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Abstract 
 

We discuss distributed denial of service attacks in the 
Internet.  We were motivated by the widely known February 
2000 distributed attacks on Yahoo!, Amazon.com, CNN.com, 
and other major Web sites.  A denial of service is 
characterized by an explicit attempt by an attacker to prevent 
legitimate users from using resources.  An attacker may 
attempt to: “flood” a network and thus reduce a legitimate 
user’s bandwidth, prevent access to a service, or disrupt 
service to a specific system or a user.  We describe methods 
and techniques used in denial of service attacks, and we list 
possible defenses.  In our study, we simulate a distributed 
denial of service attack using ns-2 network simulator.  We 
examine how various queuing algorithms implemented in a 
network router perform during an attack, and whether 
legitimate users can obtain desired bandwidth.  We find that 
under persistent denial of service attacks, class based 
queuing algorithms can guarantee bandwidth for certain 
classes of input flows.  

 

 

1. Introduction 
 

We studied distributed denial of service attacks in the 
Internet such as the widely publicized, distributed attacks 
on Yahoo!, Amazon.com, CNN.com, and other major Web 
sites in February 2000. Even though denial of service attacks 
have existed for some time, their recent distributed formats 
have made these attacks more difficult to prevent.   

In this paper we first summarize the methods involved in 
denial of service attacks, list possible defenses, and discuss 
in more depth the attack on Yahoo!.  We then use a network 
simulator to study distributed denial of service attacks.  Our 
simulation study examines how various queuing services in 
network routers may alleviate the problem of denying 
bandwidth to legitimate users during the denial of service 
attack.  Finally, we use simulation results to recommend 
certain queuing algorithms that may protect users in cases 
of distributed denial of service attacks. 

2. Characteristics of Distributed Denial of 
Service Attacks 
 

A denial of service attack is characterized by an explicit 
attempt by an attacker to prevent legitimate users of a 
service from using the desired resources.  Examples of denial 
of service attacks include [6]: 

§ attempts to “flood” a network, thereby preventing 
legitimate network traffic 

§ attempts to disrupt connections between two machines, 
thereby preventing access to a service 

§ attempts to prevent a particular individual from 
accessing a service 

§ attempts to disrupt service to a specific system or 
person. 

The distributed format adds the “many to one” dimension 
that makes these attacks more difficult to prevent [17].  A 
distributed denial of service attack is composed of four 
elements, as shown in Figure 1 [4].  First, it involves a victim, 
i.e., the target host that has been chosen to receive the 
brunt of the attack.  Second, it involves the presence of the 
attack daemon agents.  These are agent programs that 
actually conduct the attack on the target victim.  Attack 
daemons are usually deployed in host computers. These 
daemons affect both the target and the host computers.  The 
task of deploying these attack daemons requires the attacker 
to gain access and infiltrate the host computers.  The third 
component of a distributed denial of service attack is the 
control master program.  Its task is to coordinate the attack.  
Finally, there is the real attacker, the mastermind behind the 
attack.  By using a control master program, the real attacker 
can stay behind the scenes of the attack.  The following 
steps take place during a distributed attack [7]: 

1. The real attacker sends an “execute” message to the 
control master program. 

2. The control master program receives the “execute” 
message and propagates the command to the attack 
daemons under its control. 

3. Upon receiving the attack command, the attack 
daemons begin the attack on the victim. 
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Figure 1: The four components of a distributed denial of 
service attack: a real attacker, a control master program, 
attack daemons and the victim [4]. 

 

Although it seems that the real attacker has little to do but 
sends out the “execute” command, he/she actually has to 
plan the execution of a successful distributed denial of 
service attack.  The attacker must infiltrate all the host 
computers and networks where the daemon attackers are to 
be deployed.  The attacker must study the target’s network 
topology and search for bottlenecks and vulnerabilities that 
can be exploited during the attack.  Because of the use of 
attack daemons and control master programs, the real 
attacker is not directly involved during the attack, which 
makes it difficult to trace who spawned the attack. 

In the following subsections, we review some well-known 
attack methods (Smurf, SYN Flood, and User Datagram 
Protocol (UDP) Flood) and the current distributed denial of 
service methods (Trinoo, Tribe Flood Network, Stacheldraht, 
Shaft, and TFN2K).  We describe defense mechanisms that 
can be employed by networks, and briefly review the Yahoo! 
attack.  

 

2.1 Methods of Denial of Service Attacks 
 

We described below some widely known basic denial of 
service attack methods that are employed by the attack 
daemons.   

