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For a wireless sensor network (WSN) with a random number of sensors, we propose a decision fusion rule that uses the total
number of detections reported by local sensors as a statistic for hypothesis testing. We assume that the signal power attenuates
as a function of the distance from the target, the number of sensors follows a Poisson distribution, and the locations of sensors
follow a uniform distribution within the region of interest (ROI). Both analytical and simulation results for system-level detection
performance are provided. This fusion rule can achieve a very good system-level detection performance even at very low signal-
to-noise ratio (SNR), as long as the average number of sensors is sufficiently large. For all the different system parameters we
have explored, the proposed fusion rule is equivalent to the optimal fusion rule, which requires much more prior information.
The problem of designing an optimum local sensor-level threshold is investigated. For various system parameters, the optimal
thresholds are found numerically by maximizing the deflection coefficient. Guidelines on selecting the optimal local sensor-level
threshold are also provided.
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1. INTRODUCTION

Recently, wireless sensor networks (WSNs) have attracted
much attention and interest, and have become a very active
research area. Due to their high flexibility, enhanced surveil-
lance coverage, robustness, mobility, and cost effectiveness,
WSNs have wide applications and high potential in mili-
tary surveillance, security, monitoring of traffic, and envi-
ronment. Usually, a WSN consists of a large number of low-
cost and low-power sensors, which are deployed in the en-
vironment to collect observations and preprocess the obser-
vations. Each sensor node has limited communication capa-
bility that allows it to communicate with other sensor nodes
via a wireless channel. Normally, there is a fusion center that
processes data from sensors and forms a global situational
assessment.

In a typical WSN, sensor nodes are powered by batter-
ies, and hence have a very frugal energy budget. To maintain
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longer lifetimes of the sensors, all aspects of the network
should be energy efficient. In [1], a data-centric energy ef-
ficient routing protocol is proposed. By using existing wire-
less local area network (WLAN) technologies, in [2], authors
present a cluster-based ad hoc routing scheme for a multi-
hop sensor network. In [3], an on-demand clustering mech-
anism, passive clustering, is presented to overcome two lim-
itations of ad hoc routing schemes, namely limited scalabil-
ity and the inability to adapt to high-density sensor distribu-
tions.

Many other important aspects of WSNs have been in-
vestigated too, such as distributed data compression and
transmission, and collaborative signal processing [4, 5]. In
a WSN, detection, classification, and tracking of targets re-
quire collaboration between sensor nodes. Distributed sig-
nal processing in a sensor network reduces the amount of
communication required in the network, lowers the risk of
network node failures, and prevents the fusion center from
being overwhelmed by huge amount of raw data from sen-
sors. In this paper, we focus on distributed target detection,
one of the most important functions that a WSN needs to
perform. There are already many papers on the conventional
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distributed detection problem. In [6, 7], optimum fusion
rules have been obtained under the conditional indepen-
dence assumption. Decision fusion with correlated observa-
tions has been investigated in [8, 9, 10, 11]. There are also
many papers on the problem of distributed detection with
constrained system resources [12, 13, 14, 15, 16, 17, 18].
More specifically, these papers have proposed solutions to
optimal bit allocation under a communication constraint.

However, most of these results are based on the assump-
tion that the local sensors’ detection performances, namely
either the local sensors’ signal-to-noise ratio (SNR) or their
probability of detection and false alarm rate, are known to
the fusion center. For a dynamic target and passive sensors,
it is very difficult to estimate local sensors’ performances via
experiments because these performances are time varying as
the target moves through the wireless sensor field. Even if
the local sensors can somehow estimate their detection per-
formances in real time, it will be very expensive to transmit
them to the fusion center, especially for a WSN with very lim-
ited system resources. Usually a WSN consists of a large num-
ber of low-cost and low-power sensors, which are densely
deployed in the surveillance area. Taking advantage of these
unique characteristics of WSNs, in our previous paper [19],
we proposed a fusion rule that uses the total number of de-
tections (“1”s) transmitted from local sensors as the statistic.

