
Distributed Deep Neural Networks Over the Cloud,

the Edge and End Devices

Citation
Teerapittayanon, Surat, Bradley McDaniel, and H. T. Kung. 2017. Distributed Deep Neural
Networks Over the Cloud, the Edge and End Devices. 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), 5-8, 2017, Atlanta, GA. IEEE.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41718765

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41718765
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Distributed%20Deep%20Neural%20Networks%20Over%20the%20Cloud,%20the%20Edge%20and%20End%20Devices&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=ef0f0b3cd4a8ef7f37d444ec2d040634&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Distributed Deep Neural Networks

over the Cloud, the Edge and End Devices

Surat Teerapittayanon

Harvard University

Cambridge, MA, USA

Email: steerapi@seas.harvard.edu

Bradley McDanel

Harvard University

Cambridge, MA, USA

Email: mcdanel@fas.harvard.edu

H.T. Kung

Harvard University

Cambridge, MA, USA

Email: kung@harvard.edu

Abstract—We propose distributed deep neural networks
(DDNNs) over distributed computing hierarchies, consisting of
the cloud, the edge (fog) and end devices. While being able to
accommodate inference of a deep neural network (DNN) in the
cloud, a DDNN also allows fast and localized inference using
shallow portions of the neural network at the edge and end
devices. When supported by a scalable distributed computing
hierarchy, a DDNN can scale up in neural network size and
scale out in geographical span. Due to its distributed nature,
DDNNs enhance sensor fusion, system fault tolerance and data
privacy for DNN applications. In implementing a DDNN, we
map sections of a DNN onto a distributed computing hierarchy.
By jointly training these sections, we minimize communication
and resource usage for devices and maximize usefulness of
extracted features which are utilized in the cloud. The resulting
system has built-in support for automatic sensor fusion and
fault tolerance. As a proof of concept, we show a DDNN
can exploit geographical diversity of sensors to improve object
recognition accuracy and reduce communication cost. In our
experiment, compared with the traditional method of offloading
raw sensor data to be processed in the cloud, DDNN locally
processes most sensor data on end devices while achieving high
accuracy and is able to reduce the communication cost by a
factor of over 20x.

Keywords-distributed deep neural networks; deep neural net-
works; dnn; ddnn; embedded dnn; sensor fusion; distributed
computing hierarchies; edge computing; cloud computing

I. INTRODUCTION

Neural networks (NNs), and deep neural networks

(DNNs) in particular, have achieved great success in numer-

ous applications in recent years. For example, deep Con-

volutional Neural Networks (CNNs) continuously achieve

state-of-the-art performances on various tasks in computer

vision as shown in Figure 1. At the same time, the number

of end devices, including Internet of Things (IoT) devices,

has increased dramatically. These devices are appealing

targets for machine learning applications as they are often

directly connected to sensors (e.g., cameras, microphones,

gyroscopes) that capture a large quantity of input data in a

streaming fashion.

However, the current state of machine learning systems

on end devices leaves an unsatisfactory choice: either (1)

offload input sensor data to large NN models (e.g., DNNs) in

the cloud, with the associated communication costs, latency

issues and privacy concerns, or (2) perform classification

directly on the end device using simple Machine Learning

(ML) models e.g., linear Support Vector Machine (SVM),

leading to reduced system accuracy.

To address these shortcomings, it is natural to consider

the use of a distributed computing approach. Hierarchically

distributed computing structures consisting of the cloud,

the edge and devices (see, e.g., [1], [2]) have inherent

advantages, such as supporting coordinated central and local

decisions, and providing system scalability, for large-scale

intelligent tasks based on geographically distributed IoT

devices.

An example of one such distributed approach is to com-

bine a small NN1 model (less number of parameters) on end

devices and a larger NN model (more number of parameters)

in the cloud. The small model at an end device can quickly

perform initial feature extraction, and also classification if

the model is confident. Otherwise, the end device can fall

back to the large NN model in the cloud, which performs

further processing and final classification. This approach

has the benefit of low communication costs compared to

always offloading NN input to the cloud and can achieve

higher accuracy compared to a simple model on device.

Additionally, since a summary based on extracted features

from the end device model are sent instead of raw sensor

data, the system could provide better privacy protection.

However, this kind of distributed approach over a com-

puting hierarchy is challenging for a number of reasons,

including:

• End devices such as embedded sensor nodes often have

limited memory and battery budgets. This makes it an

issue to fit models on the devices that meet the required

accuracy and energy constraints.

• A straightforward partitioning of NN models over a

computing hierarchy may incur prohibitively large com-

munication costs in transferring intermediate results

between computation nodes.

1The term network layer may refer to either a layer in a NN or a layer
in the distributed computing hierarchy (e.g., edge or cloud). In order to
remove ambiguity, when we refer to network layers for NN we explicitly
use the term NN layers.

• Incorporating geographically distributed end devices is

generally beyond the scope of DNN literature. When

multiple sensor inputs on different end devices are

used, they need to be aggregated together for a single

classification objective. A trained NN will need to

support such sensor fusion.

• Multiple models at the cloud, the edge and the device

need to be learned jointly to allow coordinated decision

making. Computation already performed on end device

models should be useful for further processing on edge

or cloud models.

• Usual layer-by-layer processing of a DNN from the

NN’s input layer all the way to the NN’s output layer

does not directly provide a mechanism for local and

fast inference at earlier points in the neural networks

(e.g., end devices).

• A balance is needed between the accuracy of a model

(with the associated model size) at a given distributed

computing layer and the cost of communicating to the

layer above it. The solution must have reasonably good

lower NN layers on the end devices capable of accurate

local classification for some input while also providing

useful features for classification in the cloud for other

input.

