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Distributed Device Networks
With Security Constraints

Yuefei Xu, Ronggong Song, Larry Korba, Lihui Wang, Weiming Shen, Senior Member, IEEE, and Sherman Lang

Abstract—In today’s globalized business world, outsourcing,
joint ventures, mobile and cross-border collaborations have led to
work environments distributed across multiple organizational and
geographical boundaries. The new requirements of portability,
configurability and interoperability of distributed device networks
put forward new challenges and security risks to the system’s
design and implementation. There are critical demands on highly
secured collaborative control environments and security en-
hancing mechanisms for distributed device control, configuration,
monitoring, and interoperation. This paper addresses the collabo-
rative control issues of distributed device networks under open and
dynamic environments. The security challenges of authenticity,
integrity, confidentiality, and execution safety are considered as
primary design constraints. By adopting policy-based network
security technologies and XML processing technologies, two new
modules of Secure Device Control Gateway and Security Agent
are introduced into regular distributed device control networks
to provide security and safety enhancing mechanisms. The core
architectures, applied mechanisms, and implementation consider-
ations are presented in detail in this paper.

Index Terms—Distributed device network, distributed device
control, industrial control systems, collaborative control, network
security, computer supported cooperative work.

I. INTRODUCTION

W
ITH the growing globalization and decentralization of
businesses, the boundary between what is “inside” and

what is “outside” of an organization is blurring. Businesses
and interactions are now happening across traditional physical
boundaries. The decentralization of organizations has become
a major impact on the traditional business models. Services
and resources are distributed everywhere and sourced any-
where through global supply chains. For example, in the area of
e-Manufacturing, product design, process planning, scheduling,
and manufacturing have shifted rapidly from simply occurring
within one enterprise to being spread across global networks.
To cope with this trend, a collaborative environment with in-
teractive design, planning, scheduling, monitoring, and control
capabilities is essential for any manufacturing enterprise to
increase its competitiveness and profitability.

Recently, there are strong demands in industry to add porta-
bility, interoperability, configurability, and other collaborative
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features to existing industrial control systems. These provide the
following advantages.

• Control tasks or components can be designed and ex-
changed between different vendors.

• Different devices can be operated and monitored by each
other or by human operators, within or outside the organ-
ization.

• Different devices can be reconfigured remotely to respond
unanticipated events.

How to keep all the above activities under control in an open
and dynamic environment is still a very challenging question,
especially when one considers the distributed control features
of low-level control services, machines, devices and processes.
For example, even for modern factories with programmable log-
ical controllers (PLCs), their status and processes are kept in
closed environments and are separated from outside networks.
Meanwhile, different control systems may use different devices
from different vendors. Software and tools by different suppliers
cannot recognize each other. The status and operations of dis-
tributed devices are difficult to predict and control from a re-
mote site. Such situations have created barriers to forming new
collaborations with changing global supply chains and other ac-
tivities.

In recent years, a number of research projects have been pro-
posed to address the collaborative control problem of distributed
device systems in open environments. Significant projects in-
clude NIIIP [1]. The goal of this project was to develop a se-
ries of open industry software protocols that can make soft-
ware interoperation possible between manufacturers and their
suppliers. More recently, Cimplicity [2] from GE Fanuc Au-
tomation (USA) was developed to allow users to view their
factory’s operational processes through an XML-based Web-

View screen. In order to bring legacy machine tools on-line and
make machine tools become servers of information, e-Manu-
facturing Network Inc. (Canada) introduced its ION Universal

Interface and CORTEX Gateway [3]. Hitachi Seiki (Japan) in-
troduced Seiki FlexLink Open CNC/PC Network Connectivity

[4] to its turning and machining centers, making possible to
connect with a hand held personal digital assistant (PDA) or
a laptop computer and do in-process gauging, machine moni-
toring, and cycle-time analysis. Since 1998, Mazak (Japan) has
operated its high-tech Cyber Factory concept at its headquarters
in Oguchi, Japan. The fully networkable Mazatrol Fusion con-

trols allow Mazak machines to communicate over wireless net-
works for applications including real-time machine tool mon-
itoring and diagnostics. MetaMorph II [5] was proposed as a
hybrid, agent-based, mediator-centric architecture to integrate
partners, suppliers, and customers in a dynamic manufacturing
environment.

