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Abstract The distributed dislocation technique pro-
ved to be in the past an effective approach in studying
crack problems within classical elasticity. The present
work aims at extending this technique in studying crack
problems within couple-stress elasticity, i.e. within a
theory accounting for effects of microstructure. As a
first step, the technique is introduced to study finite-
length cracks under remotely applied shear loadings
(mode II and mode III cases). The mode II and mode III
cracks are modeled by a continuous distribution of glide
and screw dislocations, respectively, that create both
standard stresses and couple stresses in the body. In
particular, it is shown that the mode II case is governed
by a singular integral equation with a more complica-
ted kernel than that in classical elasticity. The numerical
solution of this equation shows that a cracked material
governed by couple-stress elasticity behaves in a more
rigid way (having increased stiffness) as compared to
a material governed by classical elasticity. Also, the
stress level at the crack-tip region is appreciably higher
than the one predicted by classical elasticity. Finally,
in the mode III case the corresponding governing inte-
gral equation is hypersingular with a cubic singularity.
A new mechanical quadrature is introduced here for
the numerical solution of this equation. The results in
the mode III case for the crack-face displacement and
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the near-tip stress show significant departure from the
predictions of classical fracture mechanics.
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1 Introduction

The present work is concerned with the study of mode
II and mode III finite-length cracks in a material with
microstructure. We assume that the response of the
material is governed by couple-stress elasticity. This
theory falls into the category of generalized continuum
theories and is a particular case of the general approa-
ches of Toupin (1962), Mindlin (1964), and Green and
Rivlin (1964). As is well-known, ideas underlying
couple-stress elasticity were advanced first by Voigt
(1887) and the Cosserat brothers (1909), but the sub-
ject was generalized and reached maturity only with the
works of Toupin (1962), Mindlin and Tiersten (1962),
Mindlin (1964), and Koiter (1964).

Earlier application of the couple-stress elasticity,
mainly on stress-concentration problems, met with
some success providing solutions physically more ade-
quate than solutions based on classical elasticity (see
e.g. Mindlin and Tiersten 1962; Weitsman 1965; Bogy
and Sternberg 1967a, b). Work employing couple-stress
theories on elasticity and plasticity problems is also
continued in recent years (see e.g. Vardoulakis and
Sulem 1995; Huang et al. 1997; Chen et al. 1998;
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Anthoine 2000; Lubarda and Markenscoff 2000;
Bardet and Vardoulakis 2001; Georgiadis and Velgaki
2003; Grentzelou and Georgiadis 2005).

Nevertheless, there is only a limited number of stu-
dies concerning the effects of couple-stresses in crack
problems. One of the earlier works in this subject is
that of Sternberg and Muki (1967) who considered the
mode I finite-length crack by employing the method of
dual integral equations. They provided only asympto-
tic results and showed that both the stress and couple-
stress fields exhibit a square-root singularity while the
rotation field is bounded at the crack-tip. The same
method was adopted by Ejike (1969) for a circular
(penny-shaped) crack in couple-stress elasticity and
by Paul and Sridharan (1980, 1981) for a finite-length
crack in micropolar elasticity. Using the Wiener-Hopf
technique, Atkinson and Leppington (1977) studied
the problem of a semi-infinite crack with exponen-
tially decayed normal tractions on the crack faces. More
recently, Huang et al. (1997) provided near-tip asymp-
totic fields for the mode I and mode II crack problems,
in couple-stress elasticity, by using the method of eigen-
function expansions. Also, Zhang et al. (1998) by
employing the Wiener-Hopf technique investigated the
mode III semi-infinite crack in couple-stress elasticity
in the special case where the second couple-stress
moduli is set equal to zero. Moreover, using a simi-
lar approach, Huang et al. (1999) obtained full-field
solutions for semi-infinite cracks under mode I and
mode II loadings in elastic-plastic materials with strain-
gradient effects.

Here, we aim at providing full-field solutions to
the mode II and mode III finite-length crack problems
within couple-stress elasticity by introducing an
approach based on distributed dislocations. Since the
pioneering work of Bilby et al. (1963), Bilby and Eshe-
lby (1968) the distributed-dislocation technique has
been employed to analyze various crack problems in
classical elasticity. A thorough exposition of the tech-
nique can be found in the treatise by Hills et al. (1996).
The strength of this analytical/numerical technique lies
in the fact that it gives detailed full-field solutions for
crack problems at the expense of relatively little analy-
tical demands as compared to the elaborate technique
of dual integral equations and, also, of relatively little
computational demands as compared to the Finite Ele-
ment and Boundary Element methods. Although the
technique has proven to be very successful in studying
crack problems within classical elasticity, it appears

that there is no work at all in modeling cracks with
distribution of dislocations in materials with micro-
structure. Therefore, the present work aims at exten-
ding the technique in couple-stress elasticity. In another
recent work by the present authors (Gourgiotis and
Georgiadis 2007) the mode I crack problem was also
considered within the same framework. A comparison
between the mode II case studied here and the mode
I case leads to the conclusion that the opening mode
is mathematically more involved than the shear mode.
This is in some contrast with situations of classical elas-
ticity where the two plane-strain crack modes involve
equivalent mathematical effort.

As in analogous situations of classical elasticity,
a superposition scheme will be followed. Thus, the
solution to the basic problem (body with a traction-
free crack under remote shear field) will be obtained
by the superposition of the stress field arising in the
un-cracked body (of the same geometry) to the ‘correc-
tive’ stresses and couple-stresses induced by a conti-
nuous distribution of dislocations chosen so that the
crack-faces become traction-free. The stress field for
a discrete glide and screw dislocation in couple-stress
elasticity will serve, respectively, as the Green’s func-
tion for the mode II and mode III problem. However,
we note that deriving the stress field of a discrete dis-
location within generalized continua is by no means a
straightforward task. Within the framework of couple-
stress elasticity a lot of research has been devoted to dis-
locations. Representative references include work by
Kroner (1963), Misicu (1965), Teodosiu (1965), Cohen
(1966), Anthony (1970), Knesl and Semela (1972) and
Nowacki (1974). Finally, it is shown that due to the
nature of the above Green’s functions and the boundary
conditions that arise in couple-stress elasticity, the afo-
rementioned procedure results for the mode II case in a
singular integral equation (SIE), whereas for the mode
III case in a hypersingular integral equation (IE) with
a cubic singularity. In order to solve this hypersingular
IE, a new mechanical quadrature is constructed.

2 Basic concepts and equations of couple-stress
elasticity

In this Section, we briefly present the basic ideas and
equations of couple-stress elasticity. The theory
employed here is a particular case of form III in the
general Mindlin’s (1964) approach. Nevertheless, we
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Distributed dislocation approach for cracks 85

chose to present an alternative approach to Mindlin’s
variational approach. Indeed, our derivation of basic
results relies on the momentum balance laws, which—
in our opinion—provide more physical insight. It
should also be mentioned that versions of the quasi-
static couple-stress theory were given by, among others,
Aero and Kuvshinskii (1960), Mindlin and Tiersten
(1962), Koiter (1964), Palmov (1964), and Muki and
Sternberg (1965). The basic equations of dynamical
couple-stress theory (including the effects of micro-
inertia) were given by Georgiadis and Velgaki (2003).

