
Approved for public release; further dissemination unlimited

UCRL-ID-136939 Rev. 1

Distributed Denial of Service
Tools Trinoo, Tribe Flood
Network, Tribe Flood
Network 2000, and
Stacheldraht

P.J. Criscuolo

February 14, 2000

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

CIAC 00.073.1 1

Disclaimer

The information within this paper may change without notice. Use of this information
constitutes acceptance for use in an AS IS condition. There are NO warranties with
regard to this information. In no event shall the author be liable for any damages
whatsoever arising out of or in connection with the use or spread of this information.
Any use of this information is at the userÕs own risk.

This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48 between the U.S. Department of Energy (DOE) and The Regents of the
University of California (University) for the operation of UC LLNL. The rights of the
Federal Government are reserved under Contract 48 subject to the restrictions agreed
upon by the DOE and University as allowed under DOE Acquisition Letter 97-1.

This work was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately-owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

Commercialization of this product is prohibited without notifying the Department of
Energy (DOE) or the Lawrence Livermore National Laboratory (LLNL).

CIAC 00.073 2

Overview

One type of attack on computer systems is known as a Denial of Service (DoS) attack. A
Denial of Service attack is designed to prevent legitimate users from using a system.
Traditional Denial of Service attacks are done by exploiting a buffer overflow,
exhausting system resources, or exploiting a system bug that results in a system that is no
longer functional. In the summer of 1999, a new breed of attack has been developed
called Distributed Denial of Service (DDoS) attack. Several educational and high
capacity commercial sites have been affected by these Distributed Denial of Service
attacks. A Distributed Denial of Service attack uses multiple machines operating in
concert to attack a network or site. There is very little that can be done if you are the
target of a DDoS. The nature of these attacks cause so much extra network traffic that it
is difficult for legitimate traffic to reach your site while blocking the forged attacking
packets. The intent of this paper is to help sites not be involved in a DDoS attack.

The first tools developed to perpetrate the DDoS attack were Trin00 and Tribe Flood
Network (TFN). They spawned the next generation of tools called Tribe Flood Network
2000 (TFN2K) and Stacheldraht (German for Barb Wire). These Distributed Denial of
Service attack tools are designed to bring one or more sites down by flooding the victim
with large amounts of network traffic originating at multiple locations and remotely
controlled by a single client.

This paper discusses how these DDoS tools work, how to detect them, and specific
technical information on each individual tool. It is written with the system administrator
in mind. It assumes that the reader has basic knowledge of the TCP/IP Protocol.

Description

Each of these DDoS tools is based on the same premise and topology. These tools are
not used to capture data or infiltrate a computer system. They are used to disrupt the
normal network traffic to a host. These DDoS attacks are extremely difficult to trace
because of the stealth capabilities built into the tools. They utilize encryption to hide
their communications and forge their source addresses to hide their location. These tools
are controlled remotely. If the target site is able to trace the forged source addresses to
the agents, it is still necessary to trace back to the handlers, and then finally to the client,
or attacker.

These DDoS attacks are a two-phase assault. The attacker will spend a large amount of
time preparing for the first phase of an attack. This phase of the assault involves
compromising as many systems as possible. The attacker needs multiple computers to
generate the large numbers of packets needed to shut down a system. All of these attack
tools run on both Linux and Solaris while TFN2K runs on Windows as well as Linux and
Solaris. The attacker must find multiple computer systems with weak security to
infiltrate and install the DDoS tools, as well as paraphernalia such as a rootkit, to hide the
DDoSÕs presence. To prevent your system from being the source of a DDoS attack, it is
important that you keep your computer systems secure and up-to-date with the most
recent security patches. The second phase of this attack cannot take place until phase one

CIAC 00.073.1 3

is successful in finding enough machines to generate the extremely high volume of
traffic.

The second phase is the actual Denial of Service attack. The compromised systems will
generate the network traffic to bring down a targeted site. These compromised systems
are considered secondary victims of the Denial of Service attack. The network traffic
that is generated exploits the TCP Protocol. The target of the flood cannot handle the
packets that are sent in an efficient manner and will cause resources to be allocated.
Many times it would not matter how the target site interprets the packets. The volume of
packets is so great the network itself becomes congested with artificial traffic. This
congestion does not allow legitimate traffic to pass.

