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Abstract. Transmitter power control has proven to be an efficient method to control cochannel interference in
cellular PCS, and to increase bandwidth utilization. Power control can also improve channel quality, lower the
power consumption, and facilitate network management functions such as mobile removals, hand-off and admission
control. Most of the previous studies have assumed that the transmitter power level is controlled in a continuous
domain, whereas in digitally power controlled systems, power levels are discrete. In this paper we study the
transmitter power control problem using only a finite set of discrete power levels.

The optimal discrete power vector is characterized, and a Distributed Discrete Power Control (DDPC) algorithm
which converges to it, is presented. The impact of the power level grid on the outage probability is also investigated.
A microcellular case study is used to evaluate the outage probabilities of the algorithms.
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1. Introduction

Future PCS cellular networks will require high quality channels, high bandwidth utilization,
low power consumption and efficient network management. Power control (up-link and down-
link) is a major technique which addresses these goals.

In [11], a model for a constrainedcontinuous power levelcontrol problem in a cellular
network with cochannel interference, has been recently studied. The model there (and in this
study) assumes a stationary link gain matrix, which is reasonable when the power control
converges much faster than the link gain changes. The results in [11], extend previous results
of centralized and distributed power control schemes obtained in [1, 14, 16, 19, 20, 10, 9, 8,
5, 15, 2].

In all these studies, the transmitter power level has been controlled in acontinuous power
domain. However, in practice transmission power in digital systems can be updated only at
discrete levels. For instance, in GSM the uplink and downlink transmission power may vary
from 5 to 33 dBm, at values which are equally spaced by 2 dB. In QUALCOMM’s CDMA
proposal for IS-95 [17], the power levels are equally spaced by 0.5 dB, within a dynamic range
of 85 dB in the uplink, and 12 dB in the downlink. This practical limitation has motivated this
study.

It has been shown in [11], that in the continuous power level with stationary link gains, the
Distributed Constrained Power Control (DCPC) converges to a unique power vector. However,
being forced to use discrete power levels raises the question whether or notconvergenceand
uniquenesshold true.
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In this study, we address these questions, and show that the answers are in the negative
domain. Nevertheless, we show that there is a “convergence” in a weaker sense. That is, to an
envelope of power vectors, rather than to a single vector. We also define optimality of a power
vector, and derive aDistributed Discrete Power Control(DDPC) algorithm which converges
to it. Preliminary results in [18] show that a rather coarse power level grid and limited dynamic
range can provide useful control. This is further substantiated in this study.

In Section 2 we define the model. In Section 3 we specify several distributed discrete power
control algorithms, and derive their convergence properties. In Section 4, we present a case
study of a Manhattan-like micro-cellular system, and in Section 5 our conclusions.

2. System Model

We restrict our definitions to the uplink case (from mobile to base). The definitions and results
hold true for the downlink case, after appropriate notational changes.

Consider a cellular radio system and focus on a generic channel (a specific frequency or
time slot). Assume that channels are orthogonal, so inter-channel interference is negligible.
Let N = f1;2; : : : ; Ng, be the set of active transmitters using this generic channel, and
p = (p1; p2; : : : ; pN )

T , be the transmission powers used by the mobiles to communicate
with their base stations. We will add a time index to the powers, whenever necessary, i.e.,
p(t) = (p1(t); p2(t); : : : ; pN (t))

T . The power levels of each transmitter is restricted to a
discrete set of valuesD = fx1; x2; : : : ; xng. The maximum power levelxn, is also denoted
by �p.

Denote the link gain matrix byG = [gij ], wheregij is the gain of the radio link from
transmitterj to basei, 1 6 i; j 6 N . All link gains assume values in the semi-open interval
(0;1]. Let � = (�1; �2; : : : ; �N )

T , be the receiver noise vector at the base stations. The noise
vector is non-negative, and at least one element in� is positive (otherwise we would obtain
the noiseless case). The link quality is measured by the Carrier to Interference Ratio (CIR).
For a given power vectorp, the CIR at the base station used by transmitteri, is given by


i =
pigii

�i +
P

j:j 6=i gijpj
; 1 6 i 6 N:

In the sequel, we use the terminterference powerto refer to the denominator above. For
notational convenience, we represent
i by


i =
pi

�i +
P

j aijpj
; 1 6 i 6 N; (1)

where�i = �i=gii, and

aij =

(
gij=gii; if i 6= j;

0; if i = j:

The matrix and the vector of the transformed gains and noises are denoted byA = [aij ] and
by � = (�1; �1; : : : ; �N )

T , respectively. Let
t = (
t1; 

t
2; : : : ; 


t
N )

T and�P = (�p; �p; : : : ; �p)T .
For every two vectorsv = (v1; v2; : : : ; vn), w = (w1; w2; : : : ; wn), and square matrix