In the absence of inertia effects, for a control volume
CV with bounding surface S, the balance laws for the
linear and angular momentum read∫

S

T
(n)
i dS +

∫
CV

Fid (CV ) = 0, (1)

∫
S

(
xjT

(n)
k eijk + M

(n)
i

)
dS

+
∫

CV

(
xjFkeijk + Ci

)
d (CV ) = 0, (2)

where T
(n)
i is the surface force per unit area (force trac-

tion), Fi is the body force per unit volume, M
(n)
i is the

surface moment per unit area (couple traction), and Ci

is the body moment per unit volume.
Next, pertinent force-stress and couple-stress ten-

sors are introduced by considering the equilibrium of
the elementary material tetrahedron and enforcing (1)
and (2), respectively. The force-stress tensor σij (which
is asymmetric) is defined by

T
(n)
i = σjinj , (3)

and the couple-stress tensor µij (which is also asym-
metric) by

M
(n)
i = µjinj , (4)

where nj are the direction cosines of the outward unit
vector n, which is normal to the surface. In addition just
like the third Newton’s law T(n) = −T(−n) is proved
to hold by considering the equilibrium of a material
‘slice’, it can also be proved that M(n) = −M(−n).
The couple-stresses µij are expressed in dimensions
of [force][length]−1. Further, σij can be decomposed
into a symmetric and anti-symmetric part

σij = τij + αij , (5)

with τij = τji and αij = −αji , whereas it is advan-

tageous to decompose µij into its deviatoric µ
(D)
ij and

spherical µ
(S)
ij part in the following manner

µij = mij + 1

3
δijµkk, (6)

where mij = µ
(D)
ij , µ

(S)
ij = (1/3) δijµkk and δij is the

Kronecker delta. Now, with the above definitions in
hand and with the help of the divergence theorem, one
may obtain the equations of equilibrium. Thus, Eq. 2
leads to the following moment equation

∂iµij + σkieijk + Cj = 0, (7)

which can also be written as

1

2
∂iµilejkl + αjk + 1

2
Clejkl = 0, (8)

since by its definition the anti-symmetric part of stress
is written as α ≡ − (1/2) I × (σ × I), where I is the
idemfactor. Also, Eq. 1 leads to the following force
equation

∂jσjk + Fk = 0, (9)

or, by virtue of (5), to the equation

∂j τjk + ∂jαjk + Fk = 0. (10)

Further, combining (8) and (10) yields the single
equation

∂j τjk − 1

2
∂j ∂iµilejkl + Fk − 1

2
∂jClejkl = 0. (11)

Finally, in view of Eq.6 and by taking into account that
curl

(
div

(
(1/3) δijµkk

)) = 0, we write (11) as

∂j τjk − 1

2
∂j ∂imilejkl + Fk − 1

2
∂jClejkl = 0. (12)

Equation 12 is therefore the single equation of equili-
brium.

As for the kinematical description of the continuum,
the following quantities are defined within the geome-
trically linear theory

εij = 1

2

(
∂jui + ∂iuj

)
, (13)

ωij = 1

2

(
∂jui − ∂iuj

)
, (14)

ωi = 1

2
eijk∂juk, (15)

κij = ∂iωj , (16)

where εij is the strain tensor, ωij is the rotation tensor,
ωi is the rotation vector, and κij is the curvature tensor
(i.e. the gradient of rotation or the curl of the strain)
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expressed in dimensions of [length]−1. Notice also that
Eq. 16 can alternatively be written as

κij = 1

2
ejkl∂i∂kul = ejkl∂kεil . (17)

Equation 17 expresses compatibility for curvature
and strain fields. In addition, there is an identity, i.e.
∂kκij = ∂k∂iωj = ∂i∂kωj = ∂iκkj , which expresses
compatibility for the curvature components. The com-
patibility equations for the strain components are the
usual Saint Venant’s compatibility equations. We notice
also that κii = 0 because κii = ∂iωi = (1/2) eijkuk,j i

= 0 and, therefore, that κij has only eight independent
components. The tensor κij is obviously an asymmetric
tensor.

Now, regarding the traction boundary conditions, we
note that at first sight, it might seem plausible that the
surface tractions (i.e. the force-traction and the couple-
traction) can be prescribed arbitrarily on the external
surface of the body through relations (3) and (4), which
stem from the equilibrium of the material tetrahedron.
However, as Koiter (1964) pointed out, the resulting
number of six traction boundary conditions (three
force-tractions and three couple-tractions) would be in
contrast with the five geometric boundary conditions
that can be imposed. Indeed, since the rotation vec-
tor ωi in couple-stress elasticity is not independent of
the displacement vector ui (cf. (15)), the normal com-
ponent of the rotation is fully specified by the distri-
bution of tangential displacements over the boundary.
Therefore, only the three displacement and the two tan-
gential rotation components can be prescribed indepen-
dently. As a consequence, only five surface tractions
(i.e. the work conjugates of the above five independent
kinematical quantities) can be specified at a point of
the bounding surface of the body. These are three redu-
ced force-tractions and two tangential couple-tractions
(Mindlin and Tiersten 1962; Koiter 1964)

P
(n)
i = σjinj − 1

2
eijknj ∂km(nn), (18)

R
(n)
i = mjinj − m(nn)ni, (19)

where m(nn) = ninjmij is the normal component of the
deviatoric couple-stress tensor mij . Finally, it is worth
noting that in the micropolar (Cosserat) theory of elas-
ticity (see e.g. Nowacki 1972), the traction boundary
conditions are six since the rotation is fully independent
of the displacement vector. In this case the tractions can

directly be derived from the equilibrium of the mate-
rial tetrahedron, i.e. the relations between tractions and
stresses are given by (3) and (4).

Introducing the constitutive equations of the theory
is now in order. We assume a linear and isotropic mate-
rial response, in which case the potential-energy den-
sity takes the form

W ≡ W
(
εij , κij

) = 1

2
λεiiεjj + µεij εij + 2ηκij κij

+ 2η′κij κji, (20)

where
(
λ,µ, η, η′) are material constants. Then, Eq.

20 leads, through the standard variational manner, to
the following constitutive equations

τij ≡ σ(ij) = ∂W

∂εij

= λδij εkk + 2µεij , (21)

mij = ∂W

∂κij

= 4ηκij + 4η′κji . (22)

In view of (21) and (22), the moduli (λ, µ) have the
same meaning as the Lamé constants of classical elas-
ticity theory, whereas the moduli

(
η, η′) account for

couple-stress effects.
Finally, the following points are of notice: (i) The

couple-stress moduli
(
η, η′) are expressed in dimen-

sions of [force]. (ii) Since κii = 0,mii = 0 is also valid
and therefore the tensor mij has only eight independent
components. (iii) The scalar (1/3) µkk of the couple-
stress tensor does not appear in the final equation of
equilibrium, nor in the reduced boundary conditions
and the constitutive equations. Consequently, (1/3) µkk

is left indeterminate within the couple-stress theory.
(iv) The following restrictions for the material constants
should prevail on the basis of a positive definite poten-
tial-energy density (Mindlin and Tiersten 1962)

3λ + 2µ > 0, µ > 0, η > 0, −1 <
η′

η
< 1.

(23a,b,c,d)

3 Plane problems of couple-stress elasticity

The cases of plane strain and anti-plane strain are exa-
mined here and the basic equations are given. In what
follows, vanishing body forces and body couples are
assumed.
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3.1 Plane-strain

For a body that occupies a domain in the (x, y)-plane
under conditions of plane strain, the displacement field
takes the general form

ux ≡ ux (x, y) �= 0, uy ≡ uy (x, y) �= 0,

uz ≡ 0. (24a,b,c)

By virtue of (13)–(16), the non-vanishing components
of strain, rotation and curvature are given as

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
,

εxy = εyx = 1

2

(
∂uy

∂x
+ ∂ux

∂y

)
, (25a,b,c)

ωz = ωxy = 1

2

(
∂uy

∂x
− ∂ux

∂y

)
, (26)

κxz = ∂ωz

∂x
, κyz = ∂ωz

∂y
. (27a,b)

Also, from the constitutive Eqs. 21 and 22, the follo-
wing relations are derived between stress and strain and
between couple-stress and curvature

τxx = (2µ + λ) εxx + λεyy,

τyy = (2µ + λ) εyy + λεxx, τxy = 2µεxy,

(28a,b,c)

mxz = 4ηκxz, myz = 4ηκyz, (29a,b)

whereas, the remaining components are given by

τzz = − λ

2 (λ + µ)

(
τxx + τyy

)
, mzx = η′

η
mxz,

mzy = η′

η
myz. (30a,b,c)

Next, the non-vanishing components of the anti-
symmetric part of the force-stress tensor are obtained
from (8) as

αxy = −αyx= − 1

2

(
∂mxz

∂x
+ ∂myz

∂y

)
= − 2η∇2ωz.

(31)

It should be noticed that the independence upon the
coordinate z of all components of the force-stress and
couple-stress tensors, under the assumption (24c), was
proved by Muki and Sternberg (1965). Indeed, it is
noteworthy that, contrary to the respective plane-strain

case in the conventional theory, this independence is
not obvious within the couple-stress theory.