In [19], we assumed that the total number of sensors in
the region of interest (ROI) is known to the WSN. However,
in many applications, the sensors are deployed randomly in
and around the ROI, and oftentimes some of them are out
of the communication range of the fusion center, malfunc-
tioning, or out of battery. Therefore, at a particular time, the
total number of sensors that work properly in the ROI is a
random variable (RV). For example, in a battlefield or a hos-
tile region, many microsensors can be deployed from an air-
plane to form a WSN. Data are transmitted from sensors to
an access point, which could be an airplane that flies over
the sensor field and collects data from the sensors. The total
number of sensors within the network and the total number
of sensors that can communicate with the access point (the
flying airplane) at a particular time are RVs. In this paper,
the results presented in [19] are extended to this more gen-
eral situation. The performance of the fusion rule proposed
in [19] will be analyzed with this extra uncertainty about the
total number of sensors.

In Section 2, basic assumptions regarding the WSN are
made, the signal attenuation model is provided, and the fu-
sion rule based on the total number of detections from lo-
cal sensors is introduced. In addition, it is shown that the
proposed fusion rule can be adapted well to a large network
with multiple-layer hierarchical structure. Analytical meth-
ods to determine the system-level detection performance are
presented in Section 3. There, asymptotic detection perfor-
mance is studied. In addition, the proposed fusion rule is
compared to the likelihood-ratio (LR) based optimal fu-
sion rule, which requires much more prior information.
Simulation results are also provided to confirm our analy-
ses. In Section 4, the problem of designing an optimum lo-
cal sensor-level threshold is investigated, and the optimum
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Figure 1: The signal power contour of a target located in a sensor
field.

thresholds for various system parameters are found numeri-
cally. Conclusions and discussion are provided in Section 5.

2. SYSTEM MODEL AND DECISION FUSION RULE

2.1. Problem formulation

As shown in Figure 1, a total of N sensors are randomly de-
ployed in the ROI, which is a square with area b2. N is an RV
that follows a Poisson distribution:

p(N) = λNe−λ

N !
, N = 0, . . . ,∞. (1)

The locations of sensors are unknown to the WSN, but it
is assumed that they are independent and identically dis-
tributed (i.i.d.) and follow a uniform distribution in the ROI:

f
(
xi, yi

) =



1
b2

, −b

2
≤ xi, yi ≤ b

2
,

0, otherwise
(2)

for i = 1, . . . ,N , where (xi, yi) are the coordinates of sensor i.
Noises at local sensors are i.i.d. and follow the standard

Gaussian distribution with zero mean and unit variance:

ni ∼ N (0, 1), i = 1, . . . ,N. (3)

For a local sensor i, the binary hypothesis testing problem is

H1 : si = ai + ni,

H0 : si = ni,
(4)

where si is the received signal at sensor i, and ai is the ampli-
tude of the signal that is emitted by the target and received at
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sensor i. We adopt the same isotropic signal power attenua-
tion model as that presented in [19]

a2
i =

P0

1 + αdni
, (5)

where P0 is the signal power emitted by the target at distance
zero, di is the distance between the target and local sensor i:

di =
√(

xi − xt
)2

+
(
yi − yt

)2
, (6)

and (xt, yt) are the coordinates of the target. We further as-
sume that the location of the target also follows a uniform
distribution within the ROI. n is the signal decay exponent
and takes values between 2 and 3. α is an adjustable con-
stant, and a larger α implies faster signal power decay. Note
that the signal attenuation model can be easily extended to
3-dimensional problems. Our attenuation model is similar
to that used in [20]. The difference is that in the denomina-
tor of (5), instead of dni , we use 1 + αdni . By doing so, our
model is valid even if the distance di is close to or equal to 0.
When di is large (αdni � 1), the difference between these two
models is negligible.

In this paper, we do not specify the type of the passive
sensors, and the power decay model adopted here is quite
general. For example, in a radar or wireless communication
system, for an isotropically radiated electromagnetic wave
that is propagating in free space, the power is inversely pro-
portional to the square of the distance from the transmitter
[21, 22]. Similarly, when spherical acoustic waves radiated by
a simple source are propagating through the air, the intensity
of the waves will decay at a rate inversely proportional to the
square of the distance [23].