M = [mij ], definev
w def
= (v1 �w1; v2 �w2; : : : ; vn �wn), andv
M def

= [vi �mij ]. To denote
theith element of a vectorv, we also use the notation[v]i.
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We say that a power vectorp supports transmitteri at its target CIR
ti , if and only if

pi > [
t 
 (Ap+ �)]i: (2)

That is, receiveri has a CIR
i satisfying
i > 
ti .
Next, we describe thecontinuouspower updates made by the DCPC algorithm, when the

target CIR vector is
t. Given the power vector at timet, p(t), and the set of transmitters
updating their powers at timet+ dt, U(t), then

pi(t+ dt) =

8<
:

minf�p; 
ti �
pi(t)

i(t)

g = minf�p; 
ti (�i +
P

j2N aijpj(t))g; if i 2 U(t);

pi(t); otherwise:
(3)

Note thatU(t) is an arbitrary set. Thus any arbitrary asynchronous power update is allowed
(subject to some week conditions which exclude infinitely long intervals where a power is not
being updated). IfU(t) = N for every update instancet, then we get the synchronous DCPC
algorithm. Otherwise, we get an arbitrary asynchronous version (ADCPC).

Also note, thatpi(t)gii=
i(t) is the interference power at receiveri. Since the interference
power can be estimated by the receiver, andgii can detected by the transmitter from the base
station pilot signal (assuming a reciprocal system), this algorithm can be implemented in a
distributed manner.

To exclude impractical cases where a transmitter cannot overcome its receiver background
noise, we assume thatp > 
ti�i;8 i.

We define a continuous DCPC transformation~T , from the set of all feasible continuous
power vectors into itself. This transformation is induced by the power update algorithm in (3),
and is useful to prove convergence properties.

~T (p) def
= minfP;
t 
 (Ap+ �)g:

To differentiate between the continuous and the discrete power vectors, we will annotate the
continuous power vectors by the sign~p. For every feasible initial power vector,~p(0) = ~p, the
continuous DCPC algorithm can be defined with the aid of~T (p), as follows.

Recursively define the transformations~T
k
; k > 0, by

~T
0
(~p) def

= ~p; ~T
k
(~p) def

= ~T ( ~T
k�1

(~p)): (4)

The continuous power vector afterk updates is then obtained by

~p(k) = ~T (~p(k � 1)) = ~T k(~p(0)):

From [11], it follows that for any given
t, the power vectors under DCPC and under ADCPC,
converge to a unique positive power vector determined by the fixed point solution to

p = minfP;
t 
 (Ap+ �)g: (5)

A power vectorp which satisfies the fixed point equations in (5), will be referred to as
the continuous stationary power vector. Again, for notational clarity, we will denote the
continuous stationary power vector by~p�. It has been shown in [11], that when the power level
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is continuous, then there is a unique stationary power vector~p�. Also, if all transmitters can
be supported, then the continuous DCPC and ADCPC converge to the fixed point solution to

p = 
t 
 (Ap+ �):

Let S be the subset of transmitters which are supported (at their CIR target
ti ) under the
DCPC continuous stationary power vector. It is worth noting that

p̂�i = �p; 8i 2 �S;

whereS denotes the complement set ofS. That is, if a mobile cannot be supported, then it is
necessarily transmitting with its maximum power.

When the power levels are discrete, the continuous DCPC algorithm in (3) cannot be
applied. Therefore, a discrete version is required, and being addressed in the next section.

3. Distributed Discrete Power Control

A natural “discretization” of the continuous DCPC is to take the “ceiling” or the “floor” of
the right-hand side of (3). For a power valuex, let dxe (bxc) be the smallest (largest) value in
D which is larger (smaller) than or equalsx.

We define two Distributed Discrete Power Control (DDPC) algorithms whose objective is
twofold. First, they will construct a convergence “envelope” (or a “fixed-envelope” solution,
paraphrasing on the fixed-point solution terminology). Second, they will serve as building
blocks of a discrete algorithm which converges to the optimal power vector, defined below.
These are the following Ceiling and Floor DDPC algorithms.

3.1. CEILING DDPC ALGORITHM

For any given power vector at timet, p(t), and a set of transmitters updating their powers
at timet+ dt, U(t), the Ceiling DDPC updates the new powers according to

pi(t+ dt)

=

8<
:

minf�p; d
ti �
pi(t)

i(t)

eg = minf�p; d
ti (�i +
P

j2N aijpj(t))eg; if i 2 U(t);

pi(t); otherwise:
(6)

Similarly to the continuous power level case, a Ceiling DDPC induced transformationT ,
from the set of all feasible discrete power vectors into itself, is defined by

T (p) def
= minfP; d
t 
 (Ap+ �)eg:

The Ceiling DDPC algorithm can be defined with the aid ofT (p), in the same manner as in
(4).

The Floor DDPC is also defined in a similar manner. To differentiate between the powers
under Ceiling DDPC and Floor DDPC, we will usep for the Ceiling, andq for the Floor.