To address these concerns under the same optimization

framework, it is desirable that a system could train a single

end-to-end model, such as a DNN, and partition it between

end devices and the cloud2, in order to provide a simpler

and more principled approach.

To this end, we propose distributed deep neural networks

(DDNNs) over distributed computing hierarchies, consisting

of the cloud, the edge (fog) and geographically distributed

end devices. In implementing a DDNN, we map sections of

a single DNN onto a distributed computing hierarchy. By

jointly training these sections, we show that DDNNs can

effectively address the aforementioned challenges. Specifi-

cally, while being able to accommodate inference of a DNN

in the cloud, a DDNN allows fast and localized inference

using some shallow portions of the DNN at the edge and

end devices. Moreover, via distributed computing, DDNNs

naturally enhance sensor fusion, data privacy and system

fault tolerance for DNN applications. When supported by a

scalable distributed computing hierarchy, a DDNN can scale

up in neural network size and scale out in geographical span.

DDNN leverages our earlier work on BranchyNet [3]

which allows early exit points to be placed in a DNN.

Samples can be classified and exited locally when the system

is confident and offloaded to the edge and the cloud when ad-

ditional processing is required. In addition, DDNN leverages

the recent work of binary neural networks (BNNs) [4], which

2For presentation simplicity, we often just consider the device-cloud
scenario. Our methodology can similarly apply to general device-edge
(fog)-cloud scenarios.

LeNet

(1998)

5 Layers

AlexNet

(2012)

8 Layers

VGGNet

(2014)

19 Layers

GoogLeNet

(2014)

22 Layers

ResNet

(2015)

152 Layers

(34-layer version)

Figure 1. Progression towards deeper neural network structures in recent
years (see, e.g., [6], [7], [8], [9], [10]).

greatly reduce the required memory cost of neural network

layers and enables multi-layer NNs to run on end devices

with small memory footprints [5]. By training DDNN end-

to-end, the network optimally configures lower NN layers to

support local inference at end devices, and higher NN layers

in the cloud to improve overall classification accuracy of the

system. As a proof of concept, we show a DDNN can exploit

geographical diversity of sensors (on a multi-view multi-

camera dataset) in sensor fusion to improve recognition

accuracy.

The contributions of this paper include

1) A novel DDNN framework and its implementation that

maps sections of a DNN onto a distributed computing

hierarchy.

2) A joint training method that minimizes communica-

tion and resource usage for devices and maximizes

usefulness of extracted features which are utilized in

the cloud, while allowing low-latency classification via

early exit for a high percentage of input samples.

3) Aggregation schemes that allows automatic sensor

fusion of multiple sensor inputs to improve the overall

performance (accuracy and fault tolerance) of the

system.

The DDNN codebase is open source and can be found

here: https://github.com/kunglab/ddnn.

II. RELATED WORK

In this section, we briefly review related work in dis-

tributed computing hierarchies and recent deep learning

algorithms that enable our proposed method to run in a dis-

tributed fashion. We then discuss other approaches involving

distributed deep networks.

A. Distributed Computing Hierarchy

The framework of a large-scale distributed computing

hierarchy has assumed new significance in the emerging era

of IoT. It is widely expected that most of data generated

by the massive number of IoT devices must be processed

locally at the devices or at the edge, for otherwise the

total amount of sensor data for a centralized cloud would

overwhelm the communication network bandwidth. In addi-

tion, a distributed computing hierarchy offers opportunities

for system scalability, data security and privacy, as well as

shorter response times (see, e.g., [2], [11]). For example,

in [11], a face recognition application shows a reduced

response time is achieved when a smartphone’s photos are

proceeded by the edge (fog) as opposed to the cloud. In this

paper, we show that DDNN can systematically exploit the

inherent advantages of a distributed computing hierarchy for

DNN applications and achieve similar benefits.

B. Deep Neural Network Extensions

Binarized neural networks (BNNs) are a recent type of

neural networks, where the weights in linear and convolu-

tional layers are constrained to {−1, 1} (stored as 0 and 1
respectively). This representation has been shown to achieve

similar classification accuracy for some datasets such as

MNIST and CIFAR-10 [12] when compared to a standard

floating-point neural network while using less memory and

reduced computation due to the binary format [4]. Embedded

binarized neural networks (eBNNs) extends BNNs to allow

the network to fit on embedded devices by reducing floating-

point temporaries through reordering the operations in in-

ference [5]. These compact models are especially attractive

in end device settings, where memory can be a limiting

factor and low power consumption is required. In DDNN,

we use BNNs, eBNNs and the alike to accommodate the

end devices, so that they can be jointly trained with the NN

layers in the edge and cloud.

BranchyNet proposed a solution of classifying samples at

earlier points in a neural network, called early exit points,

through the use of an entropy-based confidence criteria [3].

If at an early exit point a sample is deemed confident based

on the entropy of the computed probability vector for target

classes, then it is classified and no further computation is

performed by the higher NN layers. In DDNN, exit points

are placed at physical boundaries (e.g., between the last NN

layer on an end device and the first NN layer in the next

higher layer of the distributed computing hierarchy such

as the edge or the cloud). Input samples that can already

be classified early will exit locally, thereby achieving a

lowered response latency and saving communication to the

next physical boundary. With similar objectives, SACT [13]

allocates computation on a per region basis in an image, and

exits each region independently when it is deemed to be of

sufficient quality.

C. Distributed Training of Deep Networks

Current research on distributing deep networks is mainly

focused on improving the runtime of training the neural

network. In 2012, Dean et al. proposed DistBelief, which

maps large DNNs over thousands of CPU cores during

training [14]. More recently, several methods have been

proposed to scale up DNN training across GPU clusters [15],

[16], which further reduces the runtime of network training.

