
Published as a conference paper at ICLR 2018

DISTRIBUTED DISTRIBUTIONAL DETERMINISTIC

POLICY GRADIENTS

Gabriel Barth-Maron˚, Matthew W. Hoffman˚, David Budden, Will Dabney,
Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, Timothy Lillicrap
DeepMind
London, UK
{gabrielbm, mwhoffman, budden, wdabney, horgan, dhruvat,
alimuldal, heess, countzero}@google.com

ABSTRACT

This work adopts the very successful distributional perspective on reinforcement
learning and adapts it to the continuous control setting. We combine this within a
distributed framework for off-policy learning in order to develop what we call the
Distributed Distributional Deep Deterministic Policy Gradient algorithm, D4PG.
We also combine this technique with a number of additional, simple improvements
such as the use of N -step returns and prioritized experience replay. Experimen-
tally we examine the contribution of each of these individual components, and
show how they interact, as well as their combined contributions. Our results show
that across a wide variety of simple control tasks, difficult manipulation tasks, and
a set of hard obstacle-based locomotion tasks the D4PG algorithm achieves state
of the art performance.

1 INTRODUCTION

The ability to solve complex control tasks with high-dimensional input and action spaces is a key
milestone in developing real-world artificial intelligence. The use of reinforcement learning to solve
these types of tasks has exploded following the work of the Deep Q Network (DQN) algorithm
(Mnih et al., 2015), capable of human-level performance on many Atari games. Similarly, ground
breaking achievements have been made in classical games such as Go (Silver et al., 2016). However,
these algorithms are restricted to problems with a finite number of discrete actions.

In control tasks, commonly seen in the robotics domain, continuous action spaces are the norm.
For algorithms such as DQN the policy is only implicitly defined in terms of its value function,
with actions selected by maximizing this function. In the continuous control domain this would
require either a costly optimization step or discretization of the action space. While discretization is
perhaps the most straightforward solution, this can prove a particularly poor approximation in high-
dimensional settings or those that require finer grained control. Instead, a more principled approach
is to parameterize the policy explicitly and directly optimize the long term value of following this
policy.

In this work we consider a number of modifications to the Deep Deterministic Policy Gradient
(DDPG) algorithm (Lillicrap et al., 2015). This algorithm has several properties that make it ideal
for the enhancements we consider, which is at its core an off-policy actor-critic method. In particular,
the policy gradient used to update the actor network depends only on a learned critic. This means
that any improvements to the critic learning procedure will directly improve the quality of the actor
updates. In this work we utilize a distributional (Bellemare et al., 2017) version of the critic update
which provides a better, more stable learning signal. Such distributions model the randomness due
to intrinsic factors, among these is the inherent uncertainty imposed by function approximation in
a continuous environment. We will see that using this distributional update directly results in better
gradients and hence improves the performance of the learning algorithm.

Due to the fact that DDPG is capable of learning off-policy it is also possible to modify the way
in which experience is gathered. In this work we utilize this fact to run many actors in parallel,
all feeding into a single replay table. This allows us to seamlessly distribute the task of gathering
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experience, which we implement using the ApeX framework (Horgan et al., 2018). This results in
significant savings in terms of wall-clock time for difficult control tasks. We will also introduce
a number of small improvements to the DDPG algorithm, and in our experiments will show the
individual contributions of each component. Finally, this algorithm, which we call the Distributed
Distributional DDPG algorithm (D4PG), obtains state-of-the-art performance across a wide variety
of control tasks, including hard manipulation and locomotion tasks.

1.1 RELATED WORK

Historically, estimation of the policy gradient has relied on the likelihood ratio trick (see e.g. Glynn,
1990), more commonly known as REINFORCE (Williams, 1992) in the reinforcement learning
community. Modern variants of these so-called “vanilla” policy gradient methods include the work
of (Mnih et al., 2016). Alternatively, one can consider second-order or “natural” variants of this
objective, a set of techniques that include e.g. the Natural Actor-Critic (Peters & Schaal, 2008)
and Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) algorithms. More recently
Proximal Policy Optimization (PPO) (Schulman et al., 2017), which can be seen as an approximation
of TRPO, has proven very effective in large-scale distributed settings. Often, however, algorithms
of this form are restricted to learning on-policy, which can limit both the amount of data-reuse as
well as restrict the types of policies that are used for exploration.