3.2. FLOOR DDPC ALGORITHM

For any given power vector at timet, q(t), and a set of transmitters updating their powers
at timet+ dt, U(t), the Floor DDPC updates the new powers according to
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qi(t+ dt)

=

8<
:

minf�p; b
ti �
qi(t)

i(t)

cg = minf�p; b
ti (�i +
P

j2N aijqj(t))cg; if i 2 U(t);

qi(t); otherwise:
(7)

The Floor DDPC induced transformationT , from the set of all feasible discrete power
vectors into itself, is defined by

T (q) def
= minfP; b
t 
 (Aq+ �)cg:

Again, the Floor DDPC algorithm can be defined with the aid ofT (p), as in (4).
Fixed point solutions (i.e., stationary power vectors), even when not unique, can be defined

as in the continuous case.
A vectorp� is aceiling stationary power vectorif and only if it is a fixed-point solution to

p = minfP; d
t 
 (Ap+ �)eg: (8)

A vectorq� is afloor stationary power vectorif and only if it is a fixed-point solution to

q = minfP; b
t 
 (Aq+ �)cg: (9)

Although, the Ceiling and Floor DDPC algorithms are simple “discretizations” of the
continuous DCPC, they may not converge, nor they may have a unique fixed point solution.
This can be seen from the following counterexample.1

Consider two transmitters (N = 2) using power levels fromf0:5;1g. Leta12 = a21 = 0:5,
�1 = �2 = "=10, and
t1 = 
t2 = 2� " for Ceiling DDPC (and
t1 = 
t2 = 2+ " for Floor
DDPC). Here," is some arbitrary small and positive number. Starting withp(0) = (0:5;1),
the power vectors will oscillate between(0:5;1) and(1;0:5). Also, there are two fixed point
solutions which are(0:5;0:5) and(1;1).

This counterexample illuminates the convergence and uniqueness problems in a discrete
power control. Therefore, the questions which we next address are the following. What sort
of convergence could be expected? Can we determine the “envelope” where the powers
may oscillate? Can we force the convergence to the smallest power vector, without loosing
supported mobiles?

Note that except for the case where the discrete stationary power vector is also the contin-
uous one, the fixed-point equations in (5) and (9) imply the following property.

(P1) Under every floor stationary power vector, none of the transmitters are supported.

Thus, we clearly would like to prevent convergence to a floor stationary power vector. Never-
theless, the Floor DDPC turns out to be a useful device which drives the convergence to the
“optimal” stationary power vector, defined below.

Two main properties are elementary in any discrete power update equations. One is that
the resultant power vector is stationary (a fixed-point solution to the update equations), which
results in a stable transmission power. Another is that the update power equations have a
solution under which all transmitter are supported, if there is a power vector which supports
them.

1 This example is due to an anonymous referee.
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The next Lemma shows that the set of power update equations defined by the Ceiling
DDPC, and the Ceiling stationary power vectors have the properties above.

LEMMA 3.1. If there is a discrete power vector under which all transmitters are supported,
then there is a ceiling stationary power vector which also supports them.

Proof. From the Lemma assumption, it follows from (2) that there is a feasible power
vectorp for which

p > 
t 
 (Ap+ �): (10)

Sincep is a feasible discrete power vector, (10) implies

p = dpe > d
t 
 (Ap+ �)e:

Let p(0) = p, be the initial power vector. We will show by induction on the Ceiling DDPC
iteration stepk, that

p(k) 6 p(k � 1) (11)

and that

p(k) > d
t 
 (Ap(k) + �)e: (12)

Fork = 1, it follows from (10) that

p(1) = T (p(0)) = d
t 
 (Ap(0) + �)e 6 p(0):

Thus, (11) and (12) hold fork = 1. Assume that they hold true for iteration steps 1;2; : : : ; k�1.
From the recursive definition ofp(k), and the induction assumption on inequality (12), we
have

p(k) = T (p(k � 1)) = d
t 
 (Ap(k � 1) + �)e 6 p(k � 1):

SinceA > 0, we also have

p(k) = d
t 
 (Ap(k � 1) + �)e > d
t 
 (Ap(k) + �)e:

Thus (11) and (12) hold true for everyk. Since the sequencefp(k); k > 0g is non-increasing
and bounded below by the zero vector, it converges to a ceiling stationary power vector,p�,
which satisfy

p� = d
t 
 (Ap� + �)e:

Thus, from (2),p� supports all transmitters. This completes the proof. 2

Hence, the set of Ceiling DDPC stationary power vectors contains the desirable power vectors,
in the case where all mobiles can be supported. Note that it may contain several supporting
power vectors, from which we will derive the best one.