1551-3203/$20.00 © 2005 IEEE



218 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 4, NOVEMBER 2005

However, despite all these accomplishments, most of the
above systems are either for off-line simulation or for moni-
toring only. Most of these systems require a specific application
to be installed and configured instead of using standard inter-
faces. The requirement of a specific application has limited
the system portability, interoperability, and configurability.
Advanced system design, planning, scheduling, control and
execution remains isolated from the collaborative processes.
To be more competitive, users are now demanding flexible and
adaptable solutions for their requirements.

On the other hand, the Internet is becoming widely used
as an open medium for information communication, and is
expanding to industrial control and device control areas as well.
With system control and processing continuing to move toward
open and dynamic environments, like the Internet, existing
simple security protection methods, such as user name-pass-
word approach, tend to be insufficient to face all the risks.
More seriously, the requirements of portability, configurability,
interoperability, and other collaborative features bring new
security risks and challenges. The corresponding mechanisms
and solutions that are fully competitive with the demands of
open and dynamic environments are critical for the safety and
the functionality of collaborative systems.

This paper explores the design issues of distributed device
networks and the corresponding secure collaborative control
solutions under open and dynamic environments. The design of
distributed device control systems its primary implementation
challenges of portability, configurability, interoperability are
discussed in Section II. The security constraints and execu-
tion safety requirements are then analyzed in Section III. In
Section IV, a distributed device control model with security
features is proposed to address how distributed devices can be
controlled, not only remotely, but also securely. The concept
and architecture of Secure Device Control Gateways are intro-
duced in Section V. The design of the Security Agent (SA) and
the applied security mechanisms are presented in Section VI.
Implementation considerations are discussed in Section VII.
The future work and conclusions are given out in Section VIII.

II. DESIGN OF DISTRIBUTED DEVICE CONTROL SYSTEMS

Within the efforts toward increasing the interoperability,
portability, configurability and other collaborative features of
distributed device control systems, International Electrotech-
nical Commission’s Function Block specification (IEC61499)
[6] is one of the most significant efforts. IEC61499 provides
a set of systemic approaches for the design of distributed
industrial process measurement and control systems (IPMCS).
It specifies a series of reference models and covers the whole
life cycle of a control system, including the phases of system
planning, design, implementation, validation, operation, and
maintenance.

According to IEC61499, a distributed control system is de-
fined as a collection of interconnected devices communicating
with each other by means of one or more communication net-
works, as shown in Fig. 1. A function performed by the con-
trol system is modeled as an application which may reside in a
single device, such as the application C in Fig. 1, or may be dis-
tributed among several devices, such as the applications A and
B in Fig. 1. For instance, an application may consist of one or

Fig. 1. IEC61499 Distributed Control Systems Model (Source: [6]).

Fig. 2. Implemented features of IEC 61 499-based distributed control systems
(Source: [7]).

more control loops in which input sampling is performed in one
device, while control processing in another device, and output
conversion in a third.

IEC 61 499-4 specifies 4 primary implemented features in its
compliance profile [6]. These features, as illustrated in Fig. 2,
are briefly introduced as follows.

Portability: the capability to exchange control compo-
nents or codes between different tools and suppliers.
Configurability: devices from multiple vendors can be
configured by different software tools from different sup-
pliers.
Interoperability: devices from different vendors can co-
operate with each other.

While the IEC 61 499 architecture described in the standard fo-
cuses on reference models that allow distributed applications to
be developed using function blocks (FBs), it provides a well-
suited modeling architecture for the design of distributed device
control systems. More importantly, IEC61499 considers XML
encoding as a standard format for device control commands and
responses. IEC61499’s specification of IEC/PAS 61 499-2 gives
precise XML document type definitions (DTDs) of FB. So FB
elements can be expressed in XML and stored as FB libraries.
FB codes can also be easily made portable among different com-
mercial software tools and devices only if such tools and devices
can correctly parse and interpret all elements of XML elements.
As a result, IEC61499 architecture is particularly suitable for
collaborative control in an environment that is concurrent, asyn-
chronous, and distributed.
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Fig. 3. High-level model of secure collaborative distributed device control systems.