The topology of the Distributed Denial of Service attack consists of four parts. The
compromised systems are broken down into handlers and agents. The agents are where
the disabling network traffic is generated. One or more handlers control these agents.
The handlers maintain a list of all responding agents. The handlers signal the agents
when to begin an attack and specify the method of attack. The attacker, or client,
controls one or more handlers and each agent can respond to more than one handler.

Communication between the handlers and agents in the earlier two tools, Trin00 and
TFN, was done using the TCP/IP protocol. These communications use no encryption,
except for a rudimentary password encryption used to start sending commands. The
latest tools, TFN2K and Stacheldraht, encrypt most of the communication between the
handler and agents using either the Blowfish or CAST encryption algorithms.

The method of attack varies with these tools. Trin00 only attacks with a UDP (User
Datagram Protocol) flood. All the other tools allow the attacker to choose between a

CIAC 00.073.1 4

UDP flood, SYN flood, and ICMP (Internet Control Message Protocol) echo reply type
flood. TFN2K added the targa3 attack and a mixed attack that will use the UDP, SYN
and ICMP floods in a 1:1:1 ratio. See Appendix E Ð Flood Attacks Described for detail
descriptions on each of these forms of attacks.

Detection and Prevention

The most important aspect of these distributed attacks is that the attacker needs
compromised computer systems to carry out the attack. If the Internet, as a community,
were to make sure that each of its subnets were secure, there would be no place for the
hackers to place their tools. This includes making sure all systems are secure and fully
patched and unneeded services are turned off. To enhance computer security, enforce the
use of strong password rules by all users since hackers use weak passwords to gain
unauthorized access.

One of the stealth techniques that these tools use is to forge the source IP address in the
header of the IP packets. A forged source address prevents the target site from knowing
where that attack is coming from. Routers can be configured so that packets will not
route if their source address is not from within the subnet served by the router. This
would not stop all of the packets from getting out, but would allow them to be traced to
the attack machine.

There are presently three tools on the Internet that will help you discover if the handlers
and agents are on your system. The first is by the National Infrastructure Protection
Center (NIPC) called find_ddosv31. It runs on Solaris version 2.5.1, 2.6, and 7 for the
Sparc and Intel platforms as well as Linux on Intel platforms.

Version 3.1 of the tool detects TFN2K client, TFN2K agent, Trin00 agent,
Trin00Êhandler, TFN agent, TFN client, Stacheldraht handler, Stacheldraht client,
Stacheldraht demon and TFN-rush client. It detects these agents and handlers by
searching the hard drive for known strings in the binary of the attack tools. It is a
program that needs to be run locally on each host to detect the presence of the attack
tools. CIAC had much success detecting the attack tools on Solaris operating systems.
We had a difficult time getting it compiled on Linux Red Hat 6.1. One drawback of this
tool is that the hacker community is now compressing the binaries. This allows the
binary to still execute but the strings are hidden in a compressed binary. The NIPC tool
can be downloaded from http://www.fbi.gov/nipc/trinoo.htm.

David Dittrich of the University of Washington has developed a tool called ddos_scan. It
scans for the Trin00 agent, TFN agent, and Stacheldraht agent. It does not detect TFN2K
at this time. The tool works by scanning the network with handler-agent communication
packets and then watches the return packets for certain strings. This utility scans a
complete subnet from a single node on that subnet. If the attack tools source code were
modified to accept communications from a different port or the default passwords were
changed, then this tool would n o t be successful. It can be found at
http://staff.washington.edu/dittrich/misc/ddos_scan.tar.

CIAC 00.073.1 5

David Brumley at Stanford University wrote a remote detector for Trin00 agent, TFN
agent, and Stacheldraht agent called rid. It also looks for the default ports and passwords
used by these attack tools. Rid searches an entire subnet from a single node as well as
searches hosts from a list. Rid also uses a configuration file to change the ports and
strings it looks for and the hosts it scans. This file can be modified easily in the event an
attack tool is discovered by other means. The ports and passwords can be entered into
the configuration file, adding to the search list. CIAC has had difficulty getting this
scanner to run under Red Hat Linux 6.1, but have seen good results on Solaris 2.7. It can
be found at http://packetstorm.securify.com/distributed/rid-1_0.tgz.