Note that this form of distributing DNNs (over homogeneous

computing units) is fundamentally different from the notion

presented in this paper. We proposes a way to train and

perform feedforward inference over deep networks that can

be deployed over a distributed computing hierarchy, rather

than processed in parallel over bus- or switch-connected

CPUs or GPUs in the cloud.

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORKS

In this section we give an overview of the proposed

distributed deep neural network (DDNN) architecture and

describe how training and inference in DDNN is performed.

A. DDNN Architecture

DDNN maps a trained DNN onto heterogeneous physical

devices distributed locally, at the edge, and in the cloud.

Since DDNN relies on a jointly trained DNN framework at

all parts in the neural network, for both training and infer-

ence, many of the difficult engineering decisions are greatly

simplified. Figure 2 provides an overview of the DDNN

architecture. The configurations presented show how DDNN

can scale the inference computation across different physical

devices. The cloud-based DDNN in (a) can be viewed as

the standard DNN running in the cloud as described in

the introduction. In this case, sensor input captured on end

devices is sent to the cloud in original format (raw input

format), where all layers of DNN inference is performed.

We can extend this model to include a single end device,

as shown in (b), by performing a portion of the DNN

inference computation on the device rather than sending the

raw input to the cloud. Using an exit point after device

inference, we may classify those samples which the local

network is confident about, without sending any information

to the cloud. For more difficult cases, the intermediate DNN

output (up to the local exit) is sent to the cloud, where

further inference is performed using additional NN layers

and a final classification decision is made. Note that the

intermediate output can be designed to be much smaller than

the sensor input (e.g., a raw image from a video camera),

and therefore drastically reduce the network communication

required between the end device and the cloud. The details

of how communication is considered in the network is

discussed in section III-E.

DDNN can also be extended to multiple end devices

which may be geographically distributed, shown in (c),

that work together to make a classification decision. Here,

each end device performs local computation as in (b), but

their output is aggregated together before the local exit

point. Since the entire DDNN is jointly trained across

all end devices and exit points, the network automatically

aggregates the input with the objective of achieving max-

imum classification accuracy. This automatic data fusion

(sensor fusion) simplifies runtime inference by avoiding the

necessity of manually combining output from multiple end

devices. We will discuss the design of feature aggregation

in detail in section III-B. As before, if the local exit point

is not confident about the sample, each end devices sends

intermediate output to the cloud, where another round of

feature aggregation is performed before making a final

classification decision.

DDNN scales vertically as well, by using an edge layer in

the distributed computing hierarchy between the end devices

and cloud, shown in (d) and (e). The edge acts similarly to

the cloud, by taking output from the end devices, performing

aggregation and classification if possible, and forwarding its

own intermediate output to the cloud if more processing is

needed. In this way, DDNN naturally adjusts the network

communication and response time of the system on a per

sample basis. Samples that can be correctly classified locally

are exiting without any communication to the edge or cloud.

Samples that require more feature extraction than can be pro-

vided locally are sent to the edge, and eventually the cloud

if necessary. Finally, DDNNs can also scale geographically

across the edge layer as well, which is shown in (f).

B. DDNN Aggregation Methods

In DDNN configurations with multiple end devices

(e.g., (c), (e), and (f) in Figure 2), the output from each end

device must be aggregated in order to perform classification.

We present several different schemes for aggregating the

output. Each aggregation method makes different assump-

tions about how the device output should be combined and

therefore can result in different system accuracy. We present

three approaches:

• Max pooling (MP). MP aggregates the input vectors

by taking the max of each component. Mathematically,

max pooling can be written as

v̂j = max
1≤i≤n

vij ,

where n is the number of inputs and vij is the j-

th component of the input vector and v̂j is the j-th

component of the resulting output vector.

• Average pooling (AP). AP aggregates the input vectors

by taking the average of each component. This is

written as

v̂j =

n∑

i=1

vij

n
,

where n is the number of inputs and vij is the j-

th component of the input vector and v̂j is the j-th

component of the resulting output vector. Averaging

may reduce noisy input presented in some end devices.

• Concatenation (CC). CC simply concatenates the input

vectors together. CC retains all information which is

useful for higher layers (e.g., the cloud) that can use

the full information to extract higher level features.

Note that this expands the dimension of the resulting

vector. To map this vector back to the same number

of dimensions as input vectors, we add an additional

linear layer.

We analyzes these aggregation methods in Section IV-C.

C. DDNN Training

While DDNN inference is distributed over the distributed

computing hierarchy, the DDNN system can be trained on a

single powerful server or in the cloud. One aspect of DDNN

that is different from most conventional DNN pipelines is the

use of multiple exit points as shown in Figure 2. At training

time, the loss from each exit is combined during back-

propagation so that the entire network can be jointly trained,

and each exit point achieves good accuracy relative to its

depth. For this work, we follow joint training as described

in GoogleNet [9] and BranchyNet [3].

For the system evaluation discussed in Section IV, we

apply DDNNs to a classification task. We use the softmax

cross entropy loss function as the optimization objective.

We now describe formally how we train DDNNs. Let y be

a one-hot ground-truth label vector, x be an input sample

and C be the set of all possible labels. For each exit, the

softmax cross entropy objective function can be written as

L(ŷ,y; θ) =−
1

|C|

∑

c∈C

yc log ŷc,

where

ŷ = softmax(z) =
exp(z)∑

c∈C

exp(zc)
,

and

z =fexitn(x; θ),

where fexitn is a function representing the computation of

the neural network layers from an entry point to the n-th

exit branch and θ represents the network parameters such as

weights and biases of those layers.