An extension to the property in Lemma 3.1 could have been the following. If there is a
discrete power vector under which a subset of transmittersS are supported, then there is a
ceiling stationary power vector which also supportsS. This property does not hold, neither
for the continuous DCPC, nor for the Ceiling DDPC, from the following reason. The DCPC
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and the DDPC drive the powers to the minimum power level where all receivers have CIRs
which are as close as possible to their CIR targets. Including those which are not supported.
Therefore, they cannot converge to a power vector with the largest supported set. To solve this
problem, a modification to the DCPC algorithm which combines transmitter removals and
power control, has been proposed in [4]. The algorithm there, is aGradual Removal algorithm
with DCPC combined (GR-DCPC). The same technique can be used to derive a Gradual
Removal with Ceiling DDPC (GR-DDPC) combined, which will eventually end with only
supported transmitters. Thus, the property in Lemma 3.1 is sufficiently solid when combining
the Ceiling DDPC with the Gradual Removal algorithm.

Therefore, we may regard the ceiling stationary power vectors as a desirable set of discrete
power vectors, from which an optimal one can be selected. The optimal power vector is defined
as follows.

DEFINITION 3.1. For every two power vectorsp1 andp2, we say thatp1 is betterthanp2 if:

(i) Every transmitter which is supported underp2, is also supported underp1.
(ii) p1 6 p2, component-wise.

A ceiling stationary power vectorp� is optimal (if exists), if it is better than any other
ceiling stationary power vector.

Note that the relationbetter is not necessarily a complete ordering among the ceiling
stationary power vectors. Nevertheless, we require from an optimal power vectorp�, to be
betterthan any other ceiling stationary power vector. Such an optimal power vector may not
exist in general, however, we prove its existence in our system. We also derive a power control
algorithm which converges to it.

We start by showing in the next Lemma, that the Ceiling and Floor DDPC transformations
defined in (6) and (7), are monotone. This monotonicity is most useful to prove convergence
and dominance, since it propagates to subsequent power vectors.

LEMMA 3.2. The transformationT (p) (T (q)) is monotonically increasing inp (in q). That
is, if p1 6 p2 (q1 6 q2), thenT (p1) 6 T (p2) (T (q1) 6 T (q2)).

Proof. We prove the Lemma for the transformationT . After notational changes we also
get the proof forT .

SinceA is non-negative,
t is positive, and the functiondxe is monotonic inx, we have

d
t 
 (Ap1 + �)e 6 d
t 
 (Ap2 + �)e:

Therefore, also

T (p1) = minfP; d
t 
 (Ap1 + �)eg 6 minfP; d
t 
 (Ap2 + �)eg = T (p2):

This completes the proof. 2

Although the counterexample above shows that convergence cannot be guaranteed, there
are certain initial power vectors from which the Ceiling and the Floor DDPC do converge.
Two special initial points are the zero power vector(0;0; : : : ;0)T , and the maximum power
vectorP = (�p; : : : ; �p)T . They are special in the sense that their convergence points define an
envelope which will be shown to contain all other stationary power vectors. Moreover, when
the power vectors do not converge, they oscillate within this envelope.
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The next Lemma shows that if we start with an initial power vector(0;0; : : : ;0)T , then
the power vectors generated by the Ceiling (Floor) DDPC algorithm, monotonically and
non-decreasingly converge to the smallest Ceiling (Floor) stationary power vector, which is
dominated from below (above) by the continuous stationary power vector~p�.

LEMMA 3.3. Let p(0) = (0;0; : : : ;0)T (q(0) = (0;0; : : : ;0)T ) be an initial power vector.
Then, the power vector sequencefp(k); k > 0g (fq(k); k > 0g) converges to a ceiling(floor)
stationary power vectorp� (q� ).

Moreover,p� (q�) is the smallest component-wise ceiling (floor) stationary power vector,
and

q� 6 ~p� 6 p�:

Proof. We prove the Lemma for the transformationT . After notational changes and
reversing inequalities where trivially needed, we also get the proof forT .

We clearly have,p(1) = T (p(0)) > p(0). By applying Lemma 3.2 to this inequality,k
successive times, it follows from the recursive definition of the transformation that

p(k + 1) = T
k
(p(1)) > T

k
(p(0)) = p(k):

Thus, the sequencefp(k); k > 0g is non-decreasing. Since it is also bounded byP, it converges
to a ceiling stationary power vector, which we denote byp�.

To show that the vectorp� is the smallest ceiling stationary power vector, note that any
initial power vectorsp(0), satisfiesp(0) > (0;0; : : : ;0)T . Thus, by applying Lemma 3.2 to
this inequality,k successive times, we have from the recursive definition of the transformation
that

T
k
(p(0)) > T

k
((0; : : : ;0)):

Lettingk approach infinity, implies the required result.
The inequality~p� 6 p� will be shown by induction on the power control iteration stepk.

Let ~p(0) = p(0) = (0; : : : ;0)T be the initial power vector for the continuous DCPC. Assume
by induction, that~p(k) 6 p(k).

