been implemented on SPARC workstation IPX. The execution 

time for the training with 100,000 examples, including the time required to generate the 

samples, is of the order of 20 seconds. 

We wish to note here that in some cases, the problem of implementing a Bayesian fuser 

could be computationally expensive (since the problem could be NP-complete). In such 

cases, the information about the a priori probabilities and error distributions can be used to 

generate examples by using Monte Carlo methods, and the empirical fuser can be trained with 

the generated examples (as shown in the above example). The performance of such methods 

depends on the ease with which the examples can be generated and the characteristics of 

the programs that generate the pseudo random variables. 

5 Conclusions 

We have studied the problem of optimal data fusion in multiple detection systems in the case 

when training examples are available, but no information is available about the probability 

of errors committed by the individual detectors. Most existing solutions to this problem 

require some knowledge (for example, either a parametric or an analytical form) of the error 

distributions of the detectors. We showed that given sufficiently large training sample, an 

optimal fusion rule can be implemented with an arbitrarily high level of confidence. Since 

no information about the underlying probabilities is available, an exact implementation of 

the optimal rule which is chosen from a set of functions is not possible based on a finite set 
of examples. We showed a general result that any test function with a suitable Lipschitz 

property can be implemented based on a training sample with an arbitrarily high precision, 

where the sample is a function of the Lipschitz constant and the number of parameters. The 

general case subsumes the cases of non-independent and correlated detectors, but specific 

properties of the tests can be used to obtain sharper results than those yielded by the general 

result. Two other approaches based on empirical risk minimization and nearest neighbor rule 

for solving the present problem have been recently studied by Rao and Iyengar [15]. 

The proposed method is useful in systems where either the underlying probabilities are 

not known or the Bayesian test is too difficult to implement. As illustrated in Section 4, the 

proposed method can only approach the Bayesian method in performance after a significant 
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amount of training. 

There are two generalizations of the formulation studied here. Rao [14] discusses the 

estimation of fusion rules in multiple sensor systems, and Rao and Oblow [17] discuss empir- 

ical implement ation of optimal fusion rules for a system of probably approximately correct 

learners. These results are more general in that the finiteness properties (of the u-algebra on 

the event space in formulation studied here) are not satisfied and consequently the sample 

size estimates are presented in terms of the Vapnik and Chervonenkis dimension [ZO]. 
There are several directions for future investigations. Extension of the proposed method 

for non-Lipschitz cases will be interesting. Also, although the Lipschitz property is sufficient 

for implementing an empirical fuser, it is clearly not necessary. We suspect that some “local” 

properties can replace the Lipschitz property (which is a global property). When the decision 

amounts to choosing one hypothesis from a continuum (instead of choosing one of the two 

alternatives), we are faced with more difficult problems. It would be of interest to investigate 

the multiple detectors systems to handle such formulations. 
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