To train the DDNN we form a joint optimization problem

as minimizing a weighted sum of the loss functions of each

Cloud Exit Cloud Exit Cloud Exit

Cloud Exit Cloud Exit

Cloud

Cloud Exit

CloudCloud

Cloud Cloud Cloud

Local Exit Local Exit

Device Device

Local Exit

Device

Local Exit

Device

Local Exit

Device

Edge Exit

Edge

Edge Exit

Edge

Edge Exit

Edge

(a) (b) (c)

(f)(e)(d)

(a) Cloud-based DDN

(b) DDNN over cloud and device

(c) DDNN over cloud and geographically

distributed devices

(d) DDDN over cloud, edge and device

(e) DDNN over cloud, edge and

geographically distributed devices

(f) DDDN over cloud and geographically

distributed edges and devices

Figure 2. Overview of the DDNN architecture. The vertical lines represent the DNN pipeline, which connects the horizontal bars (NN layers). (a) is the
standard DNN (processed entirely in the cloud), (b) introduces end devices and a local exit point that may classify samples before the cloud, (c) extends
(b) by adding multiple end devices which are aggregated together for classification, (d) and (e) extend (b) and (c) by adding edge layers between the cloud
and end devices, and (f) shows how the edge can also be distributed like the end devices.

exit:

L(ŷ,y; θ) =

N∑

n=1

wnL(ŷexitn
,y; θ),

where N is the total number of exit points and wn is the

associated weight of each exit. Equal weights are used for

the experimental results of this paper.

D. DDNN Inference

Inference in DDNN is performed in several stages using

multiple preconfigured exit thresholds T (one element T at

each exit point) as a measure of confidence in the prediction

of the sample. One way to define T is by searching over

the ranges of T on a validation set and pick the one with

the best accuracy. We use a normalized entropy threshold

as the confidence criteria (instead of unnormalized entropy

as used in [3]) that determines whether to classify (exit) a

sample at a particular exit point. The normalized entropy is

defined as

η(x) = −

|C|∑

i=1

xi log xi

log |C|
,

where C is the set of all possible labels and x is a probability

vector. This normalized entropy η has values between 0

and 1 which allows easier interpretation and searching of

its corresponding threshold T . For example, η close to 0

means that the DDNN is confident about the prediction of

the sample; η close to 1 means it is not confident. At each

exit point, η is computed and compared against T in order

to determine if the sample should exit at that point.

At a given exit point, if the predictor is not confident

in the result (i.e., η > T), the system falls back to a higher

exit point in the hierarchy until the last exit is reached which

always performs classification.

We now provide an example of the inference procedure

for a DDNN which has multiple end devices and three exit

points (configuration (e) in Figure 2):

1) Each end device first sends summary information to

local aggregator.

2) The local aggregator determines if the combined sum-

mary information is sufficient for accurate classifica-

tion.

3) If so, the sample is classified (exited).

4) If not, each device sends more detailed information

to the edge in order to perform further processing for

classification.

5) If the edge believes it can correctly classify the sample

it does so and no information is sent to the cloud.

6) Otherwise, the edge forwards intermediate computa-

tion to the cloud which makes the final classification.

E. Communication Cost of DDNN Inference

The total communication cost for an end device with the

local and cloud aggregator is calculated as

c = 4× |C|+ (1− l)
f × o

8
(1)

where l is the percentage of samples exited locally, C is the

set of all possible labels (3 in our experiments), f is the

number of filters, and o is the output size of a single filter

for the final NN layer on the end-device. The constant 4

corresponds to 4 bytes which are used to represent a floating-

point number and the constant 8 corresponds to bits used

to express a byte output. The first term assumes a single

floating-point per class, which conveys the probability that

the sample to be transmitted from the end device to the local

aggregator belongs to this class. This step happens regardless

of whether the sample is exited locally or at a later exit point.

The second term is the communication between end device

and cloud which happens (1− l) fraction of the time, when

the sample is exited in the cloud rather than locally.

F. Accuracy Measures

Throughout the evaluation in Section IV, we use different

accuracy measures for the various exit points in a DDNN as

follows:

• Local Accuracy is the accuracy when exiting 100% of

samples at the local exit of a DDNN.

• Edge Accuracy is the accuracy when exiting 100% of

samples at the edge exit of a DDNN.

• Cloud Accuracy is the accuracy when exiting 100% of

samples at the cloud exit of a DDNN.

• Overall Accuracy is the accuracy when exiting some

percentage of samples at each exit point in the hier-

archy. The samples classified at each exit point are

determined by the entropy threshold T for that exit.

The impact of T on classification accuracy and com-

munication cost is discussed in Section IV-D.

• Individual Accuracy is the accuracy of an end device

NN model trained separately from DDNN. The NN

model for each end device consists of a ConvP block

followed by a FC block (a single end device portion

as shown in Figure 4). In the evaluation, individual

accuracy for each device is computed by classifying all

samples using the individual NN model and not relying

on the local or cloud exit points of a DDNN.

IV. DDNN SYSTEM EVALUATION

In this section, we evaluate DDNN on a scenario with

multiple end devices and demonstrate the following charac-

teristics of the approach:

• DDNNs allow multiple end devices to work collabo-

ratively in order to improve accuracy at both the local

and cloud exit points.

• DDNNs seamlessly extend the capability of end devices

by offloading difficult samples to the cloud.

• DDNNs have built-in fault tolerance. We illustrate that

missing any single end device does not dramatically

affect the accuracy of the system. Additionally, we

show how performance gradually degrades as more end

devices are lost.

• DDNNs reduce communication costs for end devices

compared to traditional system that offloads all input

sensor data to the cloud.