Recommendations

To keep your systems from being used to attack others make sure that all systems are
fully patched with the latest released information from the vendor. Make sure a good
password policy is in place on every machine in your network and use a one-time-
password scheme or encryption to prevent an intruder who gains access to one machine
on a network from installing a sniffer and capturing information to access the rest of the
network. Turn off all unneeded services. Check with vendors on a regular basis for
updates and patches. Hackers are constantly developing new tools and discovering
exploits. As new technology is introduced, so is the availability for new exploits, so audit
systems on a regular basis. Make sure all servers and routers are logging everything
possible.

David BrumleyÕs tool, rid, is the most promising at this time. It is identical to Dave
DittrichÕs program in how it discovers the agents. CIAC recommends ridÕs use over dds
because of the ability to add to the search parameters through the configuration file.
Most users will be able to change this file, while with dds, modification to the source
code is the only way the search parameters can be changed. NIPCÕs tool is very
successful in detecting the binaries for all of the attack tools on Solaris.

Firewalls should be installed on the outer edge of networks. These firewalls can be
configured to filter and log incoming and outgoing traffic. They will also allow you to
prevent certain protocols from entering or leaving a network. For example, all ICMP
could be prevented from entering or leaving a network, but all ICMP traffic will flow
normally behind the firewall for diagnostic purposes. This eliminates many of the tools
these agents use to communicate and attack.

Routers should be configured such that all outgoing traffic is checked to make sure that
the packet source IP belongs to the subnet that the router services. This is called Network
Ingress Filtering. RFC 2267 discusses how this can be used in limiting the effectiveness
and scope of a DDoS. See http://www.landfield.com/rfcs/rfc2267.html for further
information. This would not stop Denial of Service attacks from happening, but it would
aid forensics in back-tracking packets to their source and stopping an attack. This
reconfiguration would allow the attack itself to serve as an early warning system that a
subnet is being used to launch a Denial of Service attack. Each of the attack methods
would cause a large amount of traffic back toward the attack agent. This traffic should
set off alarms on intrusion detection software and either start the tracking of the packets,
or drop the connection to the router so that no more traffic can cause harm to the target

CIAC 00.073.1 6

site. Cisco has written a white paper on how the DDoS attacks can be prevented and how
to gather forensic information by modification to the routers on each subnet. It can be
found at http://www.cisco.com/warp/public/707/newsflash.html#prevention.

Finally, in the event that your network is taking part in a DDoS against another site,
disconnect the systems acting as agents from the network. If the agents cannot be
discovered quickly, then it might be necessary to disconnect the router to the outside net.
This will stop any more packets from disrupting service to the target and the agents will
continue to produce traffic to trace. Remember that the hacker has nearly full control of
the system with the agent. Backing up the entire system should be the first step to aid in
the forensic process of tracking down the attacker and helping discover the location of the
handlers.

CIAC 00.073.1 7

Appendix A

Trin00 Described

Information provided from source code version 1.07d2+f3+c.

The agent programs can be installed on Linux and Solaris systems. On some systems, the
method used to install the Trin00 agent employs a crontab entry to restart the service
every minute. This may be due to a bug in the binary, but it also allows the program to
restart if the local system terminates it.

Handler servers are installed on systems that would normally have high packet traffic and
large numbers of TCP and UDP connections such as primary name servers, in an attempt
to hide the Trin00 servers activities. The compromised systems usually have ÒrootkitÓ
installed. The rootkit tools hide the presence of the programs, files, and network
connections being used. The handler program maintains a list of agent hosts it can
contact, and this list is contained in the hidden file ÒÉÓ (three dots).

Below is a table of how the various players communicate with each other.