The Deterministic Policy Gradient (DPG) algorithm (Silver et al., 2014) upon which this work is
based starts from a different set of ideas, namely the policy gradient theorem of (Sutton et al.,
2000). The deterministic policy gradient theorem builds upon this earlier approach, but replaces
the stochastic policy with one that includes no randomness. This approach is particularly important
because it had previously been believed that the deterministic policy gradient did not exist in a
model-free setting. The form of this gradient is also interesting in that it does not require one to
integrate over the action space, and hence may require less samples to learn. DPG was later built
upon by Lillicrap et al. (2015) who extended this algorithm and made use of a deep neural network
as the function approximator, primarily as a mechanism for extending these results to work with
vision-based inputs. Further, this entire endeavor lends itself very readily to an off-policy actor-
critic architecture such that the actor’s gradients depend only on derivatives through the learned
critic. This means that by improving estimation of the critic one is directly able to improve the
actor gradients. Most interestingly, there have also been recent attempts to distribute updates for the
DDPG algorithm, (e.g. Popov et al., 2017) and more generally in this work we build on work of
(Horgan et al., 2018) for implementing distributed actors.

Recently, Bellemare et al. (2017) showed that the distribution over returns, whose expectation is
the value function, obeys a distributional Bellman equation. Although the idea of estimating a
distribution over returns has been revisited before (Sobel, 1982; Morimura et al., 2010), Bellemare
et al. demonstrated that this estimation alone was enough to achieve state-of-the-art results on the
Atari 2600 benchmarks. Crucially, this technique achieves these gains by directly improving updates
for the critic.

2 BACKGROUND

In this work we consider a standard reinforcement learning setting wherein an agent interacts with an
environment in discrete time. At each timestep t the agent makes observations xt P X , takes actions
at P A, and receives rewards rpxt,atq P R. Although we will in general make no assumptions
about the inputs X , we will assume that the environments considered in this work have real-valued

actions A “ R
d.

In this standard setup, the agent’s behavior is controlled by a policy π : X Ñ A which maps
each observation to an action. The state-action value function, which describes the expected return
conditioned on first taking action a P A from state x P X and subsequently acting according to π,
is defined as

Qπpx,aq “ E

”
8
ÿ

t“0

γtrpxt,atq
ı

where x0 “ x, a0 “ a,

xt „ pp¨|xt´1,at´1q,
at “ πpxtq,

(1)

and is commonly used to evaluate the quality of a policy. While it is possible to derive an
updated policy directly from Qπ , such an approach typically requires maximizing this function
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with respect to a and is made complicated by the continuous action space. Instead we will con-
sider a parameterized policy πθ and maximize the expected value of this policy by optimizing
Jpθq “ ErQπθ

px, πθpxqqs. By making use of the deterministic policy gradient theorem (Silver
et al., 2014) one can write the gradient of this objective as

∇θJpθq « Eρ

”

∇θπθpxq∇aQπθ
px,aq

ˇ

ˇ

a“πθpxq

ı

, (2)

where ρ is the state-visitation distribution associated with some behavior policy. Note that by letting
the behavior policy differ from π we are able to empirically evaluate this gradient using data gathered
off-policy.