Smurf attack involves an attacker sending a large amount of 
Internet Control Message Protocol (ICMP) echo traffic to a 
set of Internet Protocol (IP) broadcast addresses.  The ICMP 
echo packets are specified with a source address of the 
target victim (spoofed address) [9].  Most hosts on an IP 
network will accept ICMP echo requests [5] and reply to 
them with an echo reply to the source address, in this case, 
the target victim.  This multiplies the traffic by the number of 
responding hosts.  On a broadcast network, there could 
potentially be hundreds of machines to reply to each ICMP 
packet.  The process of using a network to elicit many 
responses to a single packet has been labeled as an 

“amplifier” [16].  There are two parties who are hurt by this 
type of attack: the intermediate broadcast devices 
(amplifiers) and the spoofed source address target (the 
victim).  The victim is the target of a large amount of traffic 
that the amplifiers generate.  This attack has the potential to 
overload an entire network. 

SYN Flood attack is also known as the Transmission 
Control Protocol (TCP) SYN attack, and is based on 
exploiting the standard TCP three–way handshake.  The 
TCP three-way handshake requires a three-packet exchange 
to be performed before a client can officially use the service.  
A server, upon receiving an initial SYN (synchronize/start) 
request from a client, sends back a SYN/ACK 
(synchronize/acknowledge) packet and waits for the client 
to send the final ACK (acknowledge).  However, it is 
possible to send a barrage of initial SYN’s without sending 
the corresponding ACK’s, essentially leaving the server 
waiting for the non-existent ACK’s [3].  Considering that the 
server only has a limited buffer queue for new connections, 
SYN Flood results in the server being unable to process 
other incoming connections as the queue gets overloaded 
[8]. 

UDP Flood attack is based on UDP echo and character 
generator services provided by most computers on a 
network.  The attacker uses forged UDP packets to connect 
the echo service on one machine to the character generator 
(chargen) service on another machine.  The result is that the 
two services consume all available network bandwidth 
between the machines as they exchange characters between 
themselves.  A variation of this attack called ICMP Flood, 
floods a machine with ICMP packets instead of UDP 
packets. 

 

2.2 Methods of Distributed Denial of Service 
Attacks 
 

In this section, we describe the distributed denial of service 
methods employed by an attacker.  These techniques help 
an attacker coordinate and execute the attack.  These types 
of attacks plagued the Internet in February 2000.  However, 
these distributed attack techniques still rely on the 
previously described attack methods to carry out the 
attacks. 

The techniques are listed in chronological order.  It can be 
observed that as time has passed, the distributed 
techniques (Trinoo, TFN, Stacheldraht, Shaft, and TFN2K) 
have become technically more advanced and, hence, more 
difficult to detect. 

Trinoo uses TCP to communicate between the attacker and 
the control master program.  The master program 
communicates with the attack daemons using UDP packets.  



Trinoo’s attack daemons implement UDP Flood attacks 
against the target victim [10]. 

Tribe Flood Network  (TFN) uses a command line interface 
to communicate between the attacker and the control master 
program.  Communication between the control master and 
attack daemons is done via ICMP echo reply packets.  
TFN’s attack daemons implement Smurf, SYN Flood, UDP 
Flood, and ICMP Flood attacks [10]. 

Stacheldraht (German term for “barbed wire”) is based on 
the TFN attack.  However, unlike TFN, Stacheldraht uses an 
encrypted TCP connection for communication between the 
attacker and master control program.  Communication 
between the master control program and attack daemons is 
conducted using TCP and ICMP, and involves an automatic 
update technique for the attack daemons.  The attack 
daemons for Stacheldraht implement Smurf, SYN Flood, UDP 
Flood, and ICMP Flood attacks [10]. 

Shaft  is modeled after Trinoo.  Communication between the 
control master program and attack daemons is achieved 
using UDP packets.  The control master program and the 
attacker communicate via a simple TCP telnet connection.  A 
distinctive feature of Shaft is the ability to switch control 
master servers and ports in real time, hence making 
detection by intrusion detection tools difficult [11]. 

TFN2K uses TCP, UDP, ICMP, or all three to communicate 
between the control master program and the attack 
daemons.  Communication between the real attacker and 
control master is encrypted using a key-based CAST-256 
algorithm [1].  In addition, TFN2K conducts covert exercises 
to hide itself from intrusion detection systems.  TFN2K 
attack daemons implement Smurf, SYN, UDP, and ICMP 
Flood attacks [2]. 

 

2.3 Defenses Against Attacks 
 

Many observers have stated that there are currently no 
successful defenses against a fully distributed denial of 
service attack.  This may be true.  Nevertheless, there are 
numerous safety measures that a host or network can 
perform to make the network and neighboring networks 
more secure.  These measures include: 

Filtering Routers: Filtering all packets entering and leaving 
the network protects the network from attacks conducted 
from neighboring networks, and prevents the network itself 
from being an unaware attacker [12].  This measure requires 
installing ingress and egress packet filters on all routers. 