Source Destination Port
Attacker Handler(s) 27665/TCP
Handler Agent(s) 27444/UDP
Agent Handler(s) 31335/UDP

The program designers require a password for a connection to be made. If another
connection is made to the server while someone is already connected to the handler, a
warning is sent to the first connection with the secondÕs IP address For example, if the
local system administrator or another hacker attempts a connection to the same handler
while the original attacker is still connected, an alert will be sent to the original attacker.
In this version, the alert passes an incorrect IP address. This still allows the attacker to
erase the tracks that might lead to their discovery.

Handler commands:
Die Shut down the master.
Quit Log off the master.
mtimer N Set DoS timer to N seconds. N can be between 1 and 1999 seconds. If N is < 1, it

defaults to 300. If N > 2000, it defaults to 500.
dos IP DoS the IP address specified. A command ("aaa l44adsl IP") is sent to each Bcast host

(i.e., Trinoo daemons) telling them to DoS the specified IP address.
mdie pass Disable all Bcast hosts, if the correct password is specified. A command is sent ("d1e

l44adsl") to each host telling them to shut down. A separate password is required for
this command.

mping Send a PING command ("png l44adsl") to every active host.
mdos
<ip1:ip2:ip3>

Multiple DoS. Sends a multiple DoS command ("xyz l44adsl 123:ip1:ip2:ip3") to each
Bcast host.

info Print version and compile information.
msize Set the buffer size for packets sent during DoS attacks.
nslookup host Do a name service lookup of the specified host from perspective of the host on which

the master server is running.
killdead Attempts to weed out all dead Bcast hosts by first sending all known Bcast hosts a

command ("shi l44adsl") that causes any active daemons to reply with the initial

CIAC 00.073.1 8

"*HELLO*" string, then renames the Bcast file (with extension "-b") so it will be re-
initialized when the "*HELLO*" packets are received.

usebackup Switch to the backup Bcast file created by the "killdead" command.
bcast List all active Bcast hosts.
help [cmd] Give a (partial) list of commands, or a brief description of the command "cmd" if

specified.
mstop Attempts to stop a DoS attack (not implemented, but listed in the help command).

Agent commands:
aaa pass IP DoS the specified IP address. Sends UDP packets to random (0-65534) UDP ports on

the specified IP addresses for a period of time (default is 120 seconds, or 1 Ð 1999
seconds as set by the "bbb" command.) The size of the packets is that set by the "rsz"
command, or the default size of 1000 bytes.

bbb pass N Sets time limit (in seconds) for DoS attacks.
shi pass Sends the string "*HELLO*" to the list of master servers compiled into the program on

port 31335/udp.
png pass Sends the string "PONG" to the master that issued the command on port 31335/udp.
d1e pass Shut down the Trinoo daemon.
rsz N Set size of buffer for DoS attacks to N bytes. (The Trinoo daemon simply malloc()s a

buffer with this size, then sends the uninitialized contents of the buffer during an
attack.)

Xyz pass
123:ip1:ip2:ip3

Multiple DoS. Does the same thing as the "aaa" command, but for multiple IP
addresses.

Trin00 attacks a system over random UDP ports. For this reason, it is not feasible to
block all UDP traffic. However, one could block the default UDP ports that the handler
and clients use to communicate (27444 and 31335).

Detection of the Trin00 tool is difficult. Here are some fingerprints of the agent and the
handler. Common names of the Trinoo agent are: ns, http, rpc.Trin00, rpc.listen, trinix,
rpc.irix, and irix. Agents can be detected by monitoring crontab files for their repeated
startup. Scripts used to automate the installation of the Trinoo network use the ÒrcpÓ
command.

Handler servers are harder to detect. The only proactive detection method is to search for
the hidden file ÒÉÓ which is the default file name for known hosts the handler can
control. This file is located in the same directory as the handler server binary.

When an agent is found, an IP list of the handlers can be found by using the UNIX
ÒstringsÓ command on the agent binary. When a handler is found, the agents can be
located using the known hosts list. If the file was encrypted then take control of the
handler using the ÒbcastÓ command. REMEMBER THAT THIS SENDS AN ALERT
TO THE ATTACKER IF THEY ARE LOGGED IN AT THE SAME TIME.