From [11, Lemma 6], the transformation~T (p) in (4), is monotonically increasing withp.
Thus, from (4) and the induction assumption

~p(k + 1) = ~T (~p(k)) 6 ~T (p(k)): (13)

By the definition of the transformation~T andT ,

~T (p(k)) 6 T (p(k)) = p(k + 1): (14)

From (13) and (14),~p(k + 1) 6 p(k + 1). Lettingk approach infinity implies~p� 6 p� (since
the continuous stationary power vector is unique). This completes the proof. 2

In the next Lemma we show that if we start with an initial power vectorP, then power
vectors under the Ceiling (Floor) DDPC algorithm, monotonically and non-increasingly, con-
verge to the largest stationary power vector. This power vector dominates (is dominated by)
the continuous stationary power vector~p�.
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LEMMA 3.4. Letp(0) = (�p; : : : ; �p)T (q(0) = (�p; : : : ; �p)T ) be an initial power vector. Then,
the power vector sequencefp(k); k > 0g (fq(k); k > 0g) converges to a ceiling (floor)
stationary power vectorp� (q�).

Moreover,p� (q�) is the largest component-wise ceiling (floor) stationary power vector,
and

q� 6 ~p� 6 p�:

Proof.The proof is obtained from the proof of Lemma 3.3, by reversing inequalities where
trivially needed. This can easily be verified by the reader. 2

In Lemmas 3.3 and 3.4 we specified the largest and the smallest stationary power vectors
under the Ceiling and the Floor DDPC algorithms. We also found initial vectors from which
convergence to these power vectors are guaranteed. We will use them to define the two
following envelopes

Bc = fp j p� 6 p 6 p�g;

Bf = fq j q� 6 q 6 q�g:

Now we have the devices to show that the Ceiling (Floor) DDPC “converges” (in a sense
which is made more precise in the Theorem below) to the envelopeBc (Bf ). Moreover, there
are initial power vectors from which the algorithm converges to a single power vector inside
this envelope.

THEOREM 3.1.Letp(0) (q(0)) be any feasible initial power vector. Then, the power vector
sequencefp(k); k > 0g (fq(k); k > 0g) satisfies the following convergence properties:

(a) If (0;0; : : : ;0)T 6 p(0) 6 p� ((0;0; : : : ;0)T 6 q(0) 6 q�), then fp(k)g (fq(k)g)
converges top� (q�).

(b) If p� 6 p(0) 6 P (q� 6 q(0) 6 P), thenfp(k)g (fq(k)g) converges top� (q�).
(c) Otherwise,fp(k)g (fq(k)g) will either converge to a stationary power vector inside the

envelopeBc (Bf ), or will eventually oscillate inside the envelopeBc (Bf ).

Moreover, letp� (q�) be any power vector which is reached under the Ceiling(Floor) DDPC,
after “onverging” into the envelopeBc (Bf ). Then, the following ordering holds true

q� 6 q� 6 q� 6 ~p� 6 p� 6 p� 6 p�: (15)

Proof. In the proof we consider only the transformationT . As before, the proof forT is
almost identical.

To prove part (a), we apply the transformationT , k successive times, on each of the vectors
in the following inequalities

(0;0; : : : ;0)T 6 p(0) 6 p�:

From Lemma 3.2 and the recursive definition of the transformation, we have

T
k
(0; : : : ;0) 6 p(k + 1) = T

k
(p(0)) 6 T k

(p�) = p�: (16)

The right-hand side equality follows from the fact thatp� is a fixed-point solution.
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Lettingk approach infinity, it follows from Lemma 3.3 thatT
k
(0; : : : ;0) converges top�.

Thus, the inequalities in (16) boundfp(k)g to converge top�.
The proof of part (b) is similar, except that we start with the inequalities

p� 6 p(0) 6 P;

and use Lemma 3.4 rather than Lemma 3.3.
The proof of part (c) is again similar, except that we start with the inequalities

(0;0; : : : ;0) 6 p(0) 6 P;

and use both, Lemma 3.3 for the left-hand side, and Lemma 3.4 for the right-hand side. Thus,
the sequencefp(k)g (in any other case which is not covered by cases (a) and (b)) is bounded
to eventually enter into the envelopeBc. There are only two possibilities which may occur in
the limit. It may either converge to a fixed-point solution, or oscillate inside the envelope.

To prove the inequalities in (15), notice that the three most left and the three most right
inequalities there, follow from parts (a)–(c) of the Theorem. The two middle inequalities there,
follow from Lemmas 3.3–3.4. This completes the proof. 2

Theorem 3.1 above states that in the discrete case, the power vectors under the Ceiling
(Floor) DDPC converge in a somewhat weaker sense. That is, into an envelopeBc (Bf ).
Thus, even when the power sequence oscillates, it will be within a bounding envelope. The
size of the envelope however, depends on the power level grid and on the link gains. (See the
numerical examples in Section 4). A large envelope may result in a large fluctuation in the
CIR. To evaluate how bad the CIR could become under the Ceiling DDPC, we consider the
worst case scenario. From Theorem 3.1, the power vectorsfp(k); k > 0g under the Ceiling
DDPC enterBc after a finite number of steps. Thus, the following Lemma provides a method
to evaluate the lowest CIR.