Because the noise has unit variance, it is evident that the
SNR at local sensor i is

SNRi = a2
i =

P0

1 + αdni
. (7)

We define the SNR at distance zero as

SNR0 = 10 log10 P0. (8)

Assuming that all the local sensors use the same threshold
τ to make a decision and with the Gaussian noise assump-
tion, we have the local sensor-level false alarm rate and prob-
ability of detection:

pfa =
∫∞
τ

1√
2π

e−t
2/2dt = Q(τ), (9)

pdi =
∫∞
τ

1√
2π

e−(t−ai)2/2dt = Q
(
τ − ai

)
, (10)

where Q(·) is the complementary distribution function of
the standard Gaussian, that is,

Q(x) =
∫∞
x

1√
2π

e−t
2/2dt. (11)

We assume that the ROI is very large and the signal power
decays very fast. Hence, only within a very small fraction of
the ROI, which is the area surrounding the target, the re-
ceived signal power is significantly larger than zero. By ig-
noring the border effect of the ROI, we assume that the target
is located at the center of the ROI, without any loss of gen-
erality. As a result, at a particular time, only a small subset
of sensors can detect the target. To save communication and
energy, a local sensor only transmits data (“1”s) to the fusion
center when its signal exceeds the threshold τ.

2.2. Decision fusion rule

We denote the binary data from local sensor i as Ii = {0, 1}
(i = 1, . . . ,N). Ii takes the value 1 when there is a detection;
otherwise, it takes the value 0.

We know that the optimal decision fusion rule is the
Chair-Varshney fusion rule [6], and it is a threshold test of
the following statistic:

Λ0 =
N∑
i=1

[
Ii log

pdi
pfai

+
(
1− Ii

)
log

1− pdi
1− pfai

]

=
N∑
i=1

Ii log
pdi
(
1− pfai

)
pfai

(
1− pdi

) +
N∑
i=1

log
1− pdi
1− pfai

.

(12)

This fusion statistic is equivalent to a weighted summation
of all the detections (“1”s) that a fusion center receives. The
decision from a sensor with a better detection performance,
namely higher pdi and lower pfai , gets a greater weight, which
is given by log(pdi(1− pfai)/pfai(1− pdi)).

As long as the threshold τ is known, the probability of
false alarm at each sensor is known (pfai = pfa) from (9).
However, at each sensor, it is very difficult to calculate pdi
since according to (10), pdi is decided by each sensor’s dis-
tance to the target and the amplitude of the target’s sig-
nal. To make matters worse, we do not even know the total
number of sensors N because the fusion center only receives
data from those sensors whose received signals exceed the
threshold τ, as we have assumed in Section 2.1. An alterna-
tive scheme would be that each sensor transmits raw data si to
the fusion center, and the fusion center will make a decision
based on these raw measurements. However, the transmis-
sion of raw data will be very expensive especially for a typical
WSN with very limited energy and bandwidth. It is desirable
to transmit only binary data to the fusion center. Without
the knowledge of pdis, the fusion center is forced to treat de-
tections from every sensor equally. An intuitive choice is to
use the total number of “1”s as a statistic since the informa-
tion about which sensor reports a “1” is of little use to the
fusion center. As proposed in [19], the system-level decision
is made by first counting the number of detections made by
local sensors and then comparing it with a threshold T :

Λ =
N∑
i=1

Ii

H1

≷
H0

T , (13)
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Figure 2: The signal power contour of a target located in a sensor
field with nine cluster heads and their corresponding subregions.
Points: sensors; triangles: cluster heads; star: target.

where Ii = {0, 1} is the local decision made by sensor i. We
also call this fusion rule the “counting rule.”

2.3. Hierarchical network structure

In this paper, we focus on the application aspect of the WSN.
Routing protocols and network structures are beyond the
scope of this paper. In Sections 2.1 and 2.2, a very simple
network structure is implied. That is, all the sensors in the
ROI report directly to the fusion center. However, our anal-
ysis results, which are based on this simple assumption and
will be presented later, are quite general and can be applied
to various scenarios and network structures. In this section,
we give an example to show how the proposed approach can
be adapted to complicated and practical applications.