When the Trin00 agent is executed, the agent announces its availability by sending a
UDP packet containing the string Ò*HELLO*Ó to its programmed Trin00 handlerÕs IP
address. Agents receiving the broadcast respond to the handler with a UDP packet
containing the string ÒPONGÓ. Monitoring the two UDP communication ports (27444
and 31335) for these strings may produce good results.

CIAC 00.073.1 9

Detection of the Trin00 network from within that network is easier once a DoS attack
begins. Large numbers of packets containing 4 bytes (all zeros) and coming from one
source port to random destination ports on the target host is a good indicator. Look for a
number of UDP packets with the same source port and different destination ports. This
gives the agents back-track to catch the handlers.

CIAC 00.073.1 10

Appendix B

Tribe Flood Network Described

The operation of TFN is similar to that of Trin00. The handlers maintain a list named
ÒiplistÓ of known agents they can contact. The ÒiplistÓ is not encrypted in this version
but recent installations of TFN agents have included strings that would indicate the
author has added Blowfish encryption to the ÒiplistÓ.

Control of the handlers is accomplished through command line execution. This can be
done by any number of methods including, but not limited to, remote shell bound to the
TCP port, SSH terminal sessions, LOKI, and normal telnet sessions. The agent and the
handler communicate through ICMP_ECHOREPLY packets. Many network-monitoring
tools do not show the data portion of the ICMP packets, so it may be difficult to actually
monitor communications between the agent and the handler. TFN can attack with four
different protocols: UDP flood, TCP flood with SYN, ICMP flood, and smurf attack.
Another ÒfeatureÓ of TFN is that an Òon demandÓ root shell is bound to the TCP Port.

Communication to the client is sent in the form of a 16-bit binary number in the ID field
of the ICMP_ECHOREPLY packet. These values are easily changed in the source code,
and encouraged. Any arguments are passed as clear ASCII text in the data field of the
ICMP_ECHOREPLY packet. This is to prevent someone from stumbling across the
agents and taking control.

Tribe Flood Network Commands:
Default value Description

-2 <bytes> For replies to the client set packet size for packets used for
udp/icmp/smurf attacks.

-1 <mask> et spoof mask. 0 will use random ips, 1 uses the correct class
a, 2 corrects class b, and 3 corrects class c ip value.

0 To change size of udp/icmp packets.
1 <targets> UDP flood. Target is one ip or multiple ips separated by @.

2 <targets> <port> SYN flood. If port is 0, random ports are used.
3 <targets> ICMP echo request flood.

4 <port> Only if compiled with ID_SHELL. Bind a rootshell to <port>.
5 <target@bcasts> Smurf amplifier icmp attack. Unlike the above floods, this

only supports a single target. Further ips separated by @ will
be used as smurf amplifier broadcast addresses.

Communication between the handler and the agents is done with crafted
ICMP_ECHOREPLY packets. It would be very difficult to block all ICMP traffic
without breaking most Internet programs.

Monitoring for ÒrcpÓ connections (514/TCP) from multiple systems on your network, in
quick succession, to a single IP address outside your network would be a good trigger.

Intrusion detection software can be set up to look for a large number of ICMP packets
with different source IP addresses sent to the same destination IP address.

There is also no authentication of the ICMP packets. If the default values have not
changed, then single ICMP_ECHOREPLY packets could be used to flush out the agents

CIAC 00.073.1 11

on your network. In the event the codes have been changed, a brute force attack, where
you craft ICMP packets to every port on every machine, could produce results, but this
would also flood your network with ICMP requests.

CIAC 00.073.1 12

Appendix C

Tribe Flood Network 2000 Described

The creator of TFN2K designed this attacker tool to illustrate the point that hacker tools
are becoming more sophisticated, being improved in the hacker arena, and kept from the
private commercial sector. The designer chose a Denial of Service attack because the
results are predictable. The tool was designed to compile on as many operating systems
as possible. The source code is portable to Linux, Solaris, most UNIX flavors, and
Windows.

