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As 5G and other technologies are widely used in the Internet of Vehicles, intrusion detection plays an increasingly important role
as a vital detection tool for information security. However, due to the rapid changes in the structure of the Internet of Vehicles, the
large data flow, and the complex and diverse forms of intrusion, traditional detection methods cannot ensure their accuracy and
real-time requirements and cannot be directly applied to the Internet of Vehicles. A new AA distributed combined deep learning
intrusion detection method for the Internet of Vehicles based on the Apache Spark framework is proposed in response to these
problems. The cluster combines deep-learning convolutional neural network (CNN) and extended short-term memory (LSTM)
network to extract features and data for detection of car network intrusion from large-scale car network data traffic and discovery
of abnormal behavior. The experimental results show that compared with other existing models, the algorithm of this model can

reach 20 in the fastest time, and the accuracy rate is up to 99.7%, with a good detection effect.

1. Introduction

With the practical application of emerging technologies in
the field of the Internet of Vehicles, the development of the
Internet of Vehicles has become more rapid. Due to its
particularity, that is, the car itself does not consider network
security enough, the capacity of the vehicle is limited, the
application environment is complex, the number of dis-
tributed nodes and sensor networks are many, and the safety
requirements are incredibly high. Therefore, the security
issue of the Internet of Vehicles has increasingly become a
stumbling block to its application. Ensuring the security of
car G road G cloud communications in the car networking
security system, identifying various malicious attacks, has

become the focus of close attention by industry insiders and
information security experts. Intrusion detection is a net-
work security technology used to detect intruders and ag-
gression in any communication system through various
identifications or detections.

Attack behavior, monitor and analyze network traffic,
classify normal and abnormal behavior, and identify strange
activities such as threats in the network are all roles played by
the Internet of Vehicles. As an active defense technology,
this technology has become one of the primary mechanisms
to ensure the safety of the Internet of Vehicles. The appli-
cation of machine learning algorithms in traditional Internet
intrusion detection systems is the current mainstream re-
search direction. Wisanwanichthan and Thammawichai [1]
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apply the machine learning method to intrusion detection
systems (IDS), and use SVM and Naive Bayes algorithms for
normalization and feature reduction for analysis and
comparison. However, the key disadvantage of the machine
learning-based intrusion detection mechanism is that it
requires a lot of training time to process many datasets of
previous data streams in the network. In the network en-
vironment, deep learning technology has good self-learning
functions, Lenovo storage functions, and high-speed opti-
mization functions, which are very suitable for processing
the current complex network traffic data, especially in the
complex car networking environment.

At the moment, there is a great deal of research being
conducted on intrusion detection using deep learning and
distributed big data technologies. Chen et al. [2] developed a
hybrid deep neural network (DNN) model for classifying and
detecting unknown network threats. Chen et al. [2] think that
deep learning has received a lot of attention recently, and they
compared conventional techniques to new deep learning
methods. Chen et al. [3] constructed an intelligent intrusion
detection system using deep learning’s intelligent capabilities.
Vijayanand et al. [3] presented a technique for detecting
anomalous intrusions using a hybrid MLP/CNN. Parimala and
Kayalvizhi [4] developed a deep learning-based technique for
detecting network intrusions. The KDD-CUP99 dataset was
examined using the BP neural network to identify the kinds of
invasions. Karatas et al. [5] developed an intrusion detection
technique based on deep convolutional neural networks, which
lowers the dimensionality of network data by converting it to
pictures. The detection accuracy, false alarm rate, and detection
rate are all enhanced via training and recognition. Shettar et al.
[6] utilized Keras on top of TensorFlow to categorize various
assaults using supervised deep learning and achieved the best
accuracy using RNN deep learning technology. Zhang et al. [7]
implemented random forests and SVMs using the Spark
framework. Other machine learning methods were evaluated
and compared to multilayer deep perceptions. We may con-
clude from studies that although deep learning algorithms are
more accurate than conventional machine learning algorithms,
they need more time to examine data. The static network in its
traditional form intrusion detection is often classified as either
host-based or network-based. The Internet of cars’ intrusion
detection is accomplished by filtering the data transferred
between vehicles. Due to the fact that the Internet of Vehicles is
also linked to the Internet or to a specialized network, tradi-
tional harmful attack techniques are also successful on the
Internet. They are more damaging, which necessitates more
stringent standards for intrusion detection protection. Com-
bining the features of the Internet of Vehicles’ massive traffic
and multidimensional complexity, the application of deep
neural network detection. Due to the benefits of distributed
parallel computing and its rapid and influential features, this
article proposes using a combined deep learning algorithm
with the Spark framework [8, 9] for intrusion detection. By
utilizing the Spark architecture, the traditional deep learning
algorithm is improved. Combining CNN and LSTM, Dey [10]
proposed the CNNGLSTM algorithm model, which was used
to analyze the NSL-KDD dataset [11] and the UNSW-NB15
dataset [12-15] in order to minimize security attacks on
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connected vehicles. Its primary objective is to decrease the time
needed to identify assaults and increase the accuracy of clas-
sification jobs, which is more appropriate for the Internet of
Vehicles’ real environment. Each indication has been enhanced
as a result of experimental research. Researchers are proposing
various protocol schemes [16-20] to maintain the integrity,
confidentiality, and security of the information shared among
users and servers.