Mindlin’s stress functions
As Mindlin (1963) indicated, the equations of equi-

librium in (7) and (9), in a plane-strain state, are iden-
tically satisfied when the stresses are derived from two
stress functions �(x, y) and � (x, y) in the following
manner

σxx = ∂2�

∂y2 − ∂2�

∂y∂x
, σyy = ∂2�

∂x2 + ∂2�

∂x∂y
, (32a,b)

σxy = − ∂2�

∂y∂x
− ∂2�

∂y2 , σyx = − ∂2�

∂y∂x
+ ∂2�

∂x2 ,

(33a,b)

mxz = ∂�

∂x
, myz = ∂�

∂y
. (34a,b)

where the functions � and � satisfy the following
PDEs

∇4� = 0, ∇2
(

2∇2 − 1

)
� = 0. (35a,b)

According to the compatibility equations between cur-
vature and strain in (17), the stress functions are related
through the following equations

∂

∂x

(
� − 
2∇2�

)
= −2 (1 − ν) 
2 ∂

∂y

(
∇2�

)
, (36)

∂

∂y

(
� − 
2∇2�

)
= 2 (1 − ν) 
2 ∂

∂x

(
∇2�

)
, (37)

where ν is the Poisson’s ratio and 
 ≡ (η/µ)1/2 is a
characteristic material length.

3.2 Anti-plane strain

For a body occupying a domain in the (x, y)-plane
under conditions of anti-plane strain, the displacement
field takes the general form

ux ≡ 0, uy ≡ 0, uz = w (x, y) �= 0. (38a,b,c)

Again, by virtue of (13)–(16), the non-vanishing com-
ponents of strain, rotation and curvature are given as

εxz = εzx = 1

2

∂w

∂x
, εyz = εzy = 1

2

∂w

∂y
, (39a,b)

ωx = ωyz = 1

2

∂w

∂y
, ωy = ωxz = −1

2

∂w

∂x
, (40a,b)

123



88 P. A. Gourgiotis, H. G. Georgiadis

κxx = −κyy = 1

2

∂2w

∂x∂y
, κxy = −1

2

∂2w

∂x2 ,

κyx = 1

2

∂2w

∂y2 . (41a,b,c)

Then, the constitutive equations in 21 and 22 provide

τxz = 2µεxz = µ
∂w

∂x
, τyz = 2µεyz = µ

∂w

∂y
,

(42a,b)

mxx = 4
(
η + η′) κxx = 2

(
η + η′) ∂2w

∂x∂y
, (43a)

myy = 4
(
η + η′) κyy = − 2

(
η+η′) ∂2w

∂x∂y
= −mxx,

(43b)

mxy = 4ηκxy + 4η′κyx = − 2η
∂2w

∂x2 + 2η′ ∂2w

∂y2 ,(43c)

myx = 4ηκyx + 4η′κxy = 2η
∂2w

∂y2 − 2η′ ∂2w

∂x2 . (43d)

Further, the non-vanishing components of the anti-
symmetric part of the force-stress tensor are obtained
from (8)

αzx = −αxz = 1

2

(
∂mxy

∂x
+ ∂myy

∂y

)
= η

∂

∂x

(
∇2w

)
,

(44a)

αzy = −αyz

= − 1

2

(
∂mxx

∂x
+ ∂myx

∂y

)
= η

∂

∂y

(
∇2w

)
. (44b)

Finally, by taking into account (5) and (44), the com-
ponents of the force-stress tensor can be written as

σxz = µ
∂

∂x

(
w − 
2∇2w

)
,

σzx = µ
∂

∂x

(
w + 
2∇2w

)
, (45a,b)

σyz = µ
∂

∂y

(
w − 
2∇2w

)
,

σzy = µ
∂

∂y

(
w + 
2∇2w

)
. (46a,b)

In view of the above and by enforcing equilibrium, a
single PDE of the fourth order for the displacement
component is obtained

∇2w − 
2∇4w = 0. (47)

4 Discrete dislocations in couple-stress elasticity

4.1 Glide dislocation

Consider a glide dislocation with Burgers vector b =
(b, 0, 0) imposed in an infinite medium along the plane
x > 0, y = 0. The appropriate Mindlin’s stress func-
tions for this problem were given by Cohen (1966),
Knesl and Semela (1972), and Nowacki (1974)

� = − µbr

4π (1 − ν)
(2 ln r + 1) sin θ, (48)

� = 2µb


π
[K1 (r/
) − 
/r] cos θ, (49)

where r = (
x2 + y2

)1/2
, θ = tan−1 (y/x) and

Ki (r/
) is the ith-order modified Bessel function of
the second kind. Further, the stresses induced at a point
(x, y) may be found from the above stress functions by
using Eqs. 32–34

σxx = − µb

4π (1 − ν) r
(3 sin θ + sin 3θ)

+ 2µb

πr

[
2
2

r2 − K2 (r/
)

]
sin 3θ

− µb

4π
2 r [K2 (r/
) − K0 (r/
)]

× (sin θ + sin 3θ) , (50)

σyy = µb

4π (1 − ν) r
(sin 3θ − sin θ)

− 2µb

πr

[
2
2

r2 − K2 (r/
)

]
sin 3θ

+ µb

4π
2 r [K2 (r/
) − K0 (r/
)]

× (sin θ + sin 3θ) , (51)

σxy = µb

4π (1 − ν) r
(cos θ + cos 3θ)

− 2µb

πr

[
2
2

r2 − K2 (r/
)

]
cos 3θ

− µb

4π
2 r [K2 (r/
) − K0 (r/
)]

× (cos θ − cos 3θ) , (52)

σyx = µb

4π (1 − ν) r
(cos θ + cos 3θ)

− 2µb

πr

[
2
2

r2 − K2 (r/
)

]
cos 3θ

+ µb

4π
2 r [K2 (r/
) − K0 (r/
)]

× (3 cos θ + cos 3θ) , (53)
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mxz = µb

π

[
2
2

r2 − K2 (r/
)

]
cos 2θ − µb

π
K0 (r/
) ,

(54)

myz = µb

π

[
2
2

r2 − K2 (r/
)

]
sin 2θ. (55)

Examining now the asymptotic behavior of the above
stress field (to determine the possibility of singulari-
ties), we note that as r → 0 the following asymptotic
relations hold (see e.g. Abramowitz and Stegun 1964)

1

r

(
2
2

r2 − K2 (r/
)

)
= O

(
r−1

)
,

r [K2 (r/
) − K0 (r/
)] = O
(
r−1

)
,

K0 (r/
) = O (ln r) . (56a,b,c)

In view of (56), as the dislocation core (r → 0) is
approached, the components of the force-stress ten-
sor

(
σxx, σyy, σxy, σyx

)
exhibit a Cauchy singularity

(just as in classical elasticity), the couple-stress mxz

becomes logarithmically unbounded, while myz

remains bounded. Finally, when 
 → 0 the stress field
of classical elasticity for a discrete glide dislocation is
recovered.

4.2 Screw dislocation

For a screw dislocation with strength b the displace-
ment field in couple-stress elasticity is given as (see
our derivation in Appendix A)

w = b

2π
θ − b

4π
(1 + β)

[
2
2

r2 − K2 (r/
)

]
sin 2θ,

(57)

where the ratio β ≡ η′/η should satisfy the following
inequality −1<β <1. The stress and couple-stress
fields corresponding to (57) are obtained from Eqs. 42–
46 as

τxz = − µb

2πr
sin θ, τyz = µb

2πr
cos θ, (58a,b)

σxz = − µb

2πr
sin θ + µb
2 (1 + β)

πr3 sin 3θ,

σyz = µb

2πr
cos θ − µb
2 (1 + β)

πr3 cos 3θ,

(59a,b)

myy = −mxx = µ
2 (1 + β) b

πr2 cos 4θ

− 3µb
2 (1 + β)2

πr2

(
2
2

r2 − K2 (r/
)

)
cos 4θ

+ µb (1 + β)2

2π
K2 (r/
) cos 4θ

− µb (1 + β)2

8π
K0 (r/
) (3 cos 4θ + 1) ,

(60a,b)

myx = 3µb
2 (1 + β)2

πr2

(
2
2

r2 − K2 (r/
)

)
sin 4θ

− µb (1 + β)2

4π
K2 (r/
) (2 sin 4θ + sin 2θ)

+ 3µb (1 + β)2

8π
K0 (r/
) sin 4θ

− µb (1 + β)

π

(
2
2

r2 − K2 (r/
)

)
sin 2θ,

(61)

mxy = myx − 2µ
2 (1 − β) ∇2w, (62)

The following points are of notice now: (i) Using the
well known asymptotic properties of the modified Bes-
sel functions, we conclude that as r → 0 the asymme-
tric and the symmetric shear stresses behave as ∼ r−3

and ∼ r−1, respectively, whereas the couple-stresses
behave as ∼ r−2. (ii) When β = −1 (i.e. when η =
−η′), the above stress field degenerates into the res-
pective one in classical elasticity for a screw
dislocation.