Suppose that the sensor field is quite vast and the sig-
nal decays very fast as the distance from the target increases.
As a result, only a tiny fraction of the sensors can detect the
signals from the target, as illustrated in Figure 2. Most sen-
sors’ measurements are just pure noises. Since the local de-
cisions from these sensors do not convey much information
about the target, it is neither very useful nor energy efficient
to transmit them to the fusion center. When the sensor net-
work is very large, there is also the issue of scalability. One
reasonable solution is to use a three-layered hierarchical net-
work structure, as shown in Figure 3. Sensors that are close
to each other will form a cluster and each cluster has its own
cluster head or cluster master, which serves as the local fusion
center and is supposed to have more powerful computation
and communication capabilities. Each cluster is in charge of
the surveillance of a subregion of the whole ROI, as shown
in Figure 2. Instead of transmitting data to a faraway central
fusion center, sensors will send data to their corresponding
cluster head. Based on data transmitted from sensors located
within a specific cluster/subregion, the corresponding clus-
ter head will make a decision about target presence/absence
within that subregion. The decisions from cluster heads will

Fusion center

Cluster head 2Cluster head 1 Cluster head K

Sensor 2Sensor 1 Sensor N

· · ·

· · ·

Figure 3: Three-layered hierarchical sensor network structure.

be further transmitted to the fusion center to inform it if
there is a target or event in specific subregions.

The theoretical analysis provided later in this paper can
be used to evaluate the detection performance at the cluster-
head level, as long as the assumptions made in Section 2.1 are
still valid within each cluster/subregion.

3. PERFORMANCE ANALYSIS

In this section, the system-level detection performance,
namely the probability of false alarm Pfa and probability of
detection Pd at the fusion center, will be derived, and the an-
alytical results will be compared to simulation results.

3.1. System-level false alarm rate

At the fusion center level, the probability of false alarm Pfa is

Pfa =
∞∑

N=T
p(N)Pr

{
Λ ≥ T|N , H0

}
. (14)

Obviously, for a given N , under hypothesis H0, Λ follows
a binomial (N , pfa) distribution. When N is large enough,
Pr{Λ ≥ T|N , H0} can be calculated by using Laplace-De
Moivre approximation [24]:

Pr
{
Λ ≥ T|N ,H0

} = N∑
i=T

(
N
i

)
pifa
(
1− pfa

)N−i

� Q


 T −Npfa√

Npfa
(
1− pfa

)

.

(15)

It is well known that the kurtosis of a Poisson distribu-
tion is 3 + (1/λ). As λ increases, the kurtosis of this Poisson
distribution approaches that of a Gaussian distribution, and
its distribution has a light tail. This can also be explained by
the unique characteristic of the Poisson distribution. A Pois-
son RV with mean λ can be deemed as the summation of M
i.i.d. Poisson RVs with mean λ0 = λ/M. Therefore, a Poisson
RV with a very large λ is a summation of a very large num-
ber (M) of i.i.d. Poisson RVs with a constant mean λ0, and
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Figure 4: The probability mass function for Poisson distributions.
(a): λ = 1000; (b): λ = 10 000.

its distribution approaches a Gaussian distribution, accord-
ing to the central limit theorem (CLT). As a result, when λ is
large, the probability mass of N will concentrate around the
average value (λ). This phenomenon is illustrated in Figure 4,
where the probability mass function of N has been plotted
for λ = 1000 and λ = 10 000. Due to this characteristic of
the Poisson distribution, using the fact that both the mean
and variance of a Poisson RV are λ, we have the following
approximation when λ is large:

Pr
{
λ− 6

√
λ ≤ N ≤ λ + 6

√
λ
} � 1 (16)

or

N3∑
N1

e−λλN

N !
� 1, (17)

where N1 = �λ− 6
√
λ	 and N3 = 
λ + 6

√
λ�.