Demonstration of IEC61499 and FB related concepts for dis-

tributed industrial and device control systems have been demon-

strated in a number of projects in the literature [8]–[10]. For ex-

ample, Brennan et al. [8] proposed a model to support runtime

reconfiguration of distributed control systems that is built upon

FB models. FBDK [9] was developed as an experimental devel-

opment kit to enable the building and testing of FB-based con-

trol and applications. However, IEC61499 specification does not

address how FB components are stored, retrieved and protected

in a network environment. In another words, there is no discus-

sion concerning how such a distributed device control system

could run under open and dynamic environments. It is also hard

to find such discussion in available research literature. In order

to actually implement collaborative control under open and dy-

namic environments, further research and developments are re-

quired.

III. SECURITY CHALLENGES UNDER OPEN

AND DYNAMIC ENVIRONMENTS

The open and dynamic environment brings many new chal-

lenges to the collaborative control of distributed device systems.

In such an environment, for example, device access and infor-

mation exchange have to cross multiple corporate networks or

even over the Internet. Critical security challenges may arise in

the processes of command transferring, function modifications,

remote diagnosis, and maintenance. Any control operations in

open and dynamic environments may result in potentially haz-

ardous conditions. Most significantly, security risks may come

from the network, data storage, operating platforms, and ap-

plication modules. Compared with traditional control systems,

generally running in closed, trusted environments, this open col-

laboration scenario is accompanied by the following significant

security challenges.

a) Identification: Distributed devices, software tools, and

human operators need to identify themselves within the

open and dynamic environment. This is the means by

which devices, tools, and users may use to claim their

identities to the device control system.

b) Entity Authentication: This is a process to demonstrate the

evidence of the identity of a device or operator.

c) Data Authentication: This is a process to demonstrate

the evidence of the identity of the original source of ex-

changed commands, control codes, or device feedback.

d) Authorization: This is a process by which an entity is

granted to access another entity’s processes or resources.

It determines the extent of system rights that an entity

holds.

e) Integrity: Command and control codes must be protected

to ensure that no part is changed while in storage, or in

transmission across networks.

f) Confidentiality: Valuable codes and data, perhaps rep-

resenting confidential manufacturing processes, must be

protected from malicious attackers or competitors.

g) Nonrepudiation: An entity (a device, an operator, and so

on) cannot deny the authenticity of its signature on a com-

mand or a communication that it originates.

h) Execution Safety: The acceptance and execution of out-

side commands and control codes must be safe to the de-

vice and the control system. Each device may have inde-

pendent local task execution and protection requirements.

IV. DESIGN OF DISTRIBUTED DEVICE CONTROL SYSTEMS

WITH SECURITY FEATURES

This section presents the design of a secure collaborative dis-

tributed device control system. The high-level model of this

system is illustrated in Fig. 3.
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Fig. 4. Functional modules in a SC.

There are three logical domains in this model: client domain,

repository domain, and device domain. Entities in different do-

mains may be geographically distributed and connected through

networks (LAN or WAN). The collaboration and control opera-

tions may run across any open and unsecured network, like the

Internet.

Each client in this model is a secure client (SC), which is

protected by a module called the SA. Fig. 4 illustrates the basic

functional modules of SC. The SA is playing important roles,

which implements all the security enhancing operations in-

cluding security policy negotiation, entity authentication, data

confidentiality, nonrepudiation, and integrity. The architecture

and the working mechanisms of SA are to be presented in

Section VI in details.

On the client side, an operator or designer holds one or more

credentials, which certify that s/he has some granted rights to

request some services under limited conditions. For example,

before an operator wants to query the status of a device, the

operator must provide a proof (credential) signed by the de-

vice’s administrator or others who have the delegation authority.

Depending on an operator’s priorities and responsibilities, s/he

may request different services, like programming a new control

application, device reconfiguration, device operation, or device

monitoring.

On the repository side, a series of control components, ex-

pressed as IEC61499 FB Codes are stored in different repos-

itories. These components are different control functions and

applications (e.g., PID Control) that may come from different

suppliers. These repositories are distributed across several phys-

ical locations and may belong to different organizations. There

is a SA residing in each of the repositories. The SA is respon-

sible for all the security-related operations such as authenti-

cation, data encryption, integrity verification, audit and so on.