5 Formulation of crack problems by a distribution
of dislocations

5.1 Mode II crack

Consider a straight crack of length 2a embedded in
the xy-plane of infinite extend in a field of pure shear
(Fig.1). The crack faces are traction free and the body is
considered to be in plane-strain conditions. The crack
faces are defined by n = (0,±1). Then, according to
(18) and (19), the boundary conditions along the crack
faces are written as

σyx = 0, σyy = 0, myz = 0 for |x| < a,

(63a,b,c)
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Fig. 1 Cracked body under remote shear in plane strain

whereas the regularity conditions at infinity are

σ∞
yx = σ∞

xy = τ∞
xy → σ0, σ∞

yy , σ∞
xx → 0,

m∞
xz,m

∞
yz → 0 as r → ∞, (64a,b,c)

where r = (
x2 + y2

)1/2
now is the distance from the

origin and the constant σ0 denotes the remotely applied
shear loading.

Then, the crack problem is decomposed into the fol-
lowing two auxiliary problems.

The un-cracked body
It can readily be verified that the appropriate Mind-

lin’s stress functions for the un-cracked body of infinite
extent subjected to boundary conditions (64a,b,c) are
as follows

� = − σ0xy, � = 0. (65a,b)

The stress field that corresponds to the above stress
functions can be found from (32)–(34) as

σyx (x, y) = σxy (x, y) = σ0,

σxx = σyy = 0, mxz = myz = 0. (66a,b,c)

Notice, that there are no couple-stresses induced in the
un-cracked body, the body being in a state of pure shear.

The corrective solution
Consider a body geometrically identical to the initial

cracked body (Fig. 1) but with no remote loading now.
The only loading applied is along the crack faces. This
consists of equal and opposite tractions to those gene-
rated in the un-cracked body. The boundary conditions
along the faces of the crack are written as

σyx = −σ0, σyy = 0, myz = 0

for |x| < a. (67a,b,c)

The corrective stresses (67a,b,c) may be generated by
a continuous distribution of discrete glide dislocations
along the crack faces. The stresses and couple-stresses
induced by the continuous distribution of dislocations
can be derived by integrating the effect of a discrete
glide dislocation (i.e. by the use of Eqs. 50–55). We
note that (67b,c) are automatically satisfied since a dis-
crete glide dislocation does not produce normal stresses
σyy or couple-stresses myz along the crack-line. Then,
satisfaction of the boundary condition (67a) leads to a
single IE. Separating the singular part from the regular
part of the kernels, we obtain the governing SIE of the
mode II problem in couple-stress elasticity as

− σ0 = µ (3 − 2ν)

2π (1 − ν)
−
∫ a

−a

B (ξ)

x − ξ
dξ + µ

π

∫ a

−a

B (ξ) k (x, ξ) dξ, |x| < a, (68)

where −∫ signifies Cauchy principal value integration
and B (ξ) = db/dξ is the dislocation density at a point
ξ (|ξ | < a), this density being defined in the same way
as in classical elasticity (see e.g. Hills et al. 1996).

The kernel k (x, ξ) is defined as

k(x, ξ) = − 2

x − ξ

[
2
2

(x − ξ)2 − K2(|x − ξ |/
) − 1

2

]

− (x − ξ)


2

[
2
2

(x − ξ)2 − K2 (|x − ξ |/
)

+K0 (|x − ξ |/
)
]

. (69)

To show that k (x, ξ) is regular, we expand the latter
in series as x → ξ (see e.g. Abramowitz and Stegun
1964) and obtain

k (x, ξ) = (a1 + a2 ln |x − ξ |) (x − ξ)

+O
(
(x − ξ)3 ln |x − ξ |

)
, (70)

where ai are constants depending on the characteristic
material length 
. Since lim

x→ξ
(x − ξ)n ln |x − ξ | = 0

for n>0, we conclude that k (x, ξ) is regular in the
closed domain −a ≤ (x, ξ) ≤ a.

The solution B (ξ) in (68) is determined in the class
of Hoelder continuous functions and may be written as
a product of a regular bounded function and a funda-
mental solution. Asymptotic analysis, within the fra-
mework of the couple-stress elasticity, showed that the
displacement ux behaves as ∼ r1/2 in the crack tip
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region, where r denotes now the polar distance from
the crack tip (Huang et al. 1997). Consequently, the
dislocation density is expressed in the form

B (ξ) = f (ξ)
(
α2 − ξ2

)−1/2
, (71)

where f (ξ) is bounded and continuous in the inter-
val |ξ | ≤ α. Further, in order to render the problem
determinate, the dislocation density should also satisfy
an auxiliary condition expressing the requirement that
there be no net relative tangential displacement bet-
ween one end of the crack and the other, i.e.

∫ a

−a

B (ξ)dξ = 0. (72)

Before proceeding with the solution of the governing
integral equation, it is interesting to consider two limit
cases concerning the behavior of (68) w.r.t. 
. By letting

 → 0 and noting that lim


→0
k (x, ξ) = −1/(x − ξ), Eq.

68 degenerates into the counterpart equation governing
the mode II problem in classical elasticity, i.e.

− σ0 = µ

2π (1 − ν)
−
∫ a

−a

B (ξ)

x − ξ
dξ, |x| < a. (73)

On the other hand, by letting 
 → ∞ and noting that
lim


→∞ k (x, ξ) = 0, (68) takes the form

− σ0 = µ (3 − 2ν)

2π (1 − ν)
−
∫ a

−a

B (ξ)

x − ξ
dξ, |x| < a. (74)

It can readily be shown, that the ratio of the crack-face
displacements obtained by the solution of (74) and (73),
respectively, is 1/(3 − 2ν). Equation 74 shows mathe-
matically that there is a lower bound for the crack-face
displacement ux when 
 → ∞. The same ratio of dis-
placements was also obtained by Sternberg and Muki
(1967) for a mode I crack in couple-stress elasticity.

For the numerical solution of the SIE in (68), the
Gauss-Chebyshev quadrature developed by Erdogan
and Gupta (1972) is used. After the appropriate norma-
lization over the interval [−1, 1], the integral equation
takes the discretized form

−σ0 = µ

n

n∑
i=1

[
(3 − 2ν)

2 (1 − ν) (tk − si)
+ k (tk, si)

]
f (si) ,

(75)

where

k (tk, si) = − 2

tk − si[
2

p2 (tk − si) 2 − K2 (p |tk − si |) − 1

2

]

−p2 (tk − si)

(
2

p2 (tk − si) 2

−K2 (p |tk − si |) + K0 (p |tk − si |)
)

,

(76)

with p = a/
, t = x/a, and s = ξ/a. The integration
and collocation points are given, respectively, as

Tn(si) = 0, si = cos [(2i − 1) π/2n] , i = 1, . . . , n,

(77a)

Un−1(tk) = 0, tk = cos [kπ/n] , k = 1, . . . , n − 1,

(77b)

where Tn (x) and Un (x) are the Chebyshev polyno-
mials of the first and second kind, respectively. For-
mula (75) is a standard Gauss–Chebyshev quadrature
with the requirement that the collocation points tk must
satisfy (77b), i.e. that tk be the roots of Un−1. The auxi-
liary condition in (72) can be written in discretized form
as

π

n

n∑
i=1

f (si) = 0. (78)

Equations 75 and 78 provide an algebraic system of n

equations in the n unknown functions f (si). A com-
puter program was written that solves the above system
of equations.

Some numerical results are presented now. In Fig. 2
the dependence of the tangential crack-face displace-
ment on the ratioa/
 in couple-stress elasticity is depic-
ted. It is noteworthy that as the crack length becomes
comparable to the characteristic length 
, the mate-
rial exhibits a more stiff behavior, i.e. the tangential
crack-face displacements become smaller and smaller
in magnitude. Finally, we note that the displacements
obtained within the classical theory of elasticity serve
as an upper bound of couple-stress elasticity.