LEMMA 3.5. Let M be the first step where the power vector sequence under the Ceiling
DDPC algorithm enters the envelopeBc. Then the CIR for any transmitteri at stepk, 
i(k),
k >M , is at least as large as



i
=

p�
iP

j2N aijp
�
j + �i

:

Proof. The assertion follows directly from the fact thatp(k) 2 Bc, 8 k > M , equations
(1), (15), and Theorem 3.1. 2

An oscillating power sequence has two main drawbacks. One is clearly the CIR fluctua-
tion. The other is the reduced number of supported mobiles compared with a converging
algorithm. To realize that, observe that even ifp� andp�, both support all mobiles, not all
power vectors inBc necessarily support them. Hence, an algorithm under which the power
vectors oscillate (i.e., Ceiling DDPC), may result in mobile outage. (See the numerical exam-
ples in Section 4.) These two drawbacks call for an algorithm which converges to a unique
power vector. Such an algorithm is derived below.

The power vector to which the algorithm converges, could be important. As motivated by
our optimality notion above, it is always better to converge to the optimal one (if such exists).
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In the rest of this section, we first prove thatp� is theoptimal stationary power vector. and
then we derive an algorithm which converges to it.

THEOREM 3.2.The ceiling power vectorp� is optimal.
Proof. As in the proof of Theorem 3.1 part (a) (ignoring the right-hand side of the inequal-

ities), we get thatp� is the smallest stationary power vector. Thus, it is left to show that if
transmitteri is supported by any ceiling stationary power vectorp�, then it is also supported
by p�.

Suppose by contradiction, thati is not supported byp�. Then, from (2) and (8) we have

p�
i
= �p < [d
t 
 (Ap� + �)e]i: (17)

SinceA > 0 andp� is the smallest ceiling stationary power vector, we have

[d
t 
 (Ap� + �)e]i 6 [d
t 
 (Ap� + �)e]i = p�i : (18)

This inequality follows from the fact thatp� is a ceiling stationary power vector.
Thus, from (17) and (18) we havep�i > �p, which is a contradiction. Therefore,i is also

supported byp�. This completes the proof. 2

Theorem 3.2 identifies the optimal power vector. A distributed algorithm which drives the
powers to the optimum, is a combination of the Floor and the Ceiling DDPC algorithms. A
simpler, but less practical solution, is to first set the powers to zero, and then start the Ceiling
DDPC (see Lemma 3.3). However, in practice it is undesirable, since it results in a temporarily
poor connection. Instead, we first use the Floor DDPC from any initial power vector, until it
enters the envelopeBf . From then on, we use the Ceiling DDPC.

3.3. DDPC ALGORITHM

From any initial power vector, start updating the powers according to the Floor DDPC
until the first entry into envelopeBf . From then on, continue with Ceiling DDPC.

Since the power values are discrete, Theorem 3.1 implies that the power sequence enters
the envelopeBf after a finite number of steps. The entrance into the envelope of an individual
transmitteri, can be locally detected by watching for a cycle (either of length one, or larger)
in the sequencefpi(k)g. Coordinating the moment when all transmitters enter the envelope,
can be done by a simple signaling procedure.

Next we prove that the power vectors under DDPC converge to the optimal power vector.

THEOREM 3.3.For every initial power vector, the power vectors generated by the DDPC
algorithm converge top�.

Proof. Let q(0) be any initial power vector, andq(k) be any power vector after entering
the envelopeBf .

Setp(0) = q(k). From the inequalities in (15) of Theorem 3.1, and part (a) of that Theorem,
the power sequencefp(n)g, which are generated by the Ceiling DDPC, converges top�. This
completes the proof. 2
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Figure 1. The asymmetric AHS(1, 1) cell plan with cluster sizeNc = 3. The dark crosses are the cochannel cells
and the white squares are the buildings seen from above.

We have demonstrated the problems which may occur from a simple “discretization” of the
continuous DCPC algorithm such as the Ceiling DDPC does. We also identified the optimal
discrete power vector, and proposed a distributed algorithm which achieves it. In the next
section, we will examine some of the practical issues, and quantify the differences between
the continuous DCPC, the Ceiling DDPC and the DDPC.

4. A Microcellular Example

In this section we address two main questions. One is, how much can be gained by refining
the power level grid. The other is, how much can be gained by applying DDPC rather than the
Ceiling DDPC. To address the first question, we evaluate the impact of the power level grid
on the envelopeBc, on the outage probability, and on the “convergence” rate. To address the
other question, we compare among the CIR values. We use a case study of a Manhattan-like
microcellular system, which is briefly described below. A complete description of the system
is given in [3].