Each repository SA also maintains a series of security-related

policies, which specify the detailed security requirements and

constraints. Only requests compatible with these policies will

be served by SA. Fig. 5 illustrates the basic functional modules

of a secure repository (SR).

On the device side, there are a series of secure device con-

trol gateways (SDCGs) with local devices beneath them. By de-

fault, each SDCG and its associated devices are considered to

be within one trust boundary. This means that there is no secu-

rity risk between devices in one trust boundary. More details of

the SDCG will be discussed in Section V.

In our model, the above three domains are independent from

each other. Each client is an operating platform which provides

user interactions. A repository is responsible for the storing of

Fig. 5. Functional modules of SR.

Fig. 6. Typical secure processing among Client, Repository, and SDCG.

control components and codes. A device is responsible for the

execution of control tasks. While all the control components

could be logically designed or reassembled by software tools

at the client side, all the codes are stored in one or more repos-

itories and executable by one or more devices. Therefore, con-

trol components and codes are securely stored and retrievable

by authorized users or devices from anywhere, and an autho-

rized operator can use any client to control distributed devices

remotely.

Here is one example to demonstrate the security working

mechanisms of a secure distributed device control process. Sup-

pose an operator wishes to reconfigure some application running

on a device, the following activities would occur in progression.

First, the operator defines the new control function by browsing

available control components and codes, e.g., PID module, from

a repository. Then she/he sends commands to that device. The

device executes the commands. The operator gets feedback from

the device as necessary. In this case, the typical security oper-

ations among the involved three parties (client, repository, and

SDCG) are illustrated in Fig. 6.

1) First, the SA at the client side sends a message containing

its Request, Credential to the repository. The Request in-

dicates that the Operator wants to retrieve some available

control components from a repository. The credential in-

dicates the operator’s authority to do that request.

2) The SA at the repository side checks the credential against

the security policy to see if the request is authorized. If

the request and provided credentials satisfy the policies,

the Repository SA sends a Token to the Operator. This

Token is an authorization, which means that a holder of

the Token has the right to retrieve some specified control

components and codes, from the repository.
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3) After getting the Token, the operator sends the reconfig-

uration command, the token and her/his reconfiguration

credentials to the corresponding SDCG for the device in

its realm.

4) The SDCG then checks the request against SDCG’s se-

curity policy. If the credential cannot satisfy the security

policy, the request will be rejected. It is possible that the

operator turns to seek more credentials to support his/her

request, e.g., by coordinating with the device adminis-

trator. If the policy is satisfied, the SDCG asks to retrieve

the specified control components from the corresponding

repository by sending a Request, Token pair to that repos-

itory.

5) The repository verifies the Request and the Token against

its security policy. If satisfied, the repository sends the

control components and codes to the SDCG.

6) The SDCG then installs the control components on the

specified device according to the operator’s request. Ac-

cordingly, SDCG may send a (Feedback) like task-fin-

ished message to the operator.

Above is a simplified process of device configuration.

There could be more complicated security processes between

Client/Repository, Client/SDCG, or SDCG/Repository. For

example, besides browsing available control components, an

operator may design new components as necessary and store

the new designs in a repository. In order to store the new design,

the client will require a corresponding “storing” token from

the repository and then send the (Request, Control Component,

Token) to that repository to complete the storage process.

V. SECURE DEVICE CONTROL GATEWAY

In our proposed model, the SDCG plays important roles by

mediating outside requests and internal control actions in the

Device Domain. It guarantees the security and safety of the

device control. The architecture of this SDCG is illustrated in

Fig. 7, which includes the following.

• Security Agent: For incoming dataflow, the SA checks

the authenticity and integrity of the data. Then it decrypts

dataflow, which may contain commands or control com-

ponents in the form of XML. For outgoing dataflow, the

SA signs and encrypts outgoing XML data and delivery

results for their destinations. The architecture of the SA

and the applied mechanisms are presented in Section VI.