Disabling IP Broadcasts: By disabling IP broadcasts, host 
computers can no longer be used as amplifiers in ICMP 
Flood and Smurf attacks.  However, to defend against this 
attack, all neighboring networks need to disable IP 
broadcasts. 

Applying Security Patches: To guard against denial of 
service attacks, host computers must be updated with the 
latest security patches and techniques.  For example, in the 
case of the SYN Flood attack [8], there are three steps that 
the host computers can take to guard themselves from 
attacks: increase the size of the connection queue, decrease 
the time-out waiting for the three-way handshake, and 
employ vendor software patches to detect and circumvent 
the problem. 

Disabling Unused Services: If UDP echo or chargen 
services are not required, disabling them will help to defend 
against the attack.  In general, if network services are 
unneeded or unused, the services should be disabled to 
prevent tampering and attacks. 

Performing Intrusion Detection: By performing intrusion 
detection, a host computer and network are guarded against 
being a source for an attack, as while as being a victim of an 
attack.  Network monitoring is a very good pre-emptive way 
of guarding against denial of service attacks.  By monitoring 
traffic patterns, a network can determine when it is under 
attack, and can take the required steps to defend itself.  By 
inspecting host systems, a host can also prevent it from 
hosting an attack on another network [19]. 

 

2.4 Yahoo! Attack 
 

The attacks on the major Web sites began in early February 
2000, with the first major attack being on Yahoo! on 
February 7 [15].  The surprise attack took the Yahoo! site 
down for more than three hours.  It was based on the Smurf 
attack, and most likely, the Tribe Flood Network technique.  
At the peak of the attack, Yahoo! was receiving more than 
one gigabit per second of data requests. 

Yahoo! has stated that it was unprepared for this magnitude 
of an attack, and hence, was not ready to defend itself.  
Yahoo! receives huge number of visitors every day, and 
most likely believed that the bandwidth provided to the 
users by their Internet service providers would defend them 
against any type of denial of service attacks.  However, they 
did not account for a large distributed denial of service 
attack from numerous servers and networks across the 
Internet. 

 

 

3. Simulation Scenarios 
 

Using the simulation tools, we examine how various queuing 
algorithms implemented in a network router perform during 
an attack, and whether legitimate users can obtain desired 
service.  We use the ns–2 network simulator [18] to simulate 
a distributed denial of service attack on a targeted router.  



We simulate a simplified version of the distributed denial of 
service attack on a single targeted router, shown in Figure 2 
[17].  We simulate the attack using UDP packets.  Our main 
goal is to compare several queuing algorithms and to 
determine whether the queuing methods in the target router 
could provide a better share of bandwidth to the legitimate 
users during the attack.  We measure the throughput 
provided to the legitimate users and to the attackers when 
using the following queuing algorithms: DropTail, Fair 
Queuing, Stochastic Fair Queuing, Deficit Round Robin, 
Random Early Detection, and Class Based Queuing (Packet 
by Packet Round Robin and Weighted Round Robin).  

 
 
Figure 2: The simulated distributed denial of service attack 
scenario [17]. 

 

We conduct the ns-2 simulations using three network 
topologies.  Each network topology consists of one 
legitimate user, one target host, and a varied number of 
attack daemons, as shown in Figure 3. 

In our simulation scenarios, we use a single target router 
with a 1 Mbps bandwidth.  All network links have 1 Mbps 
bandwidth, with a delay of 100 ms.  The legitimate user is 
defined as a UDP agent sending packets of size 500 bytes at 
a rate of 0.1 Mbps.  The attack daemons are defined as UDP 
agents sending packets of size 500 bytes at rates of 0.3 to 
1.0 Mbps.  All sources generated constant bit rate (CBR) 
traffic. 

 

       
Figure 3: Simulated network topologies A, B, and C (left to 
right).  Target is the right most node in the networks. 

 

In our simulations, we use the following queuing algorithms 
available in ns-2: 

§ DropTail is a queuing algorithm based on a first-come-
first-serve discipline.   

§ Fair Queuing is an algorithm that attempts to allocate 
bandwidth fairly among all input flows. 

§ Stochastic Fair Queuing involves a hash function used 
to map flows to a queue. 

§ Deficit Round Robin scheduling is an algorithm that 
services each flow in a predefined sequence. 

§ Random Early Detection (Drop) tries to anticipate 
congestion by monitoring the queue [13].  When the 
specified threshold is reached, it randomly discards or 
marks the packets. 

§ Class Based Queuing (Packet by Packet Round Robin 
and Weighted Round Robin) queues packets according 
to criteria defined by an administrator [14]. It provides 
differential forwarding service for each class.  Packets 
are divided into a hierarchy of classes defined by input 
flows.  For our simulations, we develop two classes of 
Class Based Queuing: a class of known flows 
(legitimate users) and a class of unknown flows.  For 
each class, we allocated a minimum bandwidth 
allotment.  