TFN2K employs the usual Denial of Service attacks of ICMP Flood, SMURF Flood,
SYN Flood, and UDP Flood. In addition to these, Targa3 and mix attacks are also used.
Targa3 uses random malformed IP packets that cause some IP stacks to crash or act
unexpectedly. The mix attack sends UDP, SYN, and ICMP packets on a 1:1:1 relation.
This can have adverse reactions on some routers, network intrusion detection software,
and sniffers. Although there is no specific command to remotely update the agents, there
is a mechanism in place that would allow a one-way remote shell command to the
handlers. This could be used not only to update the agents, but also to fetch password
files and generate spam.

All of the attacks utilize spoofing of IP addresses. The communication between the
attacker and the handler is done with a randomly chosen protocol (TCP, UDP or ICMP)
that is optimized with internal values so that no recognizable pattern can be found in
packets. It will pass through most filtering mechanisms. A specific protocol, called Tribe
Protocol, is contained in the packet payload. The Tribe Protocol is CAST-256 encrypted
and base64 encoded, then decoded by the handlers. The payload consists of the
command ID followed by the target or option string. Unlike the other DDoS attack tools,
there is no acknowledgement of the communication back to the client. Instead, the client
issues the command 20 times relying on the probability that the handler will receive at
least one of them.

Decoy packets can be sent out with every real packet when the players are
communicating. This completely obscures the attacker/handler communications, making
it extremely difficult to determine the true location of the servers.

There are no default passwords with the source code. All passwords are requested at the
time of the make. All command strings are a single character, so it would be extremely
difficult to locate it in the payload of the communication packets with this alone. The
designer then goes the extra step of encrypting the payload. These characteristics make
the network scanning tools written by Dave Dittrich and David Brumley ineffective.

Default option commands:
+ /* session header separator, can be anything */
a /* to bind a root shell */
b /* to change size of udp/icmp packets */
c /* to switch spoofing mode */
d /* to stop flooding */

CIAC 00.073.1 13

e /* to udp flood */
f /* to syn flood */
g /* to set port */
h /* to icmp flood */
i /* to smurf flood haps! haps! */
j /* targa3 (ip stack penetration) */
k /* udp/syn/icmp intervals */
l /* execute system command */

TFN2K considered NIPC's tool as well. The designer of TFN2K states that there are no
strings that can be found in the handler executable, but there are strings that can be found
in the agent. The designer goes on to comment that there are public programs that
convert binaries to self-extracting compressed executables. This makes the strings
undetectable by pattern matching tools.

Fortunately, there is a weakness in what appears to be an oversight in the Base 64
encoding that happens after the encryption. At the end of every TFN2K packet,
regardless of the protocol and encryption algorithm, there is a sequence of 0x41s, which
translates to A. The actual count of 0x41 appearing at the end of every packet will vary,
but there will always be one.

CIAC 00.073.1 14

Appendix D

Stacheldraht Described

Information is provided by the source code version 4.0. Be aware that David DrittrichÕs
analysis of Stacheldraht was done with version 1.1. The default ports and passwords
have since changed. Stacheldraht is so easy to update, all of the particulars in any paper
about Stacheldraht should be taken as just an example. In the three papers found about
this attack tool, the ports were rarely the same and there appears to be a set of passwords.

Stacheldraht combines the features of Trin00 and TFN, and adds encrypted
communication between the client and the handler, plus automated remote update of the
agents. Like the tools before it, Stacheldraht runs on Linux and Solaris.

The topology is the same as TFN and Trin00 with a client controlling the handlers
controlling the agents. The attacker uses an encrypted telnet-like session to connect and
communicate with the handlers. There is a limit of 6000 agents that a handler can
control.

Below is a table of the default ports over which the players communicate.

Source Destination Port
Attacker Handler(s) 65512/TCP
Handler Agent(s) 65513/TCP
Agent Handler(s) 65513/TCP

The handler and agent can also communicate over ICMP_ECHOREPLY. The
communication between the attacker and the handler is done with symmetric key
encryption. Stacheldraht also provides a method to update the agents remotely on
demand. This feature employs the Berkley ÒrcpÓ command on port 514/TCP. This
feature would allow the attacker to continually change the port passwords and command
values.