We first introduce the DDNN architecture and dataset used

in our evaluation.

A. DDNN Evaluation Architecture

To accommodate the small memory size of the end

devices, we use Binary Neural Network [4] blocks3. We

make use of two types of blocks in [5]: the fused binary

fully connected (FC) block and fused binary convolution-

pool (ConvP) block as shown in Figure 3. FC blocks each

consist of a fully connected layer with m nodes for some

m, batch normalization and binary activation. ConvP blocks

each consist of a convolutional layer with f filters for

some f , a pooling layer and batch normalization and binary

activation. A convolution layer has a kernel of size 3x3 with

stride 1 and padding 1. A pooling layer has a kernel of size

3x3 with stride 2 and padding 1.

For our experiments, we use version (c) from Figure 2,

with six end devices. The system presented can be general-

ized to a more elaborated structure which includes an edge

layer, as shown in (d), (e) or (f) of Figure 2. Figure 4 depicts

a detailed view of the DDNN system used in our experi-

ments. In this system, we have six end devices shown in red,

a local aggregator, and a cloud aggregator. During training,

output from each device is aggregated together at each exit

point using one of the aggregation schemes described in

Section III-B. We provide detailed analysis on the impact

of aggregation schemes at both the local and cloud exit

points in Section IV-C. All DDNNs in our experiments are

trained with Adam [17] using the following hyper-parameter

settings: α of 0.001, β1 of 0.9, β2 of 0.999, and ϵ of 1e-8. We

train each DDNN for 100 epochs. When training the DDNN,

we use equal weights for the local and cloud exit points. We

explored heavily weighting both the local exit and the cloud

exit, but neither weighting scheme significantly changed the

accuracy of the system. This indicates that this solution to

the dataset and the problem we are exploring is not sensitive

to the weights, but this may not be true for other datasets

and problems4.

3A block consists of one or more conventional NN layers
4In GoogleNet [9], a less than 1% difference in accuracy was observed

based on the values of the weight parameters

3x3 conv, f filters

Binary Activation

Batch Normalization

f x 16 x 16 bits

Fused Binary
Convolution-Pool Block

(ConvP)

3x3 pool, /2

input
(3 x 32 x 32)

fully-connected, n nodes

Binary Activation

Batch Normalization

n bits

Fused Binary
Fully-Connected

Block (FC)

input
(3 x 32 x 32)

Figure 3. Fused binary blocks consisting of one or more standard NN
layers. The fused binary fully connected (FC) block is a fully connected
layer with n nodes, batch normalization and binary activation. The fused
binary convolution-pool (ConvP) block consists of a convolutional layer
with f filters, a pooling layer, batch normalization and binary activation.
The convolution layer has a kernel of size 3x3 with stride 1 and padding
1. The pooling layer has a kernel of size 3x3 with stride 2 and padding 1.
These blocks are used as they are presented in [5].

Figure 4. The DDNN architecture used in the system evaluation. The
FC and ConvP blocks in red and blue correspond to layers run on end
devices and the cloud respectively. The dashed orange boxes represent the
end devices and show which blocks of the DDNN are mapped onto each
device. The local aggregator shown in red combines the exit output (a short
vector with length equal to the number of classes) from each end device in
order to determine if local classification for the given input sample can be
performed accurately. If the local exit is not confident (i.e. η(x) > T), the
activation output after the last convolutional layer from each end device is
sent to the cloud aggregator (shown in blue), which aggregates the input
from each device, performs further NN layer processing, and outputs a final
classification result. The aggregation of input for multiple end devices is
discussed in Section IV-C.

B. Multi-view Multi-camera Dataset

We evaluate the proposed DDNN framework on a multi-

view multi-camera dataset [18]. This dataset consists of

images acquired at the same time from six cameras placed

at different locations facing the same general area. For the

purpose of our evaluation, we assume that each camera is

attached to an end device, which can transmit the captured

images over a bandwidth-constraint wireless network to a

physical endpoint connected to the cloud.

The dataset provides object bounding box annotations.

Multiple bounding boxes may exist in a single image, each

of which corresponds to a different object in the frame. In

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6

Person

Bus

Car

Figure 5. Example images of three objects (person, bus, car) from the
multi-view multi-camera dataset. The six devices (each with their own
camera) capture the same object from different orientations. An all grey
image denotes that the object is not present in the frame.

preparing the dataset, for each bounding box, we extract an

image, and manually synchronize5 the same object across

the multiple devices that the object appears in for the given

frame. Examples of the extracted images are shown in

Figure 5. Each row corresponds to a single sample used for

classification. We resize each extracted sample to a 32x32

RGB pixel image. For each device that a given object does

not appear in, we use a blank image and assign a label of -1,

meaning that the object is not present in the frame. Labels

0, 1, and 2 correspond to car, bus and person, respectively.

Objects that are not present in a frame (i.e., label of -

1) are not used during training. We split the dataset into

680 training samples and 171 testing samples. Figure 6

shows the distribution of samples at each device. Due to

the imbalanced number of class samples in the dataset,

the individual accuracy of each end device differs widely,

as shown by the “Individual” curve of Figure 8. A full

description of the training process for the individual NN

models is provided in Section IV-E. The processed dataset

used in this paper is available at [20].

C. Impact of Aggregation Schemes

In order to perform classification on the input from mul-

tiple end devices, we must aggregate the information from

each end device. We consider three aggregation methods

(max pooling, average pooling, and concatenation) outlined

in Section III-B, at both the local and cloud exit points.