Next, the near-tip behavior of the shear stress σyx

given as the expression in the RHS of (68) plus σ0,
is determined. Due to the symmetry of the problem
(in geometry and loading) with respect to y-axis we
confine attention only to the right crack tip. Now, as
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stress elasticity and in classical elasticity

x → a+ the following asymptotic relations hold∫ a

−a

B (ξ)

x − ξ
dξ = O

(
(x − a)−1/2

)
,

∫ α

−α

B (ξ) k (x, ξ) dξ = O (1) , x > a, (79a,b)

where the dislocation density is defined in (71). Thus,
we conclude that σyx exhibits a square root singula-
rity at the crack tip. In light of the above, we define
the stress intensity factor in couple-stress elasticity as
KII = lim

x→a+ [2π (x − a)]1/2 σyx (x, y = 0) for the

right crack tip (x >a) The dependence of the ratio of the
stress intensity factor in couple-stress elasticity KII to
the one in classical elasticity upon 
/a is given in Fig. 3.

It is observed that for 
/a →0 and Poisson’s ratio
ν = 0.4, there is a 50% increase in KII when couple-
stress effects are taken into account, while for ν = 0.2

.
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Fig. 4 Distribution of the shear stress ahead of the cracktip

and ν = 0 the increase is 62% and 73%, respectively.
It should be noted that when 
/a = 0 (no couple-
stress effects) the above ratio becomes evidently
KII /K

clas.
II =1. Therefore, the ratio plotted in Fig. 3

exhibits a finite jump discontinuity at 
/a = 0; the ratio
at the tip of the crack rises abruptly as 
/a departures
from zero. The same discontinuity was observed by
Sternberg and Muki (1967), who attributed that kind of
behavior to the severe boundary-layer effects predicted
by the couple-stress elasticity in stress-concentration
problems. Finally, it can be shown that the ratio
decreases monotonically with increasing values of 
/a

and tends to unity as 
/a →∞. The case 
/a →∞ is
rather impractical since generally the relation between
lengths in a usual crack problem will be 
<<a, i.e.
the crack length will be much greater than the mate-
rial length. However, in an attempt to explain the lat-
ter finding, we note that the case 
→∞, with a �=0,
resembles a situation where, in a sense, there is no
microstructure in the body, since the ‘building blocks’
of the material are of infinite size. Of course, this case
has an obscure physical meaning, but, as far as stresses
are concerned, the solution shows that the material
exhibits a behavior similar to the one for a material
governed by the classical theory.

Further, the distribution of the shear stress σyx ahead
of the crack tip (see Fig. 4) shows that the couple-
stress effects are dominant for x <
, whereas outside
this zone σyx gradually approaches the distribution of
the classical solution. For convenience, a new variable
x̄ = x − a is introduced measuring now distance from
the crack tip in the RHS of Fig. 1.
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Fig. 5 Distribution of the couple-stress ahead of the crack tip

Finally, taking into account that mxz exhibits a loga-
rithmic singularity in the case of a glide dislocation and
that∫ α

−α

ln |x − ξ | B (ξ) dξ = O (1) as x → a+, (80)

we conclude that mxz given as the integral of (54) is
bounded at the crack tip. This observation is in agree-
ment with the asymptotic results of Huang et al. (1997)
for a mode II crack. Figure 5 depicts the distribution of
the couple-stress mxz ahead of the crack tip. In parti-
cular, we observe that mxz takes finite negative values
immediately ahead of the crack tip in the RHS. Then, as
the position (observation point) moves away from the
crack tip, mxz changes sign and gradually reaches zero
for x > 10
. It should be noted, though, that mxz exhi-
bits the property of anti-symmetry w.r.t. the y- axis (see
Fig. 1): Therefore, mxz is positive immediately ahead
of the LHS crack tip. An anti-symmetric distribution of
the couple-stress is required for the moment equation
in (7) to be satisfied.

Finally, as we show in Appendix C, the orders of
singularities of the above stress and couple-stress fields
lead to an integrable strain-energy density in the vici-
nity of crack tips and also lead to a bounded value of
the J -integral.

5.2 Mode III crack

Consider a straight crack of length 2a embedded in the
(x, y)-plane of infinite extent under a remotely applied
anti-plane shear loading (see Fig. 6). The crack faces
are assumed to be traction free. The boundary condi-
tions along the crack faces are written as (cf. (18)
and (19))

0

0

a a
x

y

σ

σ

Fig. 6 Cracked body under remote shear in anti-plane strain

σyz + 1

2
∂xmyy = 0, myx = 0 for |x| < a,

(81a,b)

whereas the regularity conditions at infinity are given
as

σ∞
yz = τ∞

yz → σ0, σ∞
xz → 0,

m∞
xx,m

∞
yy,m

∞
yx,m

∞
xy → 0 as r → ∞,

(82a,b,c)

The ‘reduced’ boundary condition in (81a) is also
justified physically from the fact that the displacement
w and the rotation ωy = − (1/2) (∂w/∂x) cannot be
prescribed independently on the crack faces. This situa-
tion is analogous to the one in Kirchhoff’s plate theory
regarding the effective shear force.

Again, the crack problem is decomposed into the
following two auxiliary problems.

The un-cracked body
It can be readily shown that the un-cracked body sub-

jected to the boundary conditions (82a,b,c) is in a state
of pure anti-plane shear. The only non-zero stresses are

σyz (x, y) = τyz (x, y) = σ0. (83)

Note that there are no couple-stresses induced in the
un-cracked body.

The corrective solution
Consider a body geometrically identical to the initial

cracked body in Fig. 6 but with no remote loading now.
The applied loading along the crack faces consists of
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equal and opposite tractions to those generated in the
un-cracked body, i.e.

σyz + 1

2
∂xmyy = −σ0, myx = 0 for |x| < a

and y = 0.

(84a,b)

The corrective stresses in (84a,b) may be generated by
a continuous distribution of discrete screw dislocations
along the crack faces. The stresses induced by the conti-
nuous distribution of dislocations are obtained as inte-
grals of Eqs. 59–62. Note that (84b) is automatically
satisfied since a discrete screw dislocation does not give
rise to couple-stresses myx along the crack line. Then,
satisfaction of the boundary condition (84a) leads, after
lengthy calculations, to the governing hypersingular
IE of the mode III problem in couple-stress elasticity
(|x| < a)

− σ0 ==
∫ a

−a

[
c1

x−ξ
+ c2


2

(x−ξ)3 +c3k (x, ξ)

]
B (ξ) dξ

(85)

where =∫ signifies Hadamard’s finite-part integration
(see e.g. Kutt 1975; Paget 1981), B (ξ) is the dislo-
cation density function at the point ξ (|ξ | < a), and

c1 = µ
(
β2 + 2β + 9

)
16π

, c2 = µ (1 + β) (β − 3)

2π
,

c3 = µ (1 + β)2

π
. (86)

Further, the kernel k (x, ξ) is defined as

k(x, ξ) = − 
2

(x − ξ)3

[
6

(
K2(|x − ξ |/
) − 2
2

(x − ξ)2

)

+ 1

2

]
+ 1

4(x − ξ)

[
3K0(|x − ξ |/
)

−5K2(|x − ξ |/
) − 1

4

]
. (87)

Expanding k (x, ξ) in series as x → ξ and using the
asymptotic properties of the modified Bessel functions,
it can be readily shown that k (x, ξ) is regular in the
closed domain −a ≤ (x, ξ)≤ a. We also note that when
β = −1 (i.e. when η = −η′), Eq. 85 degenerates
into the SIE that governs the counterpart problem in
classical elasticity.