While the exact gradient given by (2) assumes access to the true value function of the current policy,
we can instead approximate this quantity with a parameterized critic Qwpx,aq. By introducing the
Bellman operator

pTπQqpx,aq “ rpx,aq ` γE
“

Qpx1, πpx1qq
ˇ

ˇ

x,a
‰

, (3)

whose expectation is taken with respect to the next state x1, we can minimize the temporal difference
(TD) error, i.e. the difference between the value function before and after applying the Bellman
update. Typically the TD error will be evaluated under separate target policy and value networks,
i.e. networks with separate parameters pθ1, w1q, in order to stabilize learning. By taking the two-
norm of this error we can write the resulting loss as

Lpwq “ Eρ

”

pQwpx,aq ´ pTπ
θ1Qw1 qpx,aqq2

ı

. (4)

In practice we will periodically replace the target networks with copies of the current network
weights. Finally, by training a neural network policy using the deterministic policy gradient in
(2) and training a deep neural to minimize the TD error in (4) we obtain the Deep Deterministic
Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016). Here a sample-based approximation to
these gradients is employed by using data gathered in some replay table.

3 DISTRIBUTED DISTRIBUTIONAL DDPG

The approach taken in this work starts from the DDPG algorithm and includes a number of enhance-
ments. These extensions, which we will detail in this section, include a distributional critic update,
the use of distributed parallel actors, N -step returns, and prioritization of the experience replay.

First, and perhaps most crucially, we consider the inclusion of a distributional critic as introduced in
Bellemare et al. (2017). In order to introduce the distributional update we first revisit (1) in terms of
the return as a random variable Zπ , such that Qπpx,aq “ EZπpx,aq. The distributional Bellman
operator can be defined as

pTπ Zqpx,aq “ rpx,aq ` γE
“

Zpx1, πpx1qq
ˇ

ˇ

x,a
‰

, (5)

where equality is with respect to the probability law of the random variables; note that this expecta-
tion is taken with respect to distribution of Z as well as the transition dynamics.

While the definition of this operator looks very similar to the canonical Bellman operator defined in
(3), it differs in the types of functions it acts on. The distributional variant takes functions which map
from state-action pairs to distributions, and returns a function of the same form. In order to use this
function within the context of the actor-critic architecture introduced above, we must parameterize
this distribution and define a loss similar to that of Equation 4. We will write the loss as

Lpwq “ Eρ

”

dpTπ
θ1Zw1 px,aq, Zwpx,aqq

ı

(6)

for some metric d that measures the distance between two distributions. Two components that can
have a significant impact on the performance of this algorithm are the specific parameterization
used for Zw and the metric d used to measure the distributional TD error. In both cases we will give
further details in Appendix A; in the experiments that follow we will use the Categorical distribution
detailed in that section.

We can complete this distributional policy gradient algorithm by including the action-value distri-
bution inside the actor update from Equation 2. This is done by taking the expectation with respect
to the action-value distribution, i.e.

∇θJpθq « Eρ

”

∇θπθpxq∇aQwpx,aq
ˇ

ˇ

a“πθpxq

ı

,

“ Eρ

”

∇θπθpxqEr∇aZwpx,aqs
ˇ

ˇ

a“πθpxq

ı

. (7)
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Algorithm 1 D4PG

Input: batch size M , trajectory length N , number of actors K, replay size R, exploration constant
ǫ, initial learning rates α0 and β0

1: Initialize network weights pθ, wq at random
2: Initialize target weights pθ1, w1q Ð pθ, wq
3: Launch K actors and replicate network weights pθ, wq to each actor
4: for t “ 1, . . . , T do
5: Sample M transitions pxi:i`N ,ai:i`N´1, ri:i`N´1q of length N from replay with priority pi

6: Construct the target distributions Yi “ řN´1

n“0 γ
nri`n ` γNZw1 pxi`N , πθ1 pxi`N qq

7: Compute the actor and critic updates

δw “ 1

M

ÿ

i

∇wpRpiq´1dpYi, Zwpxi,aiqq

δθ “ 1
M

ÿ

i

∇θπθpxiq Er∇aZwpxi,aqs
ˇ

ˇ

a“πθpxiq

8: Update network parameters θ Ð θ ` αt δθ, w Ð w ` βt δw
9: If t “ 0 mod ttarget, update the target networks pθ1, w1q Ð pθ, wq

10: If t “ 0 mod tactors, replicate network weights to the actors
11: end for
12: return policy parameters θ

Actor

1: repeat
2: Sample action a “ πθpxq ` ǫN p0, 1q
3: Execute action a, observe reward r and state x

1

4: Store px,a, r,x1q in replay
5: until learner finishes

As before, this update can be empirically evaluated by replacing the outer expectation with a sample-
based approximation.

