
Distributed Denial of Service Attacks

Felix Lau
Simon Fraser University

Burnaby, BC, Canada
V5A 1S6

fwlau@cs.sfu.ca

Stuart H. Rubin
SPAWAR Systems Center

San Diego, CA, USA
92152-5001

srubin@spawar.navy.mil

Michael H. Smith
University of Calgary
Calgary, AB, Canada

T2N 1N4
mhs@mining.ubc.ca

Ljiljana Trajkovic
Simon Fraser University

Burnaby, BC, Canada
V5A 1S6

ljilja@cs.sfu.ca

Abstract

We discuss distributed denial of service attacks in the
Internet. We were motivated by the widely known February
2000 distributed attacks on Yahoo!, Amazon.com, CNN.com,
and other major Web sites. A denial of service is
characterized by an explicit attempt by an attacker to prevent
legitimate users from using resources. An attacker may
attempt to: “flood” a network and thus reduce a legitimate
user’s bandwidth, prevent access to a service, or disrupt
service to a specific system or a user. We describe methods
and techniques used in denial of service attacks, and we list
possible defenses. In our study, we simulate a distributed
denial of service attack using ns-2 network simulator. We
examine how various queuing algorithms implemented in a
network router perform during an attack, and whether
legitimate users can obtain desired bandwidth. We find that
under persistent denial of service attacks, class based
queuing algorithms can guarantee bandwidth for certain
classes of input flows.

1. Introduction

We studied distributed denial of service attacks in the
Internet such as the widely publicized, distributed attacks
on Yahoo!, Amazon.com, CNN.com, and other major Web
sites in February 2000. Even though denial of service attacks
have existed for some time, their recent distributed formats
have made these attacks more difficult to prevent.

In this paper we first summarize the methods involved in
denial of service attacks, list possible defenses, and discuss
in more depth the attack on Yahoo!. We then use a network
simulator to study distributed denial of service attacks. Our
simulation study examines how various queuing services in
network routers may alleviate the problem of denying
bandwidth to legitimate users during the denial of service
attack. Finally, we use simulation results to recommend
certain queuing algorithms that may protect users in cases
of distributed denial of service attacks.

2. Characteristics of Distributed Denial of
Service Attacks

A denial of service attack is characterized by an explicit
attempt by an attacker to prevent legitimate users of a
service from using the desired resources. Examples of denial
of service attacks include [6]:

§ attempts to “flood” a network, thereby preventing
legitimate network traffic

§ attempts to disrupt connections between two machines,
thereby preventing access to a service

§ attempts to prevent a particular individual from
accessing a service

§ attempts to disrupt service to a specific system or
person.

The distributed format adds the “many to one” dimension
that makes these attacks more difficult to prevent [17]. A
distributed denial of service attack is composed of four
elements, as shown in Figure 1 [4]. First, it involves a victim,
i.e., the target host that has been chosen to receive the
brunt of the attack. Second, it involves the presence of the
attack daemon agents. These are agent programs that
actually conduct the attack on the target victim. Attack
daemons are usually deployed in host computers. These
daemons affect both the target and the host computers. The
task of deploying these attack daemons requires the attacker
to gain access and infiltrate the host computers. The third
component of a distributed denial of service attack is the
control master program. Its task is to coordinate the attack.
Finally, there is the real attacker, the mastermind behind the
attack. By using a control master program, the real attacker
can stay behind the scenes of the attack. The following
steps take place during a distributed attack [7]:

1. The real attacker sends an “execute” message to the
control master program.

2. The control master program receives the “execute”
message and propagates the command to the attack
daemons under its control.

3. Upon receiving the attack command, the attack
daemons begin the attack on the victim.

Daemon

Daemon

Victim

Daemon

Daemon

Daemon

Master

Real Attacker

Figure 1: The four components of a distributed denial of
service attack: a real attacker, a control master program,
attack daemons and the victim [4].

Although it seems that the real attacker has little to do but
sends out the “execute” command, he/she actually has to
plan the execution of a successful distributed denial of
service attack. The attacker must infiltrate all the host
computers and networks where the daemon attackers are to
be deployed. The attacker must study the target’s network
topology and search for bottlenecks and vulnerabilities that
can be exploited during the attack. Because of the use of
attack daemons and control master programs, the real
attacker is not directly involved during the attack, which
makes it difficult to trace who spawned the attack.