4.1. A MANHATTAN -LIKE SYSTEM

The microcellular system under investigation is a typical metropolitan environment consisting
of building blocks of a square shape, as depicted in Figure 1. The cell plan isAsymmetric Half
Square (AHS), AHS(1,1)[12]. We assume that the channel assignment is fixed and divides the
cells into three different channel groups (cochannel cells). Thus, resulting in a cluster size of
Nc = 3. This cell plan has aline-of-sight (LOS)reuse distanceDLOS = 3. In the pictorial
presentation in Figure 1, the dark cells represent a single channel group. We further assume
that base stations use omnidirectional antennas.

In the simulation we use 10� 10 cochannel cells, and mobile locations (one per cell) are
independently sampled from a uniform distribution over each cell area. The link gain,gij , is
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modeled as a product of two variables, i.e.,gij = lij � sij. The variablesij is the variation
in the received signal due to shadow fading; andlij is the large scale propagation loss. We
assume that the variablessij ’s are independent, log-normally distributed with a mean of 0 dB,
and a log-variance of� = 4 dB [7]. Each variablelij depends on the transmitter and receiver
locations, and are modeled based on the findings in [6]. We use a uniform CIR target,
t, for
all transmitters.

We use a grid of power levelsD�, which are equally spaced at distance� dB, from
10 logp dB to 10 logp dB. The maximum transmitter power,p, is 1 W (0 dB), and the
dynamic range values are 30 dB and 60 dB. It turns out that there is almost no difference
between the two dynamic ranges, thus only the results for the 30 dB case are presented.
Borrowing from GSM and Qualcomm’s CDMA systems, we use three values for the grid
spacing�, i.e., 0.5, 1 and 2 dB. The receiver noise is taken as 10�15 W (�150 dBW).

4.2. METHOD OFCOMPARISON

The power vector sequence under the DDPC algorithm converges top�, and under the Ceiling
DDPC it may either converge, or oscillate within the envelopeBc (depending on the initial
power). Hence, the size ofBc is a good indicator for the power oscillation under the Ceiling
DDPC. Note though, thatBc is a random variable governed by the link gain distribution. We
use two measures to quantify its size. The first one is the cumulative distribution function

(cdf) of an arbitrary component	, taken fromf	i
def
= 10 logp�i � 10 logp�

i
j 1 6 i 6 Ng.

The second one is the cdf of	max
def
= max16i6N 	i. The former describes the power

difference for an arbitrary mobile, whereas the latter describes the power difference for the
worst situated mobile. Since power levels are equally spaced with distance� dB, the two
cdf’s are given byP (	 6 k�) andP (	max6 k�), k = 0;1;2; : : : ; respectively.

The impact of the grid size on the mobile outage is evaluated by the outage probability,
Poutage= P (
 < 
t); where
 is the CIR of a randomly selected link. The outage probability
measures the long-run proportion of mobiles that cannot be supported.

Another practical performance measure is the convergence rate. One of the problems
encountered by the continuous DCPC algorithm, is its slow convergence rate when the CIR
target is set to support most of the mobiles, and is just below the maximum channel capacity.
(This is definitely a desirable operational value to use.) It turns out from our case study, that
spacing the power levels greatly accelerate the convergence, with only a marginal reduction
in the outage probability. For our evaluation, we compute an upper bound on the expected
convergence time, rather than the actual expected number. The reason is that the convergence
time depends on the initial power vector, which is an infinite set. The upper bound is derived
as follows.

For any given realization, letm1 (m2) be the number of power updates required to converge
when starting from the all zero (allp) power vector. From Theorem 3.1, it is easy to verify
that from any feasible initial power vector, the sequence will enterBc, after at mostm =
max(m1;m2) number of updates.

To evaluate the CIR degradation under Ceiling DDPC at instances where the CIR under
DDPC is above the CIR target, we compute the probabilities

P (
 < x; 
� > 
t ):
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Figure 2. The cumulative distribution function of the difference between the two stationary power vectors of an
arbitrary transmitter.

Here,
� is the CIR of a random link underp� (i.e., under DDPC); and
 is its lower bound
under Ceiling DDPC (see Lemma 3.5). This cdf measures the lowest CIR level of a random
link under the Ceiling DDPC algorithm, in those instances where DDPC can support it.

All the statistics above are evaluated via simulation, where under every power control
algorithm, we sample 10,000 instances of mobile locations and shadow fading values. The
power updates are made synchronously.