The rest of this paper is structured as follows: Section 2
describes the CNN-LSTM algorithm. The Spark framework
and NSL-KDD dataset are mentioned in Sections 3 and 4,
respectively. Result analysis is given in Section 5, followed by
the conclusions in Section 6.

2. CNN-LSTM Algorithm

CNN is suitable for extracting data features; LSTM is suitable
for processing time series, solving the dependency problem
between time-series data, and improving recognition accuracy.
This paper combines the advantages of the two algorithms and
proposes the CNNGLSTM algorithm. Convolution neural
network (CNN) [21] evolved from multilayer perception
(MLP) [22]. Compared with traditional feature selection al-
gorithms, this algorithm can learn features better. The more
traffic data CNN can learn, the more useful features there are,
the better the classification, which is suitable for large-scale
network environments. As shown in Figure 1, its structure is
divided into a convolution layer, a pooling layer, and a fully
connected layer. The role of the convolution layer is to extract
features, and the role of the pooling layer is to sample the
features. Finally, the fully connected layer is responsible for
connecting the extracted features and obtaining the classifi-
cation results through the classifier.

The long-term memory network (LSTM) is an improved
recurrent neural network (RNN) method, which aims to
alleviate the explosion gradient problem. Compared with
traditional RNN units, LSTM uses a set of gate functions to
control feedback so that short-term errors will eventually be
deleted while persistent features will be retained. The data
processing flow is shown in Figure 2.

The LSTM is abstracted into four subnets (p-net, g-net,
f-net, and g-net), a collection of gate controllers, and a link to
the memory component. The figure’s input and output are
controlled by the vector’s size, x (¢). The state s (¢) contains
information about the present learning.

The CNN-LSTM method is capable of expressing both
temporal and spatial information. Due to the fact that an
intrusion assault occurs in real time, the methods of attack are
varied, as is the target or point of attack. To extract features, a
CNN is utilized, and high-level features may be retrieved using
the convolution kernel operation, which has been successfully
used in image processing [23-25]. Additionally, LSTM utilizes
gate functions to regulate the remembering and forgetting of
previous data, making it ideal for processing long-term se-
quence data and increasing detection accuracy [26, 27]. As a
result, the CNN-LSTM algorithm model is suitable for in-
trusion detection processing in this study. Figure 3 illustrates
the CNN-LSTM algorithm paradigm, and the particular stages
are as follows:
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FIGURE 3: CNN-LSTM model architecture.

(1) The input layer collects real-time Internet of Vehicles through a one-dimensional convolution operation.

data through the flow data collection module. This
article uses the dataset to analyze characteristics,
including network protocol types, network service
types, network connection status, and connection
time [28, 29].

(2) According to the data processing steps, the data are

respectively preprocessed, digitized, and normalized.
The specific operation steps will be described in
detail later.

(3) It sends the processed data to the convolution layer

for feature extraction and outputs the features

Each convolution layer is accompanied by a pooling
layer to reduce feature dimensions, accelerate con-
vergence, and remove redundancy features to pre-
vent network overfitting. Then all local features are
integrated through the fully connected layer to form
an overall feature. Finally, the leaky ReLU activation
function in the fully connected layer is operated
[30-32].

(4) Input the features extracted by CNN into LSTM.

After the SoftMax function, the classification result
of network data is obtained [23, 33, 34].



3. Spark Framework

To enhance detection efficiency, this study makes use of the
Apache Spark framework, a large data processing platform
focused on speed, simplicity of use, and sophisticated
analysis. It was created in 2009 [8-10] at the University of
California, Berkeley, and became one of the Apache open-
source projects. In comparison to other big data technol-
ogies such as Hadoop, Storm, and MapReduce, Spark offers
the following advantages [35-37]:

(a) Spark offers a consistent and comprehensive
framework for handling diverse datasets and data
sources (batch or real-time streaming data) with
varying characteristics (text data, chart data, etc.)
[38, 39].

(b) Spark improves the performance of Hadoop cluster
apps operating in memory by 100 times and the
speed of Hadoop cluster applications running on the
disc by ten times [14, 40].

(c) When compared to MapReduce, Spark performs
quicker data calculations and offers more robust
functions [25, 41].

When the quantity of processed data surpasses the ca-
pacity of a single machine (for example, a computer with
4 GB of memory must process more than 100 GB of data), or
when the amount of processed data is trivial, nonetheless,
the calculation is difficult and time-consuming. As a result,
the Spark cluster can use its massive computational capa-
bilities to perform the analysis in an organized fashion. The
architecture’s schematic design is shown in Figure 4.

Using the Spark distributed open-source framework, the
experimental PCs are connected to form a master-slave
control structure. The master node performs task schedul-
ing, distribution, and fault tolerance on the slave nodes, and
the slave nodes realize parallel computing. This structure has
been proven to be an owner of a distributed design with high
reliability, high concurrency, and high-performance com-
puting capabilities. The HDFS storage system of the node is
then used to store the data, and the combined deep learning
algorithm is used for intrusion detection.