Hence, for a large λ, a “typical” N is also a large number.
The probability that N takes a small value is negligible. For
example, when λ = 1000, Pr{N < 810} = 2.4× 10−10; when
λ = 10 000, Pr{N < 9400} = 6.6× 10−10. Therefore, when λ
is large enough, we have

Pfa =
∞∑

N=0

p(N)
N∑
i=T

(
N
i

)
pifa
(
1− pfa

)N−i

�
N3∑

N=N2

λNe−λ

N !
Q


 T −Npfa√

Npfa
(
1− pfa

)



=
N3∑

N=N2

λNe−λ

N !
Q
(
T − µ0

σ0

)
,

(18)

where N2 = max(T ,N1), µ0 � Npfa, and σ0 �√
Npfa(1− pfa). Note that for a large N , the Laplace-De

Moivre approximation in (15) is valid, and this fact has been
used in the derivation of (18). The significance of (17) also
lies in the fact that the computation load in calculating Pfa

or Pd (see (18) and (25)) is reduced significantly since in
the computation, a summation of less than or equal to 12

√
λ

terms is sufficient, rather than a summation of infinite num-
ber of terms.

3.2. System-level probability of detection

Because of the nature of this problem, different local sensors
will have different pdi , which is a function of di as shown in
(10). Therefore, under hypothesis H1, the total number of
detections (Λ) no longer follows a Binomial distribution. It
is very difficult to derive an analytical expression for the dis-
tribution of Λ. Instead, we will obtain the Pd either through
approximation or through simulation. In [19], through ap-
proximation by using the CLT, we derived the system level Pd
when the number of sensors N is large:

Pr
{
Λ ≥ T|N ,H1

} � Q

(
T −N p̄d√

Nσ̄2

)
, (19)

where

p̄d = 2π
b2

∫ b/2

0
C(r)rdr +

(
1− π

4

)
γ, (20)

σ̄2 = 2π
b2

∫ b/2

0

[
1− C(r)

]
C(r)rdr +

(
1− π

4

)
γ(1− γ), (21)

C(r) = Q

(
τ −
√

P0

1 + αrn

)
, (22)

γ = Q


τ −

√
P0

1 + α
(√

2b/2
)n

. (23)

Note that in [19], a different γ is used:

γ′ = Q(τ) = pfa. (24)

γ used in this paper is slightly different from that used in
[19], and it gives a more accurate approximation. But when
the ROI is very large, meaning that b is large, the difference
is really negligible. Interested readers can find the detailed
derivations in [19]. Taking an average of (19) with respect to
N , and similar to the derivation of (18), we have the system
level Pd as

Pd �
N3∑

N=N2

λNe−λ

N !
Q

(
T −N p̄d√

Nσ̄2

)

=
N3∑

N=N2

λNe−λ

N !
Q
(
T − µ1

σ1

)
,

(25)
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Figure 6: ROC curves obtained by analysis and simulations. System
parameters are the same as those listed in Figure 5.

where µ1 � N p̄d, and σ1 �
√
Nσ̄2. Again, we use the fact

that for a large λ, a typical N is large. Therefore, the Gaussian
approximation in (19) by using the CLT is still valid.

3.3. Simulation results

The system-level Pd and Pfa can also be estimated by simula-
tions. In Figures 5, 6, 7, and 8, the receiver’s operative char-
acteristic (ROC) curves obtained by using approximations in
Sections 3.1 and 3.2 and those by simulations are plotted for
various system parameters. The simulation results in Figures
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Figure 7: ROC curves obtained by analysis and simulations. P0 =
500, n = 3, b = 100, α = 40, and τ = 0.90.
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Figure 8: ROC curves obtained by analysis and simulations. P0 =
500, n = 3, b = 100, α = 40, and τ = 0.90.

5 and 7 are based on 105 Monte Carlo runs, and the sim-
ulation results in Figures 6 and 8 are obtained through 107

Monte Carlo runs. From these figures, it is clear that the re-
sults obtained by approximations are very close to those ob-
tained by simulations, even when the system-level Pfa is very
low (Figures 6 and 8).