In addition, Zhang et al. (1998) showed, by using
the Williams eigenfunction asymptotic analysis, that
the crack face displacement behaves as ∼ r3/2 in the

crack tip region, where r denotes the polar distance
from the crack tip. Thus, the dislocation density B (ξ)

can be expressed as

B (ξ) = f (ξ)
(
a2 − ξ2

)1/2
, (88)

wheref (ξ) is a continuous bounded function in ξ ≤|a|.
Finally, to ensure uniqueness the dislocation density
must satisfy the following auxiliary condition stem-
ming from the requirement of single-valuedness of the
displacement along a closed loop around the crack
∫ a

−a

B (x)dx = 0. (89)

Now, the near-tip behavior of the stress and couple-
stress field for the mode III problem can be determi-
ned from the singular nature of the respective stress
and couple-stress field of a discrete screw dislocation.
Again, confining our attention to the RHS crack tip and
taking into account the following result (Chan et al.
2003)

∂n

∂xn
−
∫ a

−a

B (ξ)

x − ξ
dξ = O

(
(x − a)1/2−n

)
, for n ≥ 0

as x → a+, x > a (90)

with the dislocation density being given by (88), we
conclude that

(
τyz, σyz

)
given as the integrals of (58b)

and (59b) behave as ∼ x̄−3/2 and ∼ x̄1/2, respecti-
vely, whereas the couple-stresses

(
mxx,myy

)
given by

the integration of (60a,b) exhibit a square root singula-
rity at the crack tip. Again, x̄ = x − a is the distance
from the RHS crack tip along the crack line. Finally,
in light of the above, the total shear stress defined as
tyz = σyz + (1/2) ∂xmyy has the following asymptotic
behavior tyz ∼ x̄−3/2 near the crack tip. Such a beha-
vior was detected before in the mode III crack problem
of gradient elasticity (Georgiadis 2003). The two pro-
blems present similarities in their mathematical ana-
lysis. Finally, as we show in Appendix C, despite the
hypersingular nature of the above stress field, the strain-
energy density is integrable in the vicinity of crack tips
and, also, the J -integral takes a bounded value.

For the numerical solution of the hypersingular inte-
gral equation in 85, the appropriate quadrature is
constructed here by taking into account the cubic singu-
larity of the integral equation and the endpoint behavior
of the dislocation density (details are given in Appen-
dix B). Equation 85 after the appropriate normalization
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over the interval [−1, 1] takes the discretized form

− σ0 = −πc2

p2

n∑
i=1

(−1)i+k

[
tk

2
(
1 − t2

k

) − 1

tk − si

]

× f (si)
(
1 − s2

i

)
(tk − si)

(
1 − t2

k

)1/2 +
n∑

i=1

π

(1 + n)

×
[

c1

(tk − si)
+ c2

p2 (tk − si)
3 + c3k (tk, si)

]

× f (si)
(

1 − s2
i

)
, (91)

where

k(tk, si) = − 1

p2(tk − si)3[
6

(
K2(p|tk − si |) − 2

p2(tk − si)2 + 1

2

)]

+ 1

4(tk − si)

[
3K0(p|tk − si |)

− 5K2(p|tk − si |) − 1

4

]
, (92)

with p = a/
, and the set of the n discrete integration
points are given by

si : Un(si) = 0, si = cos(iπ/(n + 1)), i = 1, . . . , n,

(93a)

while the n + 1 collocation points are given by

tk : Tn+1 (tk) = 0, tk = cos ((2k − 1) π/2 (n + 1)) ,

k = 1, . . . , n + 1.

(93b)

The auxiliary condition in (89) can be written in dis-
cretized form as

n∑
i=1

(
1 − s2

i

)
f (si)

1 + n
= 0, (94)

Then, Eqs. 91 and 94 provide a system of n+2 algebraic
equations. The system is solved in the least-squares
sense.

In Fig. 7, the crack-face displacements are shown for
the special case β = 0 (i.e. η′ = 0). It is observed that in
the crack-tip vicinity, the crack closes more smoothly as
compared to the classical result. Further, it is also noted
that when the characteristic material length 
 becomes
comparable to the crack length the material behaves in
a more rigid way (having increased stiffness).

Both couple-stress and classical elasticity (Kclas.
III

field) distributions ahead of the right crack tip are shown
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Fig. 7 Normalized upper and lower crack displacement profiles
under remote mode III loading (β = 0)
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Fig. 8 Distribution of the total shear stress ahead of the crack
tip

in Fig. 8. The total shear stress tyz is employed to depict
the couple-stress elasticity solution. As in the analo-
gous gradient elasticity solution (Georgiadis 2003), we
observe that for a very small zone in the crack-tip region
(x <0.5
) the total stress tyz takes on negative values
exhibiting therefore a cohesive-traction character along
the prospective fracture zone. Also, tyz exhibits a boun-
ded maximum. As β →−1, the cohesive zone becomes
significantly smaller whereas the maximum value of the
total shear stress increases. The behavior of tyz reminds
typical boundary-layer behavior as, e.g., that found
for the surface pressure near the leading edge of Jou-
kowski airfoil (Van Dyke 1964). Finally, we note that
at points lying outside the domain where the effects of
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microstructure are pronounced (i.e. for x > 
) the total
shear stress tends to the classical Kclas.

III shear stress.

6 Concluding remarks

In this paper, the technique of the distributed dislo-
cations was used in order to solve finite-length shear
crack problems in couple-stress elasticity. The tech-
nique provides an alternative approach to the elabo-
rate analytical method of dual integral equations used
before to attack asymptotically the mode I crack pro-
blem. Moreover, the present approach is capable to pro-
vide a full-field solution. In fact, we have obtained here
the stress distribution ahead of the crack tips and the
crack-face displacements (i.e. our results are not res-
tricted to the crack-tip region). Also, our solution to
the finite-length crack in mode III is quite novel in the
literature.

The governing integral equations are derived using
the discrete-dislocation stress fields in couple-stress
elasticity, as the Green’s functions of crack problems.
In particular, it is shown that the mode II problem is
governed by a single singular integral equation. In the
mode III case, the governing integral equation is found
to be hypersingular with a cubic singularity. For the
solution of the latter equation, a new efficient quadra-
ture is constructed.

The results of our analysis indicate that when the
microstructure of the material is taken into account the
material behaves in a more rigid way. In particular,
in the mode II problem, the crack face displacements
become significantly smaller than their counterparts in
classical elasticity, when the length of the crack is com-
parable to the characteristic length 
 of the material.
Further, stresses retain the same order of singularity
as in the classical theory, while the couple-stress field
is found to be bounded in the crack-tip region. In the
mode III problem, the results for the near-tip field show
significant departure from the predictions of classical
fracture mechanics. It is shown that cohesive stresses
develop in the immediate vicinity of the crack-tip and
that, ahead of the small cohesive zone, the stress distri-
bution exhibits a local maximum that is bounded. This
maximum value may serve, therefore, as a measure of
the critical stress level at which further advancement
of the crack may occur. In addition, in the vicinity of
the crack-tip, the crack-face displacement closes more
smoothly as compared to the classical result.
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boundary value problems by the use of analytical methods and
mixed adaptive finite elements” (# 68/8213)]. This Project is
co-funded by the European Social Fund (75%) of the European
Union and by National Resources (25%) of the Greek Ministry
of Education.

Appendix A: The screw dislocation in couple-stress
elasticity

Let the direct Fourier transform and its inverse be
defined as

w∗ (ξ, y) = 1

(2π)1/2

∫ ∞

−∞
w (x, y) eixξ dx, (A1a)

w (x, y) = 1

(2π)1/2

∫ ∞

−∞
w∗ (ξ, y) e−ixξ dξ, (A1b)

where i ≡ (−1)1/2. Transforming the field equation (47)
with (A1a) gives the following ODE


2 d4w∗

dy4 −
(

2
2ξ2 + 1
) d2w∗

dy2 +
(

2ξ4 + ξ2

)
w∗ = 0,

(A2)

and, further, the general transformed solution for y ≥0

w∗ (ξ, y) = A1 (ξ) e−|ξ |y + A2 (ξ) e−y
(1+
2ξ2)

1/2


 .(A3)

Now, we impose at the origin of the infinite
(x, y)-plane a single screw dislocation with Burger’s
vector b= (0, 0, b). In the upper half-plane, the screw
dislocation gives rise to the following boundary value
problem

w
(
x, 0+) = −b

2
H (x) , (A4a)

myx

(
x, 0+) = 0, (A4b)

where H (x) is the Heaviside step function and the
minus sign in (A4a) is justified from the sign conven-
tion that is adopted in dislocation theory. In view now
of the constitutive equation (43d) and the properties of
the Fourier transform, the boundary conditions (A4a,b)
furnish in the transform domain

w∗ (
ξ, 0+) = −b (π/2)1/2 δ+ (ξ) , (A5a)

m∗
yx

(
ξ, 0+) = 2η

d2w∗

dy2 + 2η′ξ2w∗ = 0, (A5b)
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where δ+ (ξ) = 1/2 (δ (ξ) + i/πξ) is the Heisenberg
delta function (Roos 1969) and δ (ξ) is the Dirac distri-
bution. The constants A1 (ξ) and A2 (ξ) are now com-
puted using the transformed boundary conditions i.e.