In the following subsections, we review some well-known
attack methods (Smurf, SYN Flood, and User Datagram
Protocol (UDP) Flood) and the current distributed denial of
service methods (Trinoo, Tribe Flood Network, Stacheldraht,
Shaft, and TFN2K). We describe defense mechanisms that
can be employed by networks, and briefly review the Yahoo!
attack.

2.1 Methods of Denial of Service Attacks

We described below some widely known basic denial of
service attack methods that are employed by the attack
daemons.

Smurf attack involves an attacker sending a large amount of
Internet Control Message Protocol (ICMP) echo traffic to a
set of Internet Protocol (IP) broadcast addresses. The ICMP
echo packets are specified with a source address of the
target victim (spoofed address) [9]. Most hosts on an IP
network will accept ICMP echo requests [5] and reply to
them with an echo reply to the source address, in this case,
the target victim. This multiplies the traffic by the number of
responding hosts. On a broadcast network, there could
potentially be hundreds of machines to reply to each ICMP
packet. The process of using a network to elicit many
responses to a single packet has been labeled as an

“amplifier” [16]. There are two parties who are hurt by this
type of attack: the intermediate broadcast devices
(amplifiers) and the spoofed source address target (the
victim). The victim is the target of a large amount of traffic
that the amplifiers generate. This attack has the potential to
overload an entire network.

SYN Flood attack is also known as the Transmission
Control Protocol (TCP) SYN attack, and is based on
exploiting the standard TCP three–way handshake. The
TCP three-way handshake requires a three-packet exchange
to be performed before a client can officially use the service.
A server, upon receiving an initial SYN (synchronize/start)
request from a client, sends back a SYN/ACK
(synchronize/acknowledge) packet and waits for the client
to send the final ACK (acknowledge). However, it is
possible to send a barrage of initial SYN’s without sending
the corresponding ACK’s, essentially leaving the server
waiting for the non-existent ACK’s [3]. Considering that the
server only has a limited buffer queue for new connections,
SYN Flood results in the server being unable to process
other incoming connections as the queue gets overloaded
[8].

UDP Flood attack is based on UDP echo and character
generator services provided by most computers on a
network. The attacker uses forged UDP packets to connect
the echo service on one machine to the character generator
(chargen) service on another machine. The result is that the
two services consume all available network bandwidth
between the machines as they exchange characters between
themselves. A variation of this attack called ICMP Flood,
floods a machine with ICMP packets instead of UDP
packets.

2.2 Methods of Distributed Denial of Service
Attacks

In this section, we describe the distributed denial of service
methods employed by an attacker. These techniques help
an attacker coordinate and execute the attack. These types
of attacks plagued the Internet in February 2000. However,
these distributed attack techniques still rely on the
previously described attack methods to carry out the
attacks.

The techniques are listed in chronological order. It can be
observed that as time has passed, the distributed
techniques (Trinoo, TFN, Stacheldraht, Shaft, and TFN2K)
have become technically more advanced and, hence, more
difficult to detect.

Trinoo uses TCP to communicate between the attacker and
the control master program. The master program
communicates with the attack daemons using UDP packets.

Trinoo’s attack daemons implement UDP Flood attacks
against the target victim [10].

Tribe Flood Network (TFN) uses a command line interface
to communicate between the attacker and the control master
program. Communication between the control master and
attack daemons is done via ICMP echo reply packets.
TFN’s attack daemons implement Smurf, SYN Flood, UDP
Flood, and ICMP Flood attacks [10].

Stacheldraht (German term for “barbed wire”) is based on
the TFN attack. However, unlike TFN, Stacheldraht uses an
encrypted TCP connection for communication between the
attacker and master control program. Communication
between the master control program and attack daemons is
conducted using TCP and ICMP, and involves an automatic
update technique for the attack daemons. The attack
daemons for Stacheldraht implement Smurf, SYN Flood, UDP
Flood, and ICMP Flood attacks [10].

Shaft is modeled after Trinoo. Communication between the
control master program and attack daemons is achieved
using UDP packets. The control master program and the
attacker communicate via a simple TCP telnet connection. A
distinctive feature of Shaft is the ability to switch control
master servers and ports in real time, hence making
detection by intrusion detection tools difficult [11].

TFN2K uses TCP, UDP, ICMP, or all three to communicate
between the control master program and the attack
daemons. Communication between the real attacker and
control master is encrypted using a key-based CAST-256
algorithm [1]. In addition, TFN2K conducts covert exercises
to hide itself from intrusion detection systems. TFN2K
attack daemons implement Smurf, SYN, UDP, and ICMP
Flood attacks [2].