3.4. Asymptotic analysis

It is useful to analyze the system performance when the aver-
age number of sensors λ is very large.
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In (18), we know that

max
(
T ,
⌊
λ− 6

√
λ
⌋) ≤ N ≤ ⌈λ + 6

√
λ
⌉
. (26)

Hence, as λ→∞, we have N → λ, if T ≤ 
λ+6
√
λ�. Assuming

that the system-level threshold is in the form of T = βλ, we
have

Pfa �
N3∑

N=N2

λNe−λ

N !
Q


 (β − pfa

)√
λ√

pfa
(
1− pfa

)

. (27)

Similarly, from (25), we have

Pd �
N3∑

N=N2

λNe−λ

N !
Q

((
β − p̄d

)√
λ√

σ̄2

)
. (28)

Therefore, when λ → ∞, if β < pfa, Pfa = Pd = 1; if
pfa < β < p̄d, Pfa = 0 and Pd = 1; if β > p̄d, Pfa = Pd = 0.
As a result, as long as β takes a value between pfa and p̄d,
as λ → ∞, the WSN detection performance will be perfect
with Pd = 1 and Pfa = 0. In Figures 9 and 10, Pd and Pfa as
functions of λ are plotted. It is clear that the Pd converges to
1 and Pfa converges to 0, as λ increases. In this example, we
set β such that β = (pfa + p̄d)/2. Another conclusion is that
when λ is large enough, even for a small SNR0, the system
can achieve a very good detection performance.

3.5. Optimality of the decision fusion rule

The proposed decision fusion rule (the counting rule) is ac-
tually a threshold test in terms of the total number of detec-
tions made by local sensors, and it is intuitive. It is important
to compare the performance of this fusion rule to that of the
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Figure 10: System-level false alarm rate Pfa as a function of λ. n = 2,
b = 100, α = 200, and τ = 0.5.

optimal decision fusion rule, which is also based on the total
number of local detections from local sensors.

As we know, Λ in (13) is a lattice-type RV [24], which
takes equidistant values from 0 to N . Hence, according to the
CLT [24], for a large N , the probability pk = Pr{Λ = k|N}
equals the sample of the Gaussian density:

Pr{Λ = k|N} � 1√
2πσ

e−(k−µ)2/(2σ2) (k = 0, . . . ,N). (29)

Therefore, under hypothesis H1, for a large λ, we have

Pr
{
Λ = k|H1

} = ∞∑
N=0

p(N) Pr
{
Λ = k|N ,H1

}

�
∞∑

N=0

λNe−λ

N !
1√

2πσ1(N)
e−[k−µ1(N)]2/[2σ2

1 (N)],

(30)

where µ1(N) = N p̄d and σ1(N) =
√
Nσ̄2. Similarly, under

hypothesis H0, for a large λ, we have

Pr
{
Λ = k|H0

} � ∞∑
N=0

λNe−λ

N !
1√

2πσ0(N)
e−[k−µ0(N)]2/[2σ2

0 (N)],

(31)

where µ0(N) = Npfa and σ0(N) =
√
Npfa(1− pfa). Now it is

easy to show that the likelihood ratio of Λ is

L(Λ) = Pr
{
Λ|H1

}
Pr
{
Λ|H0

}
�
∑∞

N=0 λ
N/
[
N !σ1(N)

]
e−[Λ−µ1(N)]2/[2σ2

1 (N)]∑∞
N=0 λN/

[
N !σ0(N)

]
e−[Λ−µ0(N)]2/[2σ2

0 (N)]
.

(32)
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Figure 11: Function L(Λ). λ = 1000, n = 2, b = 100, α = 200,
τ = 0.66, 0.67, 0.73, 0.77, 0.82 for P0 = 50, 100, 500, 1000, 2000,
respectively.