A1 (ξ) = − (π/2)1/2 b
(

1 + 
2 (1 + β) ξ2
)

δ+ (ξ) ,

A2 (ξ) = (π/2)1/2 b
2 (1 + β) ξ2δ+ (ξ) , (A6a,b)

where β = η′/η. With the aid of the inversion formula
in (A1b), we obtain the integral representation for the
displacement field due to a screw dislocation

w (x, y) = −b

2

∫ ∞

−∞

[
e−y|ξ | − (ξ
)2 (1 + β)

(
e−y|ξ | − e− y(1+
2ξ2)

1/2




)]
δ+ (ξ) e−ixξ dξ.

(A7)

Using the properties of the Heisenberg delta function
and the Dirac distribution, we finally obtain

w (x, y) = −b

4
− b

2π

∫ ∞

0

e−yξ

ξ
sin (ξx)dξ

− b
2 (1 + β)

2π

∫ ∞

0

× ξ

(
e−yξ − e− y(1+
2ξ2)

1/2




)
sin (ξx) dξ .

(A8)

The above integrals can be determined in closed form.
In particular, we have∫ ∞

0

e−yξ

ξ
sin (ξx) dξ = tan−1 x

y
,

∫ ∞

0
ξe−yξ sin (ξx)dξ = 2

xy

r4 ,

∫ ∞

0
ξe− y(1+
2ξ2)

1/2


 sin (ξx) dξ = xy

(r
)2 K2

( r




)
.

(A9a,b,c)

In light of the above results, the displacement can be
written as

w = b

2π
θ − b

4π
(1 + β)

[
2
2

r2 − K2 (r/
)

]
sin 2θ.

(A10)

Appendix B: Construction of numerical quadrature

The problem of finding a numerical quadrature for inte-
grals with order of singularity greater than two (a >2)

arises naturally in generalized continuum theories
where the field equations and the boundary conditions
are of higher order than the respective ones in classical
elasticity. Although a lot of work has been done in the
literature for Hadamard type integrals (a = 2) (see e.g.
Kutt 1975; Paget 1981; Ioakimidis 1983, 1995; Kaya
and Erdogan 1987; Monegato 1987, 1994; Tsamas-
phyros and Dimou 1990; Korsunsky 1998; Kabir et
al. 1998; Hui and Shia 1999), only a few papers have
been published concerning integrals with a >2. In a
recent work by Chan et al. (2003), a systematic treat-
ment of hypersingular integrals was presented based
on the Kaya/Erdogan approach. This approach leads to
very good results, with the only caveat that when the
kernel cannot be explicitly given in terms of a sum of
the hypersingular part and a remainder, the extraction
of a strong singularity may lead to a loss of accuracy.
Our intention here is to derive a numerical quadrature
for the hypersingular integral

S (t) ==
∫ 1

−1
f (s) w (s)

ds

(s − t)3 for |t | < 1, (B.1)

where f (s) is a bounded and continuous function in
the interval [−1, 1], and w (s) = (

1 − s2
)1/2

is the
weight function corresponding to the second-kind Che-
byshev polynomials Uj . The integral in (B.1) is to
be understood in the Hadamard finite-part sense (Kutt
1975; Paget 1981). The basic steps in the development
of the quadrature follow the strategy introduced by
Korsunsky (1998).

The unknown function can be approximated with a
sufficient degree of accuracy by a truncated series of
second-kind Chebyshev polynomials

f (s) ∼=
p∑

j=0

BjUj (s). (B.2)

Making use of the relation for the Cauchy principal-
value integral (Abramowitz and Stegun 1964)

−
∫ 1

−1
Uj (s)

(
1−s2

)1/2 ds

(s − t)
= −πTj+1 (t) , (B.3)
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(B.1) can be rewritten as

S (t) = =
∫ 1

−1
f (s) w (s)

ds

(s − t)3 = 1

2

d2

dt2

× −
∫ 1

−1
f (s)

(
1 − s2

)1/2 ds

(s − t)

= 1

2

d2

dt2

p∑
j=0

Bj −
∫ 1

−1
Uj (s)

(
1 − s2

)1/2

× ds

(s − t)
= −π

2

p∑
j=0

BjT
′′
j+1 (t) , (B.4)

where the prime denotes differentiation with respect to
t . We note that the interchange of the order of diffe-
rentiation and integration in (B.4) is valid in view of
results by Monegato (1994).

Next, we establish the following identity

− Tj+1 (t) Un (t) − Tn+1 (t) Uj (t)

Un (t)

=
n∑

i=1

ai

si − t
for j < n, si : Un (si) = 0, (B.5)

where the partial-fraction expansion above is possible
because the degree of the numerator in the left hand
side of (B.5) is less than that of the denominator. It can
easily be found (Korsunsky 1998) that the coefficients
ai in (B.5) are given by the relation

ai =
(
1 − s2

i

)
1 + n

Uj (si) . (B.6)

Equation (B.5) takes now the form

− Tj+1 (t) + Tn+1 (t) Uj (t)

Un (t)

=
n∑

i=1

1 − s2
i

(1 + n) (si − t)
Uj (si) . (B.7)

Differentiating (B.7) twice with respect to t and selec-
ting a discrete set of points tk , k = 1, . . . , n + 1 such
that Tn+1 (t) = 0, we obtain

− T ′′
j+1 (tk) + T ′′

n+1 (tk)
Uj (tk)

Un (tk)

+2T ′
n+1 (tk)

U ′
j (tk) Un (tk) − Uj (tk) U ′

n (tk)

U2
n (tk)

= 2
n∑

i=1

1 − s2
i

(1 + n) (si − t)3 Uj (si) . (B.8)

Further, employing the well known identities about the
derivatives of Chebyshev polynomials

T ′
n+1 (t) = (n + 1) Un (t) , n ≥ 0, (B.9)

U ′
n (t) =

(
1 − t2

)−1 [− (n + 1) Tn+1 (t) + tUn (t)
]
,

n ≥ 0, (B.10)

we write (B.8), after some lengthy algebra, under the
form

− T ′′
j+1 (tk) + 2 (1 + n) U ′

j (tk) − (1 + n)
tk

1 − t2
k

×Uj (tk) = 2
n∑

i=1

1 − s2
i

(1 + n) (si − tk)
3 Uj (si).

(B.11)

Using (B.2), multiplying (B.9) by π
2 Bj and summing

over j from 0 to p, we then get

S (tk) ∼= −π (1 + n) f ′ (tk) + π

2
(1 + n)

tk

1 − t2
k

f (tk)

+π

n∑
i=1

1 − s2
i

(1 + n) (si − tk)
3 f (si). (B.12)

One further step is needed now that would lead to the
evaluation of the right hand side of (B.12) only at n

points si : Un (si) = 0. This can be done with the aid of
the Lagrange interpolation formula, which will be exact
within the class of polynomials chosen to represent
f (t)

f (t) =
n∑

i=1

Un (t)

U ′
n (si) (t − si)

f (si). (B.13)

Differentiating (B.13) with respect to t and then sub-
stituting t with t = tk : Tn+1 (t) = 0, we get

f ′ (tk) =
n∑

i=1

Un (tk)

[
tk

1 − t2
k

− 1

(tk − si)

]

× f (si)

U ′
n (si) (tk − si)

. (B.14)

In light of the above analysis, (B.12) can be written as

S (tk) ∼= π

n∑
i=1

{
−Un (tk)

[
1

(si − tk)
+ tk

2
(
1 − t2

k

)
]

× 1

(si − tk) Tn+1 (si)

+ 1

(1 + n) (si − tk)
3

}
f (si)

(
1 − s2

i

)
,

(B.15)

where

tk : Tn+1 (tk) = 0, tk = cos

(
(2k − 1) π

2 (1 + n)

)
,

k = 1, . . . , n + 1,
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Fig. B1 Solution of the hypersingular integral equation (B.1) using the proposed quadrature and comparison with the semi-analytical
method of Chan et al. (2003)

si : Un (si) = 0, si = cos

(
iπ

1 + n

)
, i = 1, . . . , n.