2.3 Defenses Against Attacks

Many observers have stated that there are currently no
successful defenses against a fully distributed denial of
service attack. This may be true. Nevertheless, there are
numerous safety measures that a host or network can
perform to make the network and neighboring networks
more secure. These measures include:

Filtering Routers: Filtering all packets entering and leaving
the network protects the network from attacks conducted
from neighboring networks, and prevents the network itself
from being an unaware attacker [12]. This measure requires
installing ingress and egress packet filters on all routers.

Disabling IP Broadcasts: By disabling IP broadcasts, host
computers can no longer be used as amplifiers in ICMP
Flood and Smurf attacks. However, to defend against this
attack, all neighboring networks need to disable IP
broadcasts.

Applying Security Patches: To guard against denial of
service attacks, host computers must be updated with the
latest security patches and techniques. For example, in the
case of the SYN Flood attack [8], there are three steps that
the host computers can take to guard themselves from
attacks: increase the size of the connection queue, decrease
the time-out waiting for the three-way handshake, and
employ vendor software patches to detect and circumvent
the problem.

Disabling Unused Services: If UDP echo or chargen
services are not required, disabling them will help to defend
against the attack. In general, if network services are
unneeded or unused, the services should be disabled to
prevent tampering and attacks.

Performing Intrusion Detection: By performing intrusion
detection, a host computer and network are guarded against
being a source for an attack, as while as being a victim of an
attack. Network monitoring is a very good pre-emptive way
of guarding against denial of service attacks. By monitoring
traffic patterns, a network can determine when it is under
attack, and can take the required steps to defend itself. By
inspecting host systems, a host can also prevent it from
hosting an attack on another network [19].

2.4 Yahoo! Attack

The attacks on the major Web sites began in early February
2000, with the first major attack being on Yahoo! on
February 7 [15]. The surprise attack took the Yahoo! site
down for more than three hours. It was based on the Smurf
attack, and most likely, the Tribe Flood Network technique.
At the peak of the attack, Yahoo! was receiving more than
one gigabit per second of data requests.

Yahoo! has stated that it was unprepared for this magnitude
of an attack, and hence, was not ready to defend itself.
Yahoo! receives huge number of visitors every day, and
most likely believed that the bandwidth provided to the
users by their Internet service providers would defend them
against any type of denial of service attacks. However, they
did not account for a large distributed denial of service
attack from numerous servers and networks across the
Internet.

3. Simulation Scenarios

Using the simulation tools, we examine how various queuing
algorithms implemented in a network router perform during
an attack, and whether legitimate users can obtain desired
service. We use the ns–2 network simulator [18] to simulate
a distributed denial of service attack on a targeted router.

We simulate a simplified version of the distributed denial of
service attack on a single targeted router, shown in Figure 2
[17]. We simulate the attack using UDP packets. Our main
goal is to compare several queuing algorithms and to
determine whether the queuing methods in the target router
could provide a better share of bandwidth to the legitimate
users during the attack. We measure the throughput
provided to the legitimate users and to the attackers when
using the following queuing algorithms: DropTail, Fair
Queuing, Stochastic Fair Queuing, Deficit Round Robin,
Random Early Detection, and Class Based Queuing (Packet
by Packet Round Robin and Weighted Round Robin).

Figure 2: The simulated distributed denial of service attack
scenario [17].

We conduct the ns-2 simulations using three network
topologies. Each network topology consists of one
legitimate user, one target host, and a varied number of
attack daemons, as shown in Figure 3.

In our simulation scenarios, we use a single target router
with a 1 Mbps bandwidth. All network links have 1 Mbps
bandwidth, with a delay of 100 ms. The legitimate user is
defined as a UDP agent sending packets of size 500 bytes at
a rate of 0.1 Mbps. The attack daemons are defined as UDP
agents sending packets of size 500 bytes at rates of 0.3 to
1.0 Mbps. All sources generated constant bit rate (CBR)
traffic.

Figure 3: Simulated network topologies A, B, and C (left to
right). Target is the right most node in the networks.

In our simulations, we use the following queuing algorithms
available in ns-2:

§ DropTail is a queuing algorithm based on a first-come-
first-serve discipline.

§ Fair Queuing is an algorithm that attempts to allocate
bandwidth fairly among all input flows.

§ Stochastic Fair Queuing involves a hash function used
to map flows to a queue.

§ Deficit Round Robin scheduling is an algorithm that
services each flow in a predefined sequence.

§ Random Early Detection (Drop) tries to anticipate
congestion by monitoring the queue [13]. When the
specified threshold is reached, it randomly discards or
marks the packets.