The accuracy of different aggregation schemes are shown in

Table I. The first two letters identify the local aggregation

scheme and the last two letters identify the scheme used

by the cloud aggregator. For example, MP-CC means the

local aggregator uses max-pooling and the cloud uses con-

catenation. Recall that each input to the local aggregator

is a floating-point vector of length equal to the number of

classes (corresponding to the output from the final FC block

for a single device as shown in Figure 4) and the device

5In practical object tracking systems, this synchronization step is typi-
cally automated [19].

1 2 3 4 5 6
End Device

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f

sa
m

p
le

s

Person

Bus

Car

Not-present

Figure 6. The distribution of class samples for each end device in the
multi-view multi-camera dataset.

Table I
ACCURACY OF AGGREGATION SCHEMES. THE FIRST TWO LETTERS

IDENTIFY THE LOCAL AGGREGATION SCHEME, AND THE LAST TWO

LETTERS IDENTIFY THE CLOUD AGGREGATION SCHEME. FOR EXAMPLE,
MP-CC MEANS THE LOCAL AGGREGATOR USES MAX-POOLING AND

THE CLOUD AGGREGATOR USES CONCATENATION. THE ACCURACY OF

EACH EXIT POINT (EITHER LOCAL OR CLOUD) IS COMPUTED USING THE

ENTIRE TEST SET. IN PRACTICE, WE WILL EXIT A PORTION OF SAMPLES

LOCALLY BASED ON THE ENTROPY THRESHOLD T AND SEND THE

REMAINING SAMPLES IN THE CLOUD. DUE TO ITS HIGH PERFORMANCE,
MP-CC IS USED IN THE REMAINING EXPERIMENTS OF THIS PAPER.

Schemes Local Acc. (%) Cloud Acc. (%)

MP-MP 95 91
MP-CC 98 98

AP-AP 86 98
AP-CC 75 96
CC-CC 85 94
AP-MP 88 93
MP-AP 89 97
CC-MP 77 87
CC-AP 80 94

output sent to the cloud aggregator is the output from the

final ConvP block.

The MP-MP scheme has good classification accuracy for

the local aggregator but poor performance in the cloud. The

elements in the vectors at the local aggregator correspond to

the same features (e.g., the first item is the likelihood that

the input corresponds to that class). Therefore, max pooling

corresponds to taking the max response for each class over

all end devices, and shows good performance. On the other

hand, since the information sent from the end devices to

the cloud is the activation output from the filters at each

device, which corresponds to different visual features in the

input from the viewpoint of each individual end device, max

pooling these features does not perform well.

Comparing MP-MP and MP-CC schemes, though both

use MP for local aggregators, MP-CC increases the accu-

racy of the local classifier. In the training phrase, during

backpropagation the MP-MP scheme only passes gradients

through a device that gives the highest response while MP-

CC scheme passes gradients through all devices. Therefore,

using CC aggregator in the cloud allows all devices to learn

better filters (filter weights) that give a stronger response for

the local MP aggregator, resulting in a better classification

accuracy.

The CC-CC scheme shows an opposite trend where the

local accuracy is poor while the cloud accuracy is high.

Concatenating the local information (instead of a pooling

scheme), does not enforce any relationship between out-

put for the same class on multiple devices and therefore

performs worse. Concatenating the output for the cloud

aggregator maintains the most information for NN layer

processing in the cloud and therefore performs well.

Generally, for the local aggregator, average pooling per-

forms worse than max pooling. This is because some of

the end devices do not have the object present in the given

frame. Average pooling take average of all outputs from

end devices; this compromises the strong outputs from end

devices in which the object is present. Based on these

results, we use the MP-CC aggregation scheme throughout

the paper.

D. Entropy Threshold

The entropy threshold for an exit point, T , corresponds

to the level of confidence that is required in order to exit a

sample. A threshold value of 0 would mean that no samples

will exit and a value of 1 would mean that all samples exit at

that point. Figure 7 shows the relationship between T at the

local aggregator and the overall accuracy of the DDNN. We

observe that as more samples are exited at the local exit, the

overall accuracy decreases. This is expected, as the accuracy

of the local exit is typically lower than that of the cloud exit.

We need to set the threshold appropriately to achieve a

balance between the communication cost, as defined in Sec-

tion III-E, latency and accuracy of the system. In this case,

we see that setting the threshold to 0.8 results in the best

overall accuracy with significantly reduced communication,

i.e., 97% accuracy while exiting 60.82% of samples locally

as shown in Table II where in addition to local exit (%) and

overall accuracy (%), communication cost in bytes is given.

We set T = 0.8 for the remaining experiments in the system

evaluation, unless noted otherwise.

The local classifier may do better than cloud for certain

samples where low-level features are more robust in classi-

fication than higher-level features. By setting an appropriate

threshold T , we can improve overall accuracy. In this

experiment, T = 0.8 corresponds to that sweet spot where

some samples which are incorrectly classified by the cloud

classifier can actually be correctly classified by the local

classifier. Such a threshold indicates the optimal point where

both local and cloud classifier work best together.

0.0 0.2 0.4 0.6 0.8 1.0
Exit Threshold T

75

80

85

90

95

100100

O
v
e
ra

ll
A

cc
u
ra

cy
 (

%
)

Impact of Exit Threshold
Overall Acc. (%)

Local Exit (%)

0

20

40

60

80

100

Lo
ca

l
E
x
it

 (
%

)
Figure 7. Overall accuracy of the system as the entropy threshold for the
local exit is varied from 0 to 1. For this experiment, 4 filters are used in
the ConvP blocks on the end devices.

Table II
EFFECTS OF DIFFERENT EXIT THRESHOLD (T) SETTINGS FOR THE

LOCAL EXIT. T = 0.8 IS USED IN THE REMAINING EXPERIMENTS.