• XML-Binder Agent: This agent is responsible for mar-

shaling/unmarshaling XML data to/from Java Objects.

For incoming XML data, it unmarshals XML data to

runtime objects and generates OS-supported schedulable

tasks (i.e., threads). The generated OS tasks are sent to

the Admission Agent. For outgoing information, e.g.,

when the Execution Agent has feedback corresponding

to a device, the respective feedback objects are marshaled

to XML data and sent to the SA. The SA then signs, en-

crypts, and sends it out. It is worthy to note that because

only those tasks compatible with predefined FB XML

DTD schema can be unmarshaled or marshale. This

module contributes to the execution safety partially. In

Fig. 7. Architecture of SDCG.

other words, requests which are not compatible with the

FB XML DTD schema will be blocked out of the SDCG.

• Admission Agent: The Admission Agent checks whether

a newly requested task is available to be executed ac-

cording to the admission policy. For example, an admis-

sion policy specifies how much of a device’s processing

capacity is reserved for real-time tasks. If there is insuf-

ficient processor bandwidth available, the new Task will

be rejected for registry in the Task Queue. This module is

an important part of the Gateway to guarantee execution

safety of the distributed low-level control.

• Queue Agent: When a new Task passes the admission

test, a Task ID will be assigned to it. The task will then

be put into the Task Queue. The first task in the queue is

always waiting for execution in the next scheduling pe-

riod.

The Queue Agent maintains the queuing policy for or-

dering queried tasks. Specified rules can be set, for ex-

ample, the rule of “earliest deadline first” is used as the

most appropriate ordering rule for real-time device con-

trol. In addition, using different rules can constitute dif-

ferent task queues that are suitable for different types of

devices and task control requirements. For example, the

task queuing policy may be set according to the following

factors.

• Priority of each task.

• Task entry time.

• Fairness-guarantee that each waiting task will have

a ‘fair’ opportunity to run.

• Desired completion time of each task.

• Execution Agent: The Execution Agent is responsible for

the execution of a task. It gets the first task from the task
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Fig. 8. Structures and interaction of two SAs.

queue and uses the corresponding device API to begin the

execution of that task on the specified device.

VI. SECURITY AGENT AND ITS SECURITY MECHANISMS

In our proposed model, the SA is a key module in each of the
clients, repositories or SDCGs to support the security control. It
addresses the security challenges of authenticity, integrity, con-
fidentiality and so on. Fig. 8 illustrates the structures and inter-
action relationships of two SAs. These two SAs may belong to
any two of the client, repositories, or SDCG.

Between two interactive agents, one agent sends a request to
another agent through agent interfaces. Before a request is ser-
viced, the receiver always verifies whether or not the owner of
the request has the rights to access the services using the en-
tity authentication mechanisms in the application layer. If it is
successful, the request is signed and encrypted by the sender
for data confidentiality and nonrepudiation with the application
security functions. The involved security mechanisms are dis-
cussed below.

A. Entity Authentication Mechanisms

There are two schemes, A and B, for entity authentication. It
is the SA that has the responsibility to deduce, negotiate, and
adjust which scheme should be applied for an interaction.

Comparatively, scheme A is a weak authentication mecha-
nism that is based on password. It is called “weak” because
the password chosen is often short or obvious to allow easy
memorization. These sorts of passwords may be easily broken
by brute-force attacks [12]. However, the advantage of using a
weak authentication mechanism is that it suits the lightweight
systems, especially in the environment where clients do not use
a public-key infrastructure. Fig. 9(a) illustrates the processing
of the scheme A—weak entity authentication protocol.

The protocol is described as follows.

The claimant agent computes a hashing value with
its password and timestamp as input. It then sends
its identity (ID), timestamp , and hashing result

to the verifier agent.

Fig. 9. Weak and strong entity authentication protocol. (a) Scheme A. (b)
Scheme B.

After receiving the above message, the verifier agent ver-
ifies whether the timestamp is acceptable, and whether
the received hashing value is same as the hashing value
over the password and timestamp computed with verifier
agent. If the verification is successful, the verifier agent
sends a successful confirmation message to the claimant
agent. Otherwise, it sends a failed message to the claimant
agent.