Hence, the optimal fusion rule at the fusion center is a likeli-
hood ratio test:

L(Λ)
H1

≷
H0

TL. (33)

Note that the implementation of the proposed counting
rule for a Neyman-Pearson detector with a given system level
Pfa requires only the knowledge of λ and τ (or pfa) in order
to find the system-level threshold T through (18). To choose
an optimal local threshold τ, as we will see later in this paper,
the knowledge of P0 is required too. However, the counting
rule can still be implemented without an optimal τ, and a
good choice of τ based on some prior knowledge of P0 can
always be made. As a result, an exact knowledge of P0 is not
necessary for the implementation of the counting rule, even
though it is needed in the evaluation of the system-level de-
tection performance.

As for the implementation of the optimal fusion rule, we
need to have the exact knowledge of α, P0, and b to calcu-
late σ̄2 and p̄d. Hence, the optimal fusion rule requires much
more information, especially the knowledge of signal power
P0, which is unknown in most cases. Furthermore, because
of its dependence on the exact knowledge of P0, the opti-
mal fusion rule is more sensitive to the estimation errors of
P0. Therefore, in this paper, the optimal fusion rule only has
theoretical importance, and it is not very useful or robust in
practical applications, where it is always difficult to estimate
P0.

As we can see from (32), L(Λ) is a nonlinear transforma-
tion of Λ. The threshold tests of Λ and L(Λ) will have iden-
tical detection performances if L(Λ) is a monotonically in-
creasing transformation of Λ.
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Figure 12: Function L(Λ). n = 3, P0 = 500, b = 100, α = 40,
τ = 0.90.

In Figures 11 and 12, L as a function of Λ is plotted for
different system parameters. As we can see, in all the cases,
L(Λ) is a monotonically increasing function of Λ, meaning
that the counting rule and the optimal fusion rule are equiv-
alent in terms of detection performance. In addition to the
cases shown in Figures 11 and 12, we have extensively inves-
tigated the relationship between L and Λ for various system
parameters. For all the system parameters we have studied,
L(Λ) is a monotonically increasing function of Λ.

In Figure 13, the ROC curves obtained by simulations
(based on 106 Monte Carlo runs) for the counting rule and
the optimal fusion rule are shown. We can see that the ROC
curves corresponding to the counting rule and those of the
optimal fusion rule are indistinguishable.

4. THRESHOLD FOR LOCAL SENSORS

In addition to the ROC curve for performance compari-
son, one can also resort to the so-called deflection coefficient
[25, 26], especially when the statistical properties of the sig-
nal and noise are limited to moments up to a given order.
The deflection coefficient is defined as

D(Λ) =
[
E
(
Λ|H1

)− E
(
Λ|H0

)]2
Var
(
Λ|H0

) . (34)

In the case of Var(Λ|H1) = Var(Λ|H0), this is in essence the
SNR of the detection statistic. It is worth noting that the use
of deflection criterion leads to the optimum LR receiver in
many cases of practical importance [25]. For example, in the
problem of detecting a Gaussian signal in Gaussian noise, an
LR detector is obtained by maximizing the deflection mea-
sure. In the above sections, we have assumed that the thresh-
old τ (or equivalently pfa) is given. From (18), (20), (21),
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Figure 13: ROC curves for the counting rule and the optimal fusion
rule. System parameters are the same as those listed in Figure 5.
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Figure 14: D(τ). λ = 1000, n = 2, a = 100, α = 200, SNR0 = 30 dB
(or P0 = 1000).

and (25), we know that both Pfa and Pd are functions of τ.
Hence, τ is a parameter that can be designed to achieve a
better system-level performance. In this paper, we will find
the optimum local sensor-level threshold τ by maximizing
the deflection coefficient. The deflection coefficient for the
detection problem in this paper is derived and stated in the
following theorem.

Theorem 1. The deflection coefficient at the fusion center for
the detection problem formulated in this paper is

D(τ) = λ
[
p̄d(τ)− pfa(τ)

]2
pfa(τ)

. (35)

For the proof, see the appendix.
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Figure 15: ROC curves for system with different τ. λ = 1000, n = 2,
b = 100, α = 200, SNR0 = 30 dB (or P0 = 1000).

The optimum τ can be found by maximizing D(τ) with
respect to τ. As we can see in Figure 14, there exists an op-
timal τ(0.7694) that maximizes the deflection coefficient D.
By employing this optimum τopt, a significant improvement
in D can be achieved.