§ Class Based Queuing (Packet by Packet Round Robin
and Weighted Round Robin) queues packets according
to criteria defined by an administrator [14]. It provides
differential forwarding service for each class. Packets
are divided into a hierarchy of classes defined by input
flows. For our simulations, we develop two classes of
Class Based Queuing: a class of known flows
(legitimate users) and a class of unknown flows. For
each class, we allocated a minimum bandwidth
allotment.

4. Simulation Results

We now discuss the results obtained from our simulation
study. For each queuing algorithm, except DropTail, we
simulate topologies A, B, and C.

In the case of DropTail queuing algorithm, we only simulate
topology A because only two attackers were required to
overload the target router. The legitimate user has 0.1
Mbps, while the two attackers each have allocated 0.6 Mbps
bandwidth. Since the target router has a buffer size of 1
Mbps, and the input links have 1.3 Mbps bandwidth,
overloading the buffer in the router only requires two
attackers and packet loss in the router is to be expected.
The legitimate user’s bandwidth was reduced to zero once
the attack executed by the two attack daemons was fully
engaged. As shown in Figure 4, the user's bandwidth
(bottom curve) falls to zero at approximately 2.5 sec after the
beginning of the attack.

Figure 4: Simulation results using DropTail queuing
algorithm and network topology A. Shown are User 1,

Attacker 1, Attacker 2, and the total bandwidth. Once the
attack is fully engaged, the legitimate user (bottom curve) is
left with little or no bandwidth.

In simulation scenarios using the remaining queuing
algorithms, topologies A and B did not provide enough
traffic overload to prevent legitimate users from receiving
requested bandwidth. However, simulations based on
topology C resulted in several target routers being
overloaded during the attack by the twelve attack daemons.
For the simulation scenario with topology C, we allocated
0.1 Mbps to the legitimate user, 0.5 Mbps bandwidth was
given to attackers 1-6, and 1.0 Mbps was given to attackers
7-12. The total input bandwidth of the attackers is 9.0
Mbps.

Two queuing algorithms (Random Early Detection and Class
Based Queuing) are successful in providing bandwidth
requested by the legitimate user during the simulations
using network topology C. Fair Queuing, Stochastic Fair
Queuing, and Deficit Round Robin Queuing are algorithms
that provided little or no bandwidth to the legitimate user
during the attack. Although the user did not receive full
throughput with Random Early Detection queuing, he/she
continued to receive service through most of the duration of
the attack scenario, as shown in Figure 5 (bottom).

Figure 5: Simulation results using Random Early Detection
queuing algorithm and network topology C. Shown are the

legitimate user's bandwidth, the twelve attacker's bandwidth,
and the total bandwidth for the target router (top), and the
legitimate user's bandwidth (bottom).

Finally, two variants of the Class Based Queuing algorithms
were successful in providing full bandwidth requested by
the legitimate user. In fact, with appropriately defined flow
classes (with known and unknown flags), the legitimate user
was able to obtain all requested bandwidth, as shown in
Figure 6 (bottom).

Unlike other queuing algorithms that we simulated, Class
Based Queuing algorithms require extra overhead and effort
to be implemented, because input flows to a Class Based
Queuing based routers must be a priori categorized and
managed. Hence, this queuing discipline may not be a
feasible solution for routers with a large number of input
links.

Figure 6: Simulation results using Class Based Queuing
(packet by packet round robin) algorithm and topology C.
The legitimate user obtained most of the requested 0.1
Mbps bandwidth. Shown are bandwidths for the legitimate
user, twelve attack daemons, and the total bandwidth for the
target router (top), and the bandwidth for the legitimate user
only (bottom).

In summary, our simulation results indicate that Class Based
Queuing had the best performance and provided the full
bandwidth that the legitimate user requested. The Random
Early Detection algorithm was the best among algorithms
that required no additional overhead. It was able to provide
40% of the bandwidth requested by the user.

5. Conclusions

In this paper, we discussed distributed denial of service
attacks on the Internet. We described how distributed
attacks are conducted, we reviewed some well known
distributed denial of service techniques, and discuss
various defense mechanisms that could be employed by
networks and hosts.