4.3. NUMERICAL RESULTS

Figures 2 and 3 depict the cdf of	 (i.e., an arbitrary difference 10 logp�i � 10 logp�
i
), for

various CIR targets(8;12;16;20 dB) and grid sizes(� = 0:5 and 2 dB). Observe that the
difference in power is the largest (and therefore so is the potential power oscillation), when
the CIR target is around 16 dB. It becomes smaller when it either increases, or decreases.
For instance (see Figure 3), when� = 2 dB and
t = 16 dB, the transmission power of
20 percent of the transmitters, will oscillate in a range larger than 2 dB; 14 percent of them, in
a range larger than 4 dB; and 8 percent of them, in a range larger than 6 dB. On the other hand,
for 
t = 12 dB, the transmission power of 95 percent of the transmitters will not oscillate at
all; for 
t = 20 dB, 83 percent of them will not oscillate. This trend is attributed to the fact
that either for small or large CIR targets, the transmission powers are pushed closer to the
boundaries, and therefore resulting in a smaller envelope. The affect of the grid size on the
envelope size is obvious.

Figures 4 and 5 correspond to Figures 2 and 3, for the cdf of	max(i.e., the maximum of the
differences 10 logp�i � 10 logp�

i
). Here, the power potential oscillation statistics reflect only

the worst situated mobile. Observe again, that the worst potential oscillation occurs when the
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Figure 3. The cumulative distribution function of the difference between the two stationary power vectors of an
arbitrary transmitter.

CIR target is around 16 dB. Clearly, for that mobile, the potential fluctuation is more severe.
For instance (see Figure 5), when� = 2 dB and
t = 16 dB, the transmission power of the
worst mobile will oscillate in a range larger than 4 dB, with probability 0.68; in a range larger
than 8 dB, with probability 0.44; and in a range larger than 12 dB, with probability 0.30. On
the other hand, for
t = 12 dB, its transmission power will not oscillate with a probability of
0.41.

In Figure 6 we compare between the outage probabilities of the DDPC (with different grid
sizes) and that of the continuous DCPC. Note that the continuous DCPC is the limiting case
of the DDPC, when the grid size approaches zero. (In the simulations we use the differences
of " = 10�2;10�4 or 10�8, between two consecutive power vectors, as a stopping rule.) The
figure illustrates the increase in mobile outage as a result of the power level spacing. This
is particularly interesting in light of the gain in the convergence rate which is presented in
Figure 7. As expected, refining the power level grid reduces the outage probability. However,
a very small CIR gain is obtained by refining the grid from� = 2 dB to the continuous case.
For instance, at the 10 percent outage probability level, a CIR gain of only 0.5 dB is obtained.
The increase in the expected number of update steps however, (Figure 7), is tremendous (from
20 to 160 steps). In general, the expected convergence time under DDPC, is between 2 to 8
times faster compared with the continuous case.

The outage probabilities under the optimal DDPC power vectorp�, and under the power
vectorp�, are also evaluated. That is, under the two extreme power vectors in the envelope
Bc. It turns out that they are practically the same. However, as previously noted, it does not
imply that the outage probabilities under Ceiling DDPC and under DDPC are the same, as the
former may oscillate. The outage reduction under DDPC compared with the Ceiling DDPC
is demonstrated by Figure 8.
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Figure 4. The cumulative distribution function of the worst situated transmitter.

Figure 5. The cumulative distribution function of the worst situated transmitter.
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Figure 6. Outage probabilities under the DCPC and the DDPC algorithms.

Figure 7. The mean number of power updates until convergence under the DCPC algorithm and the Ceiling DDPC
algorithms.



228 M. Andersin et al.

Figure 8. The joint distribution of the CIRs.

In Figure 8, we observe that for a 16 dB CIR target and a grid of size� = 0:5 dB,
25 percent of the mobiles are supported under DDPC and not under the Ceiling DDPC. For a
grid of size� = 2 dB, 38 percent of the mobiles are supported under the DDPC and not under
the Ceiling DDPC. This gives a substantial advantage to DDPC compared with the Ceiling
DDPC. For lower and higher CIR targets, the advantage is smaller.

5. Conclusions

We studied transmitter power control algorithms in cellular PCS which use discrete power
levels. It is shown that by simply “discretizing” the continuous power control algorithm, the
convergence and uniqueness of the continuous power control are lost. The discrete Ceiling
DDPC algorithm, is shown to “onverge” in a weaker sense, i.e., into an envelope of power
vectors rather than to a unique vector. The transmitter powers under this algorithm may oscil-
late, which results in a poorer link quality and in a higher outage probability. The oscillation is
alleviated by the proposed Distributed Discrete Power Control (DDPC) algorithm. Our main
conclusions from our case study are the following.

First, the size of the convergence envelopeBc depends on the grid size and on the CIR
target. It shrinks when the grid is refined, and it grows when the CIR target becomes closer to
a value where the channel capacity is most utilized.

Second, the outage probability is marginally reduced by refining the power level grid. The
increase in the expected number of update steps, however, is tremendous.

Last, using DDPC reduces the outage probability compared with that of the Ceiling DDPC.
The improvement is substantial when the channel capacity is highly utilized.
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