Scheme B is a strong authentication mechanism. It uses a
challenge-response authentication protocol. In order to make a
strong authentication scheme work, each of the clients, reposi-
tories, and SDCGs will be assigned a unified public-key certifi-
cate, which consists of a key pair consisting of a public key and a
private key provided by a designated certificate authority (CA).
The public key is used as the identification of the key holder, and
for data verification, and data encryption functions. The private
key is used to form a signature on the credential and request,
and to provide other cryptographic functions such as decryp-
tion and session key exchange. The public key is published on
the public-key tree so that every entity can obtain it. Of course,
it is essential that the individual entities keep the private keys
secret.

Fig. 9(b) illustrates the processing of scheme B. The protocol
is described as follows:

The claimant agent first sends its identity (ID), certifi-
cate (Cert) and a random number to the verifier
agent.
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Fig. 10. Scheme 1-Authenticity, Non-repudiation, and Integrity.

Upon the reception, the verifier agent verifies that the
certificate is correct, and responds with another random
number to the claimant agent.
After receiving the Nonce message from the verifier
agent, the claimant agent signs the two Nonces together
using his private key, and sends the signature value

to the verifier agent.
Upon the reception, the verifier agent verifies whether
the signature value is correct using the public key of the
claimant agent, and then sends a confirmation message to
inform the claimant agent the verification is successful or
not.

B. Application Security Mechanisms

Three schemes are used to provide the application layer’s
data authentication, confidentiality, nonrepudiation, and in-
tegrity functions. They are described as follows.

1) Scheme 1—Data Authentication, Non-Repudiation, and

Integrity: Fig. 10 illustrates the process of Scheme 1, including
signature and verification processes. It provides authenticity,
nonrepudiation, and integrity but no confidentiality. The hash
value of the original message is formed by a hashing algorithm,
such as MD5 (a one-way transformation of a string of characters
into usually a shorter, fixed-length value). Only the hash value
of the message is signed in this scheme, avoiding the time-con-
suming process of signing large messages. The original mes-
sage is sent with the signature. The receiver verifies the signa-
ture using the hash value and the sender’s public key.

The basic protocol is described as follows.

The sender first creates the hash value of the original mes-
sage.
The hash value then is signed with sender’s private key.
The message and the signed hash value are sent to the
receiver.
The receiver recomputes the hash value, and verifies the
signature with the sender’s public key and the new hash
value.

2) Scheme 2—Data Confidentiality: Scheme 2 provides
data confidentiality. In this protocol, the sender first randomly
creates a session key, and then encrypts the message using the
session key. Finally, the sender encrypts the session key using
the receiver’s public key, puts the two ciphertexts together, and
sends them to the receiver.

3) Scheme 3—Data Authenticity, Confidentiality, Non-repu-

diation, and Integrity: Scheme 3 is a combination of Scheme

Fig. 11. Scheme 3-Authenticity, Confidentiality, Non-repudiation, and
Integrity.

1 and Scheme 2. It provides full protection of the application
data, including authentication, confidentiality, nonrepudiation,
and integrity. The process is illustrated in Fig. 11.

In this protocol, the sender first creates a hash value of the
message, and then signs the hash value with her/his private key.
After that, the sender puts the signature and the message to-
gether, and encrypts them using a random session key. The ses-
sion key finally is encrypted with the receiver’s public key. On
the receiver side, after receiving the ciphertext, the receiver first
decrypts the session key using his private key, and then decrypts
the encrypted message using the session key. Finally, the re-
ceiver verifies whether or not the signature is correct.

VII. IMPLEMENTATION CONSIDERATIONS

In the proposed model, the SDCG, which contains the SA and
other functions, is the most important part of the implementa-
tion. Two of the primary implementation issues of the SDCG
are discussed as follows.

A. Real-Time Scheduling Mechanisms for SDCG

For each SDCG, new commands and tasks might arrive at any
time. Most of these commands and tasks contain rigid time con-
straints for device control. Therefore, all of the involved SDCG
behaviors must be predictable. This means the execution and as-
sociated transaction processes must be guaranteed to complete
without violating the given time constraints. An SDCG must re-
spond “fast enough” as defined by the characteristics of a com-
mand. In order to support time-critical command execution, ap-
propriate real-time scheduling mechanisms are critical for the
implementation.