We used network simulation tools to examine the
performance of various queuing algorithms in alleviating the
distributed denial of service attacks and in providing desired
service to the users. It was found that the majority of
routing algorithms that we considered provided no
bandwidth to the legitimate user during the attack.
Nevertheless, even under persistent denial of service
attacks, Class Based Queuing algorithm could guarantee
bandwidth for certain classes of input flows, while Random
Early Detection was successful in providing limited
bandwidth to legitimate users. Since implementation of a
Class Based Queuing algorithm required additional effort,
there is a tradeoff between its performance and the
implementation overhead. In summary, our simulation
results indicated that implementing queuing algorithms in
network routers may provide the desired solution in
protecting users in cases of distributed denial of service
attacks.

Acknowledgements

We thank V. Markovski for his assistance with the ns-2
network simulator. This research was supported by the
NSERC Grant 216844-99 and the BC Advanced Systems
Institute Fellowship.

References

[1] C. Adams and J. Gilchrist, “RFC 2612: The CAST-256
encryption algorithm,” June 1999, http://www.cis.ohio-
state.edu/htbin/rfc/rfc2612.html.

[2] J. Barlow and W. Thrower, “TFN2K – an analysis,”
Feb. 2000, http://packetstorm.securify.com/distributed/TFN2k_
Analysis.htm.

[3] S. Bellovin, “Security problems in the TCP/IP protocol suite,”
Comput. Commun. Rev., vol. 19, no. 2, pp. 32-48, Apr. 1989.

[4] S. Bellovin, “Distributed denial of service attacks,” Feb. 2000,
http://www.research.att.com/~smb/talks.

[5] S. Bellovin, Ed., “The ICMP traceback message,” Network
Working Group Internet Draft, Mar. 2000, http://www.
research.att.com/~smb/papers/draft-bellovin-itrace-00.txt.

[6] CERT® Coordination Center, Cert Advisories: “CA-2000-01
denial-of-service developments,” http://www.cert.org/advisories/
CA-2000-01.html; “CA-99-17 denial-of-service tools,”
http://www.cert.org/advisories/CA-99-17-denial-of-service-
tools.html; “CA-98-13-tcp-denial-of-service: vulnerability in
certain TCP/IP implementations,” http://www.cert.org/advisories/
CA-98-13-tcp-denial-of-service.html.

[7] CERT® Coordination Center, “Results of the distributed
systems intruder tools workshop,” Nov. 1999,
http://www.cert.org/reports/dsit_workshop.pdf.

[8] Cisco Systems, Inc., “Defining strategies to protect against
TCP SYN denial of service attacks,” July 1999,
http://www.cisco.com/warp/public/707/4.html.

[9] Daemon9, Infinity, and Route, “IP-spoofing demystified:
trust-relationship exploitation,” Phrack Mag., June 1996,
http://www.fc.net/phrack/files/p48/p48-14.html.

[10] D. Dittrich, “The DoS project's ‘Trinoo’ distributed denial of
service attack tool,” Oct. 1999; “The ‘Stacheldraht’ distributed
denial of service attack tool,” Dec. 1999; “The ‘Tribe Flood
Network’ distributed denial of service attack tool,” Oct. 1999,
http://www.washington.edu/People/dad.

[11] D. Dittrich, S. Dietrich, and N. Long, “An analysis of the
‘Shaft’ distributed denial of device tool,” Mar. 2000,
http://netsec.gsfc.nasa.gov/~spock/shaft_analysis.txt.

[12] P. Ferguson and D. Senie, “RFC 2267: Network ingress
filtering: defeating denial of service attacks which employ IP
source address spoofing,” Jan. 1998, http://info.internet.isi.edu/in-
notes/rfc/files/rfc2267.txt.

[13] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Trans. Networking, vol. 1
no. 4, pp. 397-413, Aug. 1993.

[14] S. Floyd and V. Jacobson, “Link-sharing and resource
management models for packet networks,” IEEE/ACM Trans.
Networking, vol. 3 no. 4, pp. 365-386, Aug. 1995.

[15] A. Harrison, “The denial-of-service aftermath,” Feb. 2000,
http://www.cnn.com/2000/TECH/computing/02/14/dos
.aftermath.idg/index.html.

[16] C. A. Huegen, “The latest in denial of service attacks:
‘Smurfing’ description and information to minimize effects,” Feb.
2000, http://users.quadrunner.com/chuegen/smurf.cgi.

[17] B. Martin, “Have script, will destroy (lessons in DoS),” Feb.
2000, http://www.attrition.org.

[18] ns-2 network simulator, http://www.isi.edu/nsnam/ns .

[19] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and
denial of service: eluding network intrusion detection,” Secure
Networks, Inc., Jan. 1998, http://www.clark.net/~roesch/
idspaper.html.