There are many strings that could be used in identifying the binaries in the file system.
The NIPC tools would be effective in discovering these agents. However, if the binaries
get compressed, this technique will not be successful.

When the agents start up, they attempt to read a handler list configuration file to discover
which handler controls it. This file is encrypted with the blowfish algorithm and is a list
of IP addresses. If this file cannot be located, there are default handler IP addresses
compiled into the binary. Once the agent has the list of potential handlers, it starts
sending ICMP_ECHOREPLY packets with the ID field as 666 and the date field
containing the string ÒskillzÓ. This was true in version 1.1 and still is in version 4.0. The
handler will respond with ÒfickenÓ with a 667 in the ID field. All this communication is
done in clear text and can be sniffed.

Commands:
.distro user server Instructs the agent to install and run a new copy of itself using the

Berkeley "rcp" command, on the system "server", using the account "user"
(e.g., "rcp user@server:linux.bin ttymon")

.help Prints a list of supported commands

CIAC 00.073.1 15

.killall Kills all active agents.
madd ip1[:ip2[:ipN]] Add IP addresses to list of attack victims.

.mdie Sends die request to all agents.
.mdos Begins DoS attack.

micmp ip1[:ip2[:ipN]] Begin ICMP flood attack against specified hosts
.mlist List IP addresses of hosts being DoS attacked at the moment

.mping Pings all agents (bcasts) to see if they are alive.

.msadd Adds a new master server (handler) to the list of available servers.
.msort Sort out dead/alive agents (bcasts). (Sends pings and shows

counts/percentage of dead/alive agents).
mstop ip1[:ip2[:ipN]] mstop

all
Stop attacking specific IP addresses, or all.

.msrem Removes a master server (handler) from the list of available servers.
msyn ip1[:ip2[:ipN]] Begin SYN flood attack against specified hosts.

mtimer seconds Set timer for attack duration. (No checks on this value.)
mudp ip1[:ip2[:ipN]] Begin UDP flood attack against specified hosts. (Trinoo DoS

emulation mode.)
.setisize Sets size of ICMP packets for flooding. (max:1024, default:1024).
.setusize Sets size of UDP packets for flooding (max:1024, default:1024).

.showalive Shows all "alive" agents (bcasts).

.showdead Shows all "dead" agents (bcasts).
.sprange lowport-highport Sets the range of ports for SYN flooding (defaults to lowport:0,

highport:140).

Stacheldraht is far more difficult to detect than either of the first generation attack tools.
This tool communicates with ICMP_ECHOREPLY packets between the players for the
most part. It would be very difficult to block it without breaking most Internet programs
that rely on ICMP. Intrusion detection software could look for signatures in the
ICMP_ECHO traffic. This will be increasingly difficult on larger networks because the
amount of normal traffic will increase by the size of the network.

The lack of authentication on the source of the ICMP packets to the agent, and the failure
to encrypt the strings in the data portion of the ICMP packet, are the only weaknesses of
this tool. If the ports, passwords, and command values have not been changed, these
agents can be flushed out with the various scanning utilities written by Dave Dittrich and
David Brumley.

CIAC 00.073.1 16

Appendix E

Flood Attacks Described

ICMP Flood

This Denial of Service attack sends such a large amount of ICMP_ECHOREQUEST
packets to the target host that it cannot respond quickly enough to alleviate the amount of
traffic on the network. If the attacker does not forge the source IP address, then they too
will suffer a performance reduction because they are using resources not only to send the
packet but also to receive packet responses. Once the attacker forges the source IP
address, then the attack system can use all its resources to just send packets, while the
target has to use resources to receive and reply to packets. Multiply this by a distributed
attack across hundreds of hosts and the target will easily be brought down.

To prevent this form of attack, most intrusion detection software will filter these packets
out. It is also possible to set up routers and firewalls to limit ICMP echo request or drop
them entirely from entering the subnet.