Next, we consider a modification to the DDPG update which utilizesN -step returns when estimating
the TD error. This can be seen as replacing the Bellman operator with an N -step variant

pT N
π Qqpx0,a0q “ rpx0,a0q ` E

“

N´1
ÿ

n“1

γnrpxn,anq ` γNQpxN , πpxN qq
ˇ

ˇ

x0,a0
‰

(8)

where the expectation is with respect to the N -step transition dynamics. Although not used by Lilli-
crap et al. (2016), N -step returns are widely used in the context of many policy gradient algorithms
(e.g. Mnih et al., 2016) as well as Q-learning variants (Hessel et al., 2017). This modification can be
applied analogously to the distributional Bellman operator in order to make use of it when updating
the distributional critic.

Finally, we also modify the standard training procedure in order to distribute the process of gathering
experience. Note from Equations (2,4) that the actor and critic updates rely entirely on sampling
from some state-visitation distribution ρ. We can parallelize this process by using K independent
actors, each writing to the same replay table. A learner process can then sample from some replay
table of size R and perform the necessary network updates using this data. Additionally sampling
can be implemented using non-uniform priorities pi as in Schaul et al. (2016). Note that this requires
the use of importance sampling, implemented by weighting the critic update by a factor of 1{Rpi.
We implement this procedure using the ApeX framework (Horgan et al., 2018) and refer the reader
there for more details.

Algorithm pseudocode for the D4PG algorithm which includes all the above-mentioned modifica-
tions can be found in Algorithm 1. Here the actor and critic parameters are updated using stochastic
gradient descent with learning rates, αt and βt respectively, which are adjusted online using ADAM
(Kingma & Ba, 2015). While this pseudocode focuses on the learning process, also shown is pseu-
docode for actor processes which in parallel fill the replay table with data.
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Figure 1: Architectural variants used for each domain. The left-most set illustrates the actor network
and critic torso used for the standard control and manipulation domains. The full critic architecture
is completed by feeding the output of the critic torso into a relevant distribution, e.g. the categorical
distribution, as defined in Section A. The right half of the figure similarly illustrates the architecture
used by the parkour domains.

4 RESULTS

In this section we describe the performance of the D4PG algorithm across a variety of continu-
ous control tasks. To do so, in each environment we run our learning procedure and periodically
snapshot the policy in order to test it without exploration noise. We will primarily be interested
in the performance as a function of wall clock time, however we will also examine the data effi-
ciency. Most interestingly, from a scientific perspective, we also perform a number of ablations
which individually remove components of the D4PG algorithm in order to determine their specific
contributions.

First, we experiment with and without distributional updates. In this setting we focus on use of a
categorical distribution as we found in preliminary experiments that the use of a mixture of Gaus-
sians performed worse and was less stable with respect to hyperparameter values across different
tasks; a selection of these runs can be found in Appendix C. Across all tasks—except for one which
we will introduce later—we use 51 atoms for the categorical distribution. In what follows we will
refer to non-distributional variants of this algorithm as Distributed DDPG (D3PG).

Next, we consider prioritized and non-prioritized versions of these algorithm variants. For the non-
prioritized variants, transitions are sampled from replay uniformly. For prioritized variants we use
the absolute TD-error to sample from replay in the case of D3PG, and for D4PG we use the absolute
distributional TD-error as described in Section A. We also vary the trajectory length N P t1, 5u.