4. NSL-KDD Dataset

In contrast to a conventional network, the heterogeneous
communication network created by vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication are
formed by the self-organization of vehicle nodes. Driving, fast
channel fading, strong Doppler effect, and rapid network
topology changes are all examples of rapid network topology
changes. However, the attack techniques used against the
Internet of Vehicles throughout the communication process
are very similar to those used against conventional networks,
including backdoor assaults and denial of service attacks. To
evaluate the proposed Spark-based distributed combined
deep learning intrusion detection method for the Internet of
Vehicles, the proposed deep learning algorithm is applied to
two intrusion detection benchmark datasets, namely, NSL-
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KDD [11] and UNSW-NBI15 [12], in order to develop an
effective intrusion detection system for the Internet of Ve-
hicles’ external communication. There are a total of 21,473
pieces of training data and 51,025 pieces of test data in the
experimental dataset.

The NSL-KDD dataset is a refinement of the KDD CUP
99 data collection [12]. It eliminates redundant records from
the CUP 99 dataset and addresses the classifier’s bias for
repeating records. In comparison to the KDD 99 dataset, the
usage of NSL classification of the KDD dataset will provide
comparable or superior accuracy. As a result, it is widely
regarded as one of the most effective datasets for intrusion
detection studies. The dataset’s assaults are classified into
four groups.

(1) Denial of service (DoS): the intruder will send many
malicious requests to the server, causing the ma-
chine’s memory and computational resources to
become insufficiently full or busy to handle genuine
traffic, thus denying regular users services.

(2) User-to-root (U2R): this is a kind of attack in which
the attacker tries to acquire administrator privileges
through regular user access.

(3) Remote-to-local attack (R2L): the attacker wishes to
transmit data to a computer via a network in order to
obtain access to the machine fraudulently.

(4) Detection attack (Probe): the network is scanned to
obtain detailed information about the user’s device.

In addition, the dataset contains 49 features, which
constitute the traffic that exists between the host and the
network data packet and are used to distinguish normal or
abnormal observation results. Compared with other data-
sets, it contains both real-scene data and synthetic data.
Attack behavior and the complexity of UNSW-NB means
dataset are valid and reliable.

5. Result Analysis

The CNNGLSTM algorithm and SVM, RNN, CNN, and
LSTM algorithms are used to compare the accuracy rate
(AC) and false alarm rate (FPR) of different attack types. The
CNN-LSTM method has a high classification detection rate.
Compared with other algorithms, it has a lower false alarm
rate.

To verify the overall effectiveness and comparison of the
experiment, this paper uses two datasets of NSL-KDD and
UNSW GNBI5 to compare the accuracy rate (AC) and false
alarm rate (FPR) of the above five algorithms. The experi-
mental results are shown in Figures 5 and 6.

It can be seen from Figures 7 and 8 that CNN-LSTM
performs well in the NSL-KDD dataset and UNSWGNB15
dataset reaching 7% and 99%, respectively. The accuracy rate
of 4% also has the lowest false alarm rate of two, respectively,
24% and 2.17%. Therefore, this algorithm has better per-
formance characteristics among similar algorithms.

All the deep learning algorithms discussed in this article
are implemented in a distributed manner under Apache
Spark. The experimental results are shown in Figures 7 and 8.
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FIGURE 4: Apache spark architecture.
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FIGURE 8: Detection time of each algorithm under UNSWGNBI15 dataset.

It can be seen that compared with traditional nonparallel
machines and deep learning algorithms, the training and
testing time is significantly shortened. Furthermore, the ex-
perimental results show that the training time and test time
used by the CNN-LSTM algorithm are the shortest.

6. Conclusion

Comparative experiments found that because of the slow
detection speed and low detection efficiency of big data in
intrusion detection systems, the advantages of distributed
frameworks and deep learning algorithms are fully con-
sidered, and the distributed architecture is combined with
the deep learning CNN-LSTM algorithm. Through data,
the detection efficiency and detection time are improved
after the data is standardized by preprocessing and other
methods. Experimental verification on the NSL-KDD
dataset and the UNSW-NB15 dataset shows that the deep
learning algorithm of CNN-LSTM using the Spark
framework is comparable to other deep learning algo-
rithms. It reduces the training time and test time, im-
proves the detection rate, can well meet the real-time
requirements of intrusion detection, and more satisfies the
actual needs of the Internet of Vehicles for intrusion
detection. In the next step, this article will improve based
on intrusion detection performance and reduction of
detection time, and we will further focus on the detection
capabilities of deep learning algorithms, conduct intru-
sion detection on distributed platforms, and explore
suitable distributed deep learning algorithms to meet the
needs of intrusion detection for car network information
security. A more efficient algorithm handles the network
data traffic of the Internet of Vehicles and enhances the
adaptability of the algorithm [42].
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The data used to support the findings of this study are
available from the author upon request (kusumasyadav0@
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