The system-level ROC curves for different τ are plotted
in Figure 15. As we can see, the ROC curve corresponding
to the optimal threshold τopt(0.77) is above those for other
thresholds, meaning that τopt provides the best system level
performance. In Figures 16 and 17, τopt and the correspond-
ing optimal pfa as functions of SNR0 and α are shown. It is
clear that τopt is a monotonically increasing function of SNR0

and a monotonically decreasing function of α. This is because
with a strong target signal (high SNR0 and low α), by adopt-
ing a higher threshold, local sensors lower their false alarm
rate, while at the same time they can still attain a relatively
high probability of detection.

5. CONCLUSIONS

We have proposed and studied a decision fusion rule that is
based on the total number of detections reported by local
sensors for a WSN with a random number of sensors. As-
suming that the number of sensors in a ROI follows a Pois-
son distribution, we have derived the system-level detection
performance measures, namely the probabilities of detection
and false alarm. We have shown that even at very low SNR,
this fusion rule can achieve a very good system-level detec-
tion performance given that there are, on an average, a suf-
ficiently large number of sensors deployed in the ROI. The
average number of sensors needed for a prespecified system-
level performance can be calculated based on our analytical
expressions. Another important result is that the proposed
fusion rule is equivalent to the optimal fusion rule, which
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Figure 16: Optimal τopt and the corresponding optimal pfa as func-
tions of SNR0. λ = 1000, n = 2, b = 100, α = 200.
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Figure 17: Optimal τopt and the corresponding optimal pfa as func-
tions of α. λ = 1000, n = 2, b = 100, SNR0 = 30 dB.

requires much more prior knowledge of the system parame-
ters, for all the different system parameters we have investi-
gated.

We have also shown that a better system performance can
be achieved if we choose an optimum threshold at the local
sensors by maximizing the deflection coefficient. If SNR0 is
high, and α is small, a higher local sensor-level threshold τ
should be chosen; otherwise, a lower τ should be employed
to achieve a better performance.

APPENDIX

PROOF OF THEOREM 1

Under hypothesis H0, we have

E
(
Λ|N , H0

) = Npfa, (A.1)

Var
(
Λ|N , H0

) = Npfa
(
1− pfa

)
. (A.2)

Hence,

E
(
Λ2|N ,H0

) = Var
(
Λ|N ,H0

)
+ E
(
Λ|N ,H0

)2

= Npfa
(
1− pfa

)
+ N2p2

fa.
(A.3)

Since N is a Poisson RV, we have

E[N] = λ, (A.4)

Var[N] = λ, (A.5)

E
(
N2) = Var(N) +

[
E(N)

]2 = λ + λ2. (A.6)

With (A.1) and (A.4), E(Λ|H0) can be derived as follows:

E
(
Λ|H0

) = E
[
E
(
Λ|N ,H0

)] = E
[
Npfa

] = λpfa. (A.7)

Given (A.3), (A.4), and (A.6), it is easy to show that

E
(
Λ2|H0

) = E
[
E
(
Λ2|N ,H0

)]
= E
[
Npfa

(
1− pfa

)
+ N2p2

fa

]
= λpfa

(
1− pfa

)
+
(
λ + λ2)p2

fa

= λpfa
(
1 + λpfa

)
.

(A.8)

Therefore,

Var
(
Λ|H0

) = E
[
Λ2|H0

]− E
[
Λ|H0

]2
= λpfa

(
1 + λpfa

)− λ2p2
fa

= λpfa.

(A.9)

Under hypothesis H1, according to [19], we have

E
(
Λ|N ,H1

) = N p̄d. (A.10)

Hence,

E
[
Λ|H1

] = E
[
E
(
Λ|N ,H1

)]
= E
[
N p̄d

]
= λp̄d.

(A.11)

By substituting (A.7), (A.9), and (A.11) into (34), we fi-
nally get the deflection coefficient

D(τ) = λ
[
p̄d(τ)− pfa(τ)

]2
pfa(τ)

. (A.12)
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