In all experiments we use a replay table of size R “ 1 ˆ 106 and only consider behavior policies
which add fixed Gaussian noise ǫN p0, 1q to the current online policy; in all experiments we use
a value of ǫ “ 0.3. We experimented with correlated noise drawn from an Ornstein-Uhlenbeck
process, as suggested by (Lillicrap et al., 2016), however we found this was unnecessary and did
not add to performance. For all algorithms we initialize the learning rates for both actor and critic
updates to the same value. In the next section we will present a suite of simple control problems for
which this value corresponds to α0 “ β0 “ 1ˆ10´4; for the following, harder problems we set this
to a smaller value of α0 “ β0 “ 5 ˆ 10´5. Similarly for the control suite we utilize a batch size of
M “ 256 and for all subsequent problems we will increase this to M “ 512.

4.1 STANDARD CONTROL SUITE

We first consider evaluating performance on a number of simple, physical control tasks by utilizing
a suite of benchmark tasks (Tassa et al., 2018) developed in the MuJoCo physics simulator (Todorov
et al., 2012). Each task is run for exactly 1000 steps and provides either an immediate dense reward
rt P r0, 1s or sparse reward rt P t0, 1u depending on the particular task. For each domain, the inputs
presented to the agent consist of reasonably low-dimensional observations, many consisting of phys-
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Figure 2: Experimental results across domains in the control suite.

ical state, joint angles, etc. These observations range between 6 and 60 dimensions, however note
that the difficulty of the task is not immediately associated with its dimensionality. For example the
acrobot is one of the lowest dimensional tasks in this suite which, due to its level of controllability,
can prove much more difficult to learn than other, higher dimensional tasks. For an illustration of
these domains see Figure 9; see Appendix D for more details.

For algorithms in these experiments we consider actor and critic architectures of the form given
in Figure 1 and for each experiment we use K “ 32 actors. Figure 2 shows the performance of
D4PG and its various ablations across the entire suite of control tasks. This set of plots is quite busy,
however it serves as a broad set of tasks with which we can obtain a general idea of the algorithms
performance. Later experiments on harder domains look more closely at the difference between
algorithms. Here we also compare against the canonical (non-distributed) DDPG algorithm as a
baseline, shown as a dotted black line. This removes all the enhancements proposed in this paper,
and we can see that except on the simplest domain, Cartpole (Swingup), it performs worse than all
other methods. This performance disparity worsens as we increase the difficulty of tasks, and hence
for further experiments we will drop this line from the plot.

Next, across all tasks we see that the best performance is obtained by the full D4PG algorithm
(shown in purple and bold). Here we see that the longer unroll length of N “ 5 is uniformly better
(we show these as solid lines), and in particular we sometimes see for both D3PG and D4PG that
an unroll length of N “ 1 (shown as dashed lines) can occasionally result in instability. This is
especially apparent in the Cheetah (Walk) and Cartpole (Swingup Sparse) tasks.

The next biggest gain is arguably due to the inclusion of the distributional critic update, where it
is particularly helpful on the hardest tasks e.g. Humanoid (Run) and Acrobot. The manipulator is
also quite difficult among this suite of tasks, and here we see that the inclusion of the distributional
update does not help as much as in other tasks, although note that here the D3PG and D4PG variants
obtain approximately the same performance. As far as the use of prioritization is concerned, it does
not appear to contribute significantly to the performance of D4PG. This is not the case for D3PG,
however, which on many tasks is helped significantly by the inclusion of prioritization.
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Figure 3: Experimental results for tasks in the manipulation domain.

4.2 MANIPULATION

Next, we consider a set of tasks designed to highlight the ability of the D4PG agent to learn dexterous
manipulation. Tasks of this form can prove difficult for many reasons, most notably the higher
dimensionality of the control task, intermittent contact dynamics, and potential under-actuation of
the manipulator.

Here we use a simulated hand model implemented within MuJoCo, consisting of 13 actuators which
control 22 degrees of freedom. For these experiments the wrist site is attached to a fixed location in
space, about which it is allowed to rotate axially. In particular this allows the hand to pick up objects,
rotate into a palm-up position, and manipulate them. We first consider a task in which a cylinder is
dropped onto the hand from a random height, and the goal of the task is to catch the falling cylinder.
The next task requires the agent to pick up an object from the tabletop and then maneuver it to a
target position and orientation. The final task is one wherein a broad cylinder must be rotated in-
hand in order to match a target orientation. See Appendix E for further details regarding both the
model and the tasks. For these tasks we use the same network architectures as in the previous section
as well as K “ 64 actors.