 

 

4. Simulation Results 
 

We now discuss the results obtained from our simulation 
study.  For each queuing algorithm, except DropTail, we 
simulate topologies A, B, and C.   

In the case of DropTail queuing algorithm, we only simulate 
topology A because only two attackers were required to 
overload the target router.  The legitimate user has 0.1 
Mbps, while the two attackers each have allocated 0.6 Mbps 
bandwidth.  Since the target router has a buffer size of 1 
Mbps, and the input links have 1.3 Mbps bandwidth, 
overloading the buffer in the router only requires two 
attackers and packet loss in the router is to be expected.  
The legitimate user’s bandwidth was reduced to zero once 
the attack executed by the two attack daemons was fully 
engaged.  As shown in Figure 4, the user's bandwidth 
(bottom curve) falls to zero at approximately 2.5 sec after the 
beginning of the attack.   

 

 
Figure 4: Simulation results using DropTail queuing 
algorithm and network topology A.  Shown are User 1, 



Attacker 1, Attacker 2, and the total bandwidth.  Once the 
attack is fully engaged, the legitimate user (bottom curve) is 
left with little or no bandwidth. 

 

In simulation scenarios using the remaining queuing 
algorithms, topologies A and B did not provide enough 
traffic overload to prevent legitimate users from receiving 
requested bandwidth.  However, simulations based on 
topology C resulted in several target routers being 
overloaded during the attack by the twelve attack daemons. 
For the simulation scenario with topology C, we allocated 
0.1 Mbps to the legitimate user, 0.5 Mbps bandwidth was 
given to attackers 1-6, and 1.0 Mbps was given to attackers 
7-12.  The total input bandwidth of the attackers is 9.0 
Mbps. 

Two queuing algorithms (Random Early Detection and Class 
Based Queuing) are successful in providing bandwidth 
requested by the legitimate user during the simulations 
using network topology C.  Fair Queuing, Stochastic Fair 
Queuing, and Deficit Round Robin Queuing are algorithms 
that provided little or no bandwidth to the legitimate user 
during the attack.  Although the user did not receive full 
throughput with Random Early Detection queuing, he/she 
continued to receive service through most of the duration of 
the attack scenario, as shown in Figure 5 (bottom). 

 

 
 

 
Figure 5: Simulation results using Random Early Detection 
queuing algorithm and network topology C.  Shown are the 

legitimate user's bandwidth, the twelve attacker's bandwidth, 
and the total bandwidth for the target router (top), and the 
legitimate user's bandwidth (bottom). 

 

Finally, two variants of the Class Based Queuing algorithms 
were successful in providing full bandwidth requested by 
the legitimate user.  In fact, with appropriately defined flow 
classes (with known and unknown flags), the legitimate user 
was able to obtain all requested bandwidth, as shown in 
Figure 6 (bottom).   

Unlike other queuing algorithms that we simulated, Class 
Based Queuing algorithms require extra overhead and effort 
to be implemented, because input flows to a Class Based 
Queuing based routers must be a priori categorized and 
managed.  Hence, this queuing discipline may not be a 
feasible solution for routers with a large number of input 
links.   

 

 
 

 
Figure 6: Simulation results using Class Based Queuing 
(packet by packet round robin) algorithm and topology C.  
The legitimate user obtained most of the requested 0.1 
Mbps bandwidth.  Shown are bandwidths for the legitimate 
user, twelve attack daemons, and the total bandwidth for the 
target router (top), and the bandwidth for the legitimate user 
only (bottom). 

 



In summary, our simulation results indicate that Class Based 
Queuing had the best performance and provided the full 
bandwidth that the legitimate user requested.  The Random 
Early Detection algorithm was the best among algorithms 
that required no additional overhead.  It was able to provide 
40% of the bandwidth requested by the user. 

 

 

5. Conclusions 
 

In this paper, we discussed distributed denial of service 
attacks on the Internet.  We described how distributed 
attacks are conducted, we reviewed some well known 
distributed denial of service techniques, and discuss 
various defense mechanisms that could be employed by 
networks and hosts. 

We used network simulation tools to examine the 
performance of various queuing algorithms in alleviating the 
distributed denial of service attacks and in providing desired 
service to the users.  It was found that the majority of 
routing algorithms that we considered provided no 
bandwidth to the legitimate user during the attack.  
Nevertheless, even under persistent denial of service 
attacks, Class Based Queuing algorithm could guarantee 
bandwidth for certain classes of input flows, while Random 
Early Detection was successful in providing limited 
bandwidth to legitimate users.  Since implementation of a 
Class Based Queuing algorithm required additional effort, 
there is a tradeoff between its performance and the 
implementation overhead.  In summary, our simulation 
results indicated that implementing queuing algorithms in 
network routers may provide the desired solution in 
protecting users in cases of distributed denial of service 
attacks. 
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