Generally, the real-time scheduling approaches for time-crit-
ical applications are divided into two types: cyclic execution
scheduling and preemptive scheduling. Apparently, cyclic
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Fig. 12. Prototype implementation based on Java RTOS.

scheduling cannot satisfy the dynamic environment require-
ment. The preemptive scheduling mechanism is chosen to
implement the SDCG.

There are two kinds of preemptive scheduling approaches:
priority-based scheduling and deadline-driven scheduling.
Because each SDCG may accept commands from distributed
clients dynamically, where each command may be set at any
priority, it is hard to coordinate which client shall use which pri-
ority, and whether a priority is set correctly. So priority-based
scheduling is not an appropriate approach. For the dead-
line-driven scheduling approach, the execution right depended
on whichever task is most quickly approaching its deadline.
From the priority point-of-view, the execution priorities of tasks
change on-the-fly as they approach their individual deadlines.
In order to guarantee real-time performances in distributed
dynamic situations, deadline-driven scheduling mechanisms
are preferable over others. Using deadline-driven scheduling,
the critical deadline of a dynamic command and control request
can always be guaranteed at run-time.

B. Prototyping on a Real Time Java Platform

Java platform has been chosen for the prototype development,
considering Java’s broad popularity, simplified object model,
strong notions of safety, security, as well as its multithreading
supports. Java intrinsically provides methods to support “pre-
emptive” operations, where a thread can be preempted at run-
time to another thread. Although Java has not too much history
of use in real-time systems because of its large size, nondeter-
ministic behavior, and scheduling performance, there have been
some considerable progresses in the development of Java-based
microprocessors or real-time kernels that made Java-based real-
time systems more of a reality [13]–[15].

Recently, three main approaches have emerged for real-time
Java implementations: 1) Real-time Specification for Java Ex-
pert Group is chartered to produce a specification for additions
to the Java platform to enable Java programs to be used for real-
time applications [13]: 2) New Java Chips for directly executing
Java code with real-time performance are designed and released,
such as aJile Systems’ Real-Time Processor for Java platform
[14]; 3) Java Virtual Machine and real-time operating system
kernel are combined together to supply an integrated real-time

Java kernel, such as the Esmertec’s JBED Real-time Java OS
[15]. In our research, the third approach based was chosen to
test the system prototype. Fig. 12 provides an overview of our
JBED-based SDCG experimental prototype, wherein the SDCG
core modules sit at the “application level” and are supported by
basic JBED services and the JBED real-time kernel.

VIII. CONCLUSIONS AND FUTURE WORK

Facing open and dynamic environments, effective security
enhancing mechanisms and architectures are critical for the con-
trol of distributed systems and devices. This paper addresses the
security challenges involved in the collaborative control of dis-
tributed device network under open and dynamic environments.
By combining network security technologies, software agents,
and XML processing technologies, the major security problems
of authenticity, integrity, confidentiality, and execution safety
are addressed. Two new modules, the SA and the SDCJ, are pro-
posed as primary security supports. The architecture and applied
security mechanisms are presented in detail.

The security of distributed systems is a multifaceted issue
touching multiple disciplines, domains, departments and even
cultures. For different industrial and practical application do-
mains, security problems may have to be considered differently.
For example, for the control of PLC devices in safety-related
medical systems, special requirements like IEC 601-1-4 should
be considered.

At the same time, there are other important issues to be in-
vestigated to extend the research. For example, there is a well-
grounded concern about the effectiveness to implement secu-
rity functions into one element of a system design, such as the
SA proposed here. Generally, security should be built into a
system at various levels to assure that the security functionality
is both robust and difficult to remove. A detailed security ef-
fectiveness analysis on this aspect is under development in our
research group. Furthermore, considering the limited resources
and capabilities of low-level control devices, lightweight secu-
rity mechanisms are important research topics to be addressed
in our research plans. The trust mechanisms between different
entities (clients, repositories, smart devices) are also under in-
vestigation. One of our undergoing developments following on
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this research is to implement a multi-agent based system to fa-
cilitate the automatic negotiation of security policies between
different collaborating organizations.
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