Finally, taking into account that

Un(tk)=(−1)k+1
/(

1 − t2
k

)1/2
, Tn+1 (si) = (−1)i ,

(B.16)

we write the resulting formula under the form

=
∫ 1

−1
f (s)

(
1 − s2

)1/2 ds

(s − t)3
∼=

π

n∑
i=1

{
(−1)i+k

[
1

(si − tk)
+ tk

2
(
1 − t2

k

)
]

× 1

(si − tk)
(
1 − t2

k

)1/2 + 1

(1 + n) (si − tk)
3

}

× f (si)
(

1 − s2
i

)
. (B.17)

It is noteworthy, that formula (B.17) also holds in
precisely the same form for the more general case when
the integral kernel is split up into a hypersingular part
of order a = 3 and a remainder

K (s, t) = 1

(s − t)3 + k (s, t), (B.18)

where the remainder may consist of Cauchy type and
regular kernels. In that case, (B.17) takes the form

=
∫ 1

−1
K (s, t) f (s)

(
1 − s2

)1/2
ds

∼= π

n∑
i=1

{
(−1)i+k

[
1

(si − tk)
+ tk

2
(
1 − t2

k

)
]

× 1

(si−tk)
(
1 − t2

k

)1/2 +K (si, tk)

(1 + n)

}
f (si)

(
1−s2

i

)
.

(B.19)

To check the validity of the proposed quadrature, we
solve the hypersingular integral equation in (B.1) for
two cases, i.e. for the loading function S (t) being defi-
ned as: (i) S (t) = et , and (ii) S (t) = sin t2. For single-
valuedness, the following auxiliary condition should
also be taken into account∫ 1

−1
f (s)

(
1 − s2

)1/2
ds = 0. (B.20)

Then, (B.17) and (B.20) form a system of n + 2 equa-
tions in n unknowns which is solved in the least-squares
sense. It is shown (see Fig. B1) that our results are in
excellent agreement with the ones obtained by using
the semi-analytical method of Chan et al. (2003).

Appendix C: Evaluation of the strain-energy
density at crack tips and the J-integral

Our aim here is to show the orders of singularities of
the stress and couple-stress fields obtained in the main
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body of the paper lead to an integrable strain-energy
density in the vicinity of crack tips and also lead to a
bounded value of the J -integral. The procedure follo-
wed is analogous in many respects with the one adopted
in the work by Georgiadis (2003).

The strain-energy density function in (20) reads, in
terms of stresses

W = 1

2µ

[
τij τij − ν

1 + ν
τiiτjj + 1

4
2
(
1 − β2

)
(
mijmij − βmijmji

) ]
, (C1)

where β is the ratio of the couple-stress moduli defined
as β = η′/η.

Further, the path-independent J -integral within the
couple-stress theory is given by (Atkinson and Lep-
pington 1974; Lubarda and Markenskoff 2000)

J =
∫

�

[
Wnx − Pq

∂uq

∂x
− Rq

∂ωq

∂x

]
d�

=
∫

�

(
Wdy −

[
Pq

∂uq

∂x
+ Rq

∂ωq

∂x

]
d�

)
, (C2)

where a Cartesian rectangular coordinate system is atta-
ched to the RHS crack tip with the distance x measured
now from the tip, � is a piece-wise smooth simple two-
dimensional contour surrounding the crack-tip, W is
the strain-energy density, uq is the displacement, ωq

is the rotation, Pq is the force-traction defined in (18),
and Rq is the couple-traction defined in (19).

For the evaluation of the J -integral, we consider the
rectangular-shaped contour � in Fig. C1 with vanishing
“height” along the y- direction and with ε → +0. This
type of contour permits using solely the asymptotic
near-tip stress and displacement fields. It is noted that
upon this choice of contour, the integral

∫
�

Wdy in
(C2) becomes zero if we allow the ‘height’ of the rec-
tangle to vanish. In this way, the expression for the
J -integral becomes

J = lim
ε→+0

{
2

∫ ε

−ε

(
Pq

∂uq

∂x
+ Rq

∂ωq

∂x

)
dx

}
. (C3)

y

x0

Fig. C1 Rectangular-shaped contour surrounding the cracktip

The cases of mode II and mode III cracks are exa-
mined in what follows.

Mode II
In the case of plane-strain, the strain-energy density

reads

W = 1

4µ

[
(1 − ν)

(
τ 2
xx + τ 2

yy

)
+ 2τ 2

xy − 2ντxxτyy

]

+ 1

8µ
2

(
m2

xz + m2
yz

)
. (C4)

As shown before, the couple-stresses
(
mxz,myz

)
are

bounded (non-singular) in the crack-tip vicinity in the
mode II case, whereas both the asymmetric and symme-
tric stresses exhibit a square root singularity (see also
Huang et al. 1997). Now, the term in square brackets in
(C4) is the same as in classical elasticity and behaves in
exactly the same way, while the second term (the one
involving couple-stresses) is bounded in the crack-tip
vicinity. Therefore, by following the standard proce-
dure to check upon the integrability of the strain-energy
density around a singularity (see e.g. Barber 1992), we
conclude that the strain-energy density is integrable
indeed in the crack-tip vicinity.

Further, taking into account that in the mode II case
both the normal stress σyy and the couple-stress myz

are zero along the crack line
(
y = 0±)

and that the
crack-faces are defined by n = (0,±1), the J -integral
in (C3) finally takes the form

J = lim
ε→+0

{
2

∫ ε

−ε

(
σyx (x, y = 0) · ∂ux (x, y = 0)

∂x

)

× dx

}
. (C5)

Now, in view of the asymptotic behavior of the fields
entering (C5), we obtain

J = lim
ε→+0

{
A2

II

µ

∫ ε

−ε

(x+)−1/2 (x−)−1/2 dx

}

= πA2
II

2µ
, (C6)

where the product of distributions inside the integral
was obtained by the use of Fisher’s theorem (see e.g.
Georgiadis 2003), i.e. the operational relation (x−)λ

(x+)−1−λ = −πδ (x) [2 sin (πλ)]−1 with λ �= −1,

−2,−3, ... and δ (x) being the Dirac delta distribu-
tion. Finally, we note that the amplitude factor AII

is connected with the asymptotic results of Huang et
al. (1997), in the mode II case, through the relation
AII = 21/2 [(3 − 2ν) (1 − ν)]1/2 BII .
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Mode III
In this case, the strain-energy density is given by

W = 1

2µ

(
τ 2
xz + τ 2

yz

)
+ 1

8µ
2
(
1 − β2

)
[

(1 − β)

×
(
m2

xx+m2
yy

)
+

(
m2

xy+m2
yx

)
− 2βmxymyx

]
.

(C7)

Based on the results of our analysis for the mode III
case, we notice that the couple-stresses behave as ∼
r−1/2 around the crack tip, while the symmetric stresses
behave as ∼ r1/2. Thus, by invoking again the standard
procedure involving the evaluation of a volume inte-
gral around the singularity (see e.g. Barber 1992), we
conclude that the strain-energy density in (C7) is inte-
grable in the crack-tip vicinity and the strain energy
itself is bounded.

Next, taking into account that the couple-stress myx

is identically zero along the crack line in the mode III
problem, the J -integral takes the following form

J = lim
ε→+0

{
2

∫ ε

−ε

(
tyz (x, y = 0)

·∂w (x, y = 0)

∂x

)
dx

}
, (C8)

where tyz = σyz + (1/2) ∂xmyy is the total shear stress
which, as shown before, exhibits a near-tip behavior as
−(r−3/2). In light of the above, we obtain

J = lim
ε→+0

{
3µA2

III

∫ ε

−ε

− (x+)−3/2 (x−)1/2 dx

}

= 3πµA2
III

2
, (C9)

where AIII is an amplitude factor (constant) dependent
upon both couple-stress moduli and the remote loa-
ding. The above result shows that the J -integral is also
bounded in the mode III case (despite the hypersingular
nature of the near-tip total shear stress). Finally, we note
that in the special case where the second couple-stress
modulus is set equal to zero (i.e. β = 0), AIII above is
connected with the amplitude factor B in the work by
Zhang et al. (1998) through the relation AIII = 2B
.
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