T Local Exit (%) Overall Acc. (%) Comm. (B)

0.1 0.00 96 140
0.3 0.58 96 139
0.5 1.75 96 138
0.6 2.92 96 136
0.7 22.81 96 111
0.8 60.82 97 62

0.9 83.04 96 34
1.0 100.00 92 12

E. Impact of Scaling Across End Devices

In order to scale DDNNs across multiple end devices,

we distribute the lower sections of Figure 4, shown in red,

over the corresponding devices, outlined in orange. Figure 8

shows how the accuracy of the system improves as additional

end devices (each with its attached input cameras) are added.

The devices are added in order sorted by their individual

accuracy from worst to best (i.e., the device with the lowest

accuracy first and the device with the highest accuracy last).

The first observation is the large variation in the individual

accuracy of the end devices, as noted earlier. Due to the

nature of the dataset, some devices are naturally better posi-

tioned and generally have clearer observations of the objects.

Looking at the viewpoints of each camera in Figure 5, we see

that the selected examples for Device 6 have clear frontal

views of each object. This viewpoint gives Device 6 the

highest individual accuracy at over 70%. By comparison,

Device 2 has the lowest individual accuracy at under 40%.

The “Local” and “Cloud” curves show the accuracy of

the system at each exit point when all samples are exited at

that point. We observe that the cloud exit point outperforms

1 2 3 4 5 6
Number of End Devices

30

40

50

60

70

80

90

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Scaling End Devices
Overall

Cloud

Local

Individual

Figure 8. Accuracy of the DDNN system as additional end devices are
added. The accuracy of “Overall” is obtained by exiting a percentage of
the samples locally and the rest in the cloud. The accuracy of “Cloud” and
“Local” are computed by exiting all samples at each point, respectively.
The end devices are ordered by their “Individual” classification accuracy,
sorted from worst to best.

the local exit point at all numbers of end devices. The gap

is widest when there are fewer devices. This suggests that

the additional NN layers in the cloud significantly improve

the final classification result when the problem is more

difficult due to limited labeled training data for an end

device. Once all six end devices are added, both the local

and cloud aggregators have high accuracy. The “Overall”

curve represents the overall accuracy of the system when the

threshold for the local exit point is set to 0.8. We see that

this curve is roughly equivalent to exiting all samples at the

cloud (but at a much reduced communication cost as 60.82%

of samples are exited locally). Generally, these results show

that by combining multiple viewpoints we can increase the

classification accuracy at both the local and cloud level by a

substantial margin when compared to the individual accuracy

of any device. The resulting accuracy of the DDNN system

is superior to any individual device accuracy by over 20%.

Moreover, we note that the 60.82% of samples which exit

locally enjoy lowered latency in response time.

F. Impact of Cloud Offloading on Accuracy Improvements

DDNNs improve the overall accuracy of the system by

offloading difficult samples to the cloud, which perform

further NN layer processing and final classification. Figure 9

shows the accuracy and communication costs of DDNN as

the number of filters on the end devices increases. For all

settings, the NN layers stored on an end device require

under 2 KB of memory. In this experiment, we configure

the local exit threshold T such that around 75% of samples

are exited locally and around 25% of samples are offloaded

15 20 25 30
Communication (B)

84

86

88

90

92

94

96

98

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Overall Acc.

Cloud Acc.

Local Acc.

Figure 9. Accuracy and communication cost (in bytes) for increasingly
larger end device memory sizes that accommodate additional filters. We
notice that cloud offloading leads to improved accuracy.

to the cloud. We see that DDNNs achieve around a 5%
improvement in accuracy compared to using just the local

aggregator. This demonstrates the advantage for offloading

to the cloud even when larger models (more filters) with

improved local accuracy are used on the end devices.

G. Fault Tolerance of DDNNs

A key motivation for distributed systems is fault tolerance.

Fault tolerance implies that the system still works well

even when some parts are broken. In order to test the fault

tolerance of DDNN, we simulate end device failures and

look at the resulting accuracy of the system. Figure 10 shows

the accuracy of the system under the presence of individual

device failures. Regardless of the device that is missing,

the system still achieves over a 95% overall classification

accuracy. Specifically, even when the device with the highest

individual accuracy has failed, which is Device 6, the overall

accuracy is reduced by only 3%. This suggests that for this

dataset, the automatic fault tolerance provided by DDNN

makes the system reliable even in the presence of device

failure.

We can also view figure 8 from the perspective of pro-

viding fault tolerance for the system. As we decrease the

number of end devices from 6 to 4, we observe that the

overall accuracy of the system drops only 4%. This suggests

that the system can also be robust to mutliple failing end

devices.

H. Reducing Communication Costs

DDNNs significantly reduces the communication cost of

inference compared to the standard method of offloading raw

sensor input to the cloud. Sending a 32x32 RGB pixel image

(the input size of our dataset) to the cloud costs 3072 bytes

1 2 3 4 5 6
Device Failure

30

40

50

60

70

80

90

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

DDNN Fault Tolerance

Overall

Cloud

Local

Individual

Figure 10. The impact on DDNN system accuracy when any single end
device has failed.

per image sample. By comparison, as shown in Table II,

the largest DDNN model used in our evaluation section

requires only 140 bytes of communication per sample on

average (an over 20x reduction in communication costs).

This communication reduction for an end device results from

transmitting class-label related intermediate results to the

local aggregator for all samples and binarized communica-

tion with the cloud when additional NN layer processing is

required for classification with improved accuracy.