In Figure 3 we again compare the D4PG algorithm against ablations of its constituent components.
Here we split the algorithms between N “ 1 in the top row and N “ 5 in the bottom row, and in
particular we can see that across all algorithms N “ 5 is uniformly better. For all tasks, the full
D4PG algorithm performs either at the same level or better than other ablations; this is particularly
apparent in the N “ 5 case. Overall the use of priorization never seems to harm D4PG, however
it does appear to be of limited additional value. Interestingly this is not necessarily the case with
the D3PG variant (i.e. without distributional updates). Here we can see that prioritization sometimes
harms the performance of D3PG, and this is very readily seen in theN “ 1 case where the algorithm
can either become unstable, or in the case of the Pickup and Orient task it completely fails to learn.

4.3 PARKOUR

Finally, we consider the parkour domain introduced by (Heess et al., 2017). In this setting the agent
controls a simplified robotic walker which is rewarded for forward movement, but is impeded by
a number of randomly sampled obstacles; see Figure 4 for a visualization and refer to the earlier
work for further details. The first of our experiments considers a two-dimensional walker, i.e. a
domain in which the walker is allowed to move horizontally and vertically, but is constrained to a
fixed depth position. In this domain the obstacles presented to the agent include gaps in the floor
surface, barriers it must jump over, and platforms that it can either run over or underneath. The
agent is presented with proprioceptive observations xproprio P R

19 corresponding to the angles of its

limbs and other functions of these quantities. It is also given access to observations xterrain P R
101
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Figure 4: Example frames taken from trained agents running in the two parkour domains.

which includes features such as a depth map of the upcoming terrain, etc. In order to accommodate
these inputs we utilize a network architecture as specified in Figure 1. In particular we make use of
a stack of feed-forward layers which process the terrain information to reduce it to a smaller number
of hidden units before concatenating with the proporioceptive information for further processing.
The actions in this domain take the form of torque controls a P R

6.

In order to examine the performance of the D4PG algorithm in this setting we consider the ablations
of the previous sections and we have further introduced a PPO baseline as utilized in the earlier
paper of (Heess et al., 2017). For all algorithms, including PPO, we use K “ 64 actors. These
results are shown in Figure 5 in the top row. As before we examine the performance separately for
N “ 1 and N “ 5, and again we see that the higher unroll length results in better performance.
Note that we show the PPO baseline on both plots for consistency, but in both plots this is the same
algorithm, with settings proposed in the earlier paper and unrolls of length 50.

Here we again see a clear delineation and clear gains for each of the other algorithm components.
The biggest gain comes from the inclusion of the distributional update, which we can see by com-
paring the non-prioritized D3PG/D4PG variants. We see marginal benefit to using prioritization for
D3PG, but this gain disappears when we consider the distributional update. Finally, we can see
when comparing to the PPO baseline that this algorithm compares favorably to D3PG in the case of
N “ 1, however is outperformed by D4PG; when N “ 5 all algorithms outperform PPO.

Next, in the plots shown in Figure 5 on the bottom row we also consider the performance not just
in terms of training time, but also in terms of the sample complexity. In order to do so we plot
the performance of each algorithm versus the number of actor steps, i.e. the quantity of transitions
collected. This is perhaps more favorable to PPO, as the parallel actors considered in this work
are not necessarily tuned for sample efficiency. Here we see that PPO is able to out-perform the
non-prioritized version of D3PG, and early on in training is favorable compared to the prioritized
version, although this trails off. However, we still see significant performance gains by utilizing
the distributional updates, both in a prioritized and non-prioritized setting. Interestingly we see
that the use of prioritization does not gain much, if any over the non-prioritized D4PG version.
Early in the trajectory for N “ 5, in fact, we see that