Smurf Attack

The Smurf attack is a brute-force attack targeted at a feature in the IP specification
known as direct broadcast addressing. A Smurf hacker floods your router with Internet
Control Message Protocol (ICMP) echo request packets (pings). Since the destination IP
address of each packet is the broadcast address of your network, your router will
broadcast the ICMP echo request packet to all hosts on the network. If you have
numerous hosts, this will create a large amount of ICMP echo request and response
traffic.

If a hacker chooses to spoof the source IP address of the ICMP echo request packet, the
resulting ICMP traffic will not only clog up your network (the "intermediary" network)
but will also congest the network of the spoofed source IP address known as the "victim"
network by sending ICMP_ECHOREPLY packets.

To prevent a network from becoming the intermediary, turn off broadcast addressing on
all network routers that allow it (unless needed for multicast features), or configure a
firewall to filter the ICMP_ECHOREQUEST. To avoid becoming the victim of a Smurf
attack, have an upstream firewall that can either filter ICMP_ECHOREPLYs or limit
echo traffic to a small percentage of overall network traffic.

SYN Flood

When a normal TCP connection starts, a destination host receives a SYN
(synchronize/start) packet from a source host and sends back a SYN ACK (synchronize
acknowledge). The destination host must then hear an ACK (acknowledge) of the SYN
ACK before the connection is established. This is referred to as the "TCP three-way
handshake."

CIAC 00.073.1 17

While waiting for the ACK to the SYN ACK, a connection queue of finite size on the
destination host keeps track of connections waiting to be completed. This queue typically
empties quickly since the ACK is expected to arrive a few milliseconds after the SYN
ACK.

The TCP SYN flood attack exploits this design by having an attacking source host
generate TCP SYN packets with random source addresses toward a victim host. The
victim destination host sends a SYN ACK back to the random source address and adds an
entry to the connection queue. Since the SYN ACK is destined for an incorrect or non-
existent host, the last part of the "three-way handshake" is never completed and the entry
remains in the connection queue until a timer expires, typically for about one minute. By
generating phony TCP SYN packets from random IP addresses at a rapid rate, it is
possible to fill up the connection queue and deny TCP services such as e-mail, file
transfer, or WWW to legitimate users.

There is no easy way to trace the originator of the attack because the IP address of the
source is forged.

Targa3

This attack sends combinations of uncommon IP packets to hosts to generate attacks.
The uncommon IP packets consist of invalid fragmentation, protocol, packet size, header
values, options, offsets, tcp segments, and routing flags. This attack was originally
launched to Windows systems. Once the TCP stack received the invalid packet, the
kernel had to allocate resources to handle the packet. If enough malformed packets were
received, the system would crash because of exhausted resources.

UDP Flood

The User Datagram Protocol (UDP) is a connectionless protocol. It does not need to
establish a connection to transfer data. Since no connection setup is required before data
is transferred, it is difficult to bring a host down by flooding the host with just UDP
packets. A UDP Flood Denial of Service attack is created when the agent host sends a
packet to a random port on the target machine. When the target host receives a UDP
packet, it will determine what is listening on the destination port. If nothing is listening,
then it will return an ICMP packet to the forged source IP address notifying that the
destination port is unreachable. If enough UDP packets are sent to dead ports on the
target host, not only will the target host go down, but computers on the same segment
will also be disabled because of the amount of traffic.

CIAC 00.073.1 18

References

Axent Technologies - TFN2K - An Analysis by Jason Barlow and Woody Thrower
http://www2.axent.com/swat/swat.htm

David Dittrich Ð The DoS Project's "trinoo" distributed Denial of Service attack tool,
 http://staff.washington.edu/dittrich/misc/trinoo.analysis

David Dittrich Ð The "Tribe Flood Network" distributed Denial of Service attack tool,
 http://staff.washington.edu/dittrich/misc/tfn.analysis

David Dittrich Ð The "stacheldraht" distributed Denial of Service attack tool,
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

ISS X Force Alert - Denial of Service Attack using the Trin00 and Tribe Flood Network
programs, http://xforce.iss.net/alerts/advise40.php3

Results of the Distributed-System Intruder Tools Workshop, Pittsburgh, Pennsylvania
USA November 2-4, 1999, http://www.cert.org/reports/dsit_workshop.pdf