V. DDNN PROVISION FOR

HORIZONTAL AND VERTICAL SCALING

The evaluation in the previous section shows that DDNN

is able to achieve high overall accuracy through provisioning

the network to scale both horizontally, across end devices,

and vertically, over the network hierarchy. Specifically, we

show that DDNN scales vertically, by exiting easier input

samples locally for low-latency response and offloading

difficult samples to the cloud for high overall recognition

accuracy, while maintaining a small memory footprint on the

end devices and incurring a low communication cost. This

result is not obvious, as we need sufficiently good feature

representations from the lower parts of the DNN (running on

the end devices with limited resources) in order for the upper

parts of the neural network (running in the cloud) to achieve

high accuracy under the low communication cost constraint.

Therefore, we show in a positive way that the proposed

method of jointly training a single DNN with multiple exit

points at each part of the distributed hierarchy allows us to

meet this goal. That is, DDNN optimizes the lower parts of

the DNN to create a sufficiently good feature representations

to support both samples exited locally and those processed

further in the cloud.

To meet the goal of horizontal scaling, we provide a

principled way of jointly training a DNN with inputs from

multiple devices through feature pooling via local and cloud

aggregators and demonstrate that by aggregating features

from each device we can dramatically improve the accuracy

of the system both at the local and cloud level. Filters

on each device are automatically tuned to process the

geographically unique inputs and work together toward to

the same overall objective leading to high overall accuracy.

Additionally, we show that DDNN provides built-in fault

tolerance across the end devices and is still able to achieve

high accuracy in the presence of failed devices.

VI. CONCLUSION

In this paper, we propose a novel distributed deep neu-

ral network architecture (DDNN) that is distributed across

computing hierarchies, consisting of the cloud, the edge

and end devices. We demonstrate for a multi-view, multi-

camera dataset that DDNN scales vertically from a few

NN layers on end devices or the edge to many NN layers

in the cloud and scales horizontally across multiple end

devices. The aggregation of information communicated from

different devices is built into the joint training of DDNN and

is handled automatically at inference time. This approach

simplifies the implementation and deployment of distributed

cloud offloading and automates sensor fusion and system

fault tolerance.

The experimental results suggest that with our DDNN

framework, a single DNN properly trained can be mapped

onto a distributed computing hierarchy to meet the accu-

racy, communication and latency requirements of a target

application while gaining inherent benefits associated with

distributed computing such as fault tolerance and privacy.

DDNNs reduce the required communication compared

to a standard cloud offloading approach by exiting many

samples at the local aggregator and sending a compact

binary feature representation to the cloud when additional

processing is required. For our evaluation dataset, the com-

munication cost of DDNN is reduced by a factor of over

20x compared to offloading raw sensor input to a DNN in

the cloud which performs all of the inference computation.

DDNN provides a framework for further research in

mapping DNN into a distributed computing hierarchy. For

future work, we will investigate the performance of DDNNs

on applications with a larger dataset with multiple types

of input modalities [21] and more end devices. Currently,

all layers in DDNN are binary. While binary layers are a

requirement for end devices due to the limited space on

devices, it is not necessary in the cloud. We will explore

other types of aggregation schemes and mixed precisions

schemes where the end devices use binary NN layers and

the cloud uses mixed-precision or floating-point NN layers.

ACKNOWLEDGMENT

This work is supported in part by gifts from the Intel Cor-

poration and in part by the Naval Supply Systems Command

award under the Naval Postgraduate School Agreements No.

N00244-15-0050 and No. N00244-16-1-0018.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 5, pp. 637–646, 2016.

[2] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat,
“Scalable distributed computing hierarchy: Cloud, fog and
dew computing,” Open Journal of Cloud Computing (OJCC),
vol. 2, no. 1, pp. 16–24, 2015.

[3] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet:
Fast inference via early exiting from deep neural networks,”
in International Conference on Pattern Recognition, 2016.

[4] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
Training deep neural networks with binary weights during
propagations,” in Advances in Neural Information Processing
Systems, 2015, pp. 3123–3131.

[5] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded
binarized neural networks,” in International Conference on
Embedded Wireless Systems and Networks, 2017.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512.03385,
2015.

[11] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform
and applications,” in Hot Topics in Web Systems and Tech-
nologies (HotWeb), 2015 Third IEEE Workshop on. IEEE,
2015, pp. 73–78.

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” arXiv preprint arXiv:1603.05279, 2016.

[13] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang,
D. Vetrov, and R. Salakhutdinov, “Spatially adaptive
computation time for residual networks,” arXiv preprint
arXiv:1612.02297, 2016.

[14] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale
distributed deep networks,” in Advances in neural information
processing systems, 2012, pp. 1223–1231.

[15] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and
K. Keutzer, “Firecaffe: near-linear acceleration of deep neu-
ral network training on compute clusters,” arXiv preprint
arXiv:1511.00175, 2015.

[16] J. Dean, “Large scale deep learning,” in Keynote GPU Tech-
nical Conference, vol. 3, 2015, p. 2015.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[18] G. Roig, X. Boix, H. B. Shitrit, and P. Fua, “Conditional
random fields for multi-camera object detection,” in 2011
International Conference on Computer Vision. IEEE, 2011,
pp. 563–570.

[19] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D.
Hengel, “A survey of appearance models in visual object
tracking,” ACM transactions on Intelligent Systems and Tech-
nology (TIST), vol. 4, no. 4, p. 58, 2013.

[20] B. McDanel, “Multiview multicamera dataset,” https:
//www.dropbox.com/s/uk8c6iymy8nprc0/MVMC.npz, 2016,
accessed: 2016-12-10.

[21] M. Cha, Y. Gwon, and H. Kung, “Multimodal sparse
representation learning and applications,” arXiv preprint
arXiv:1511.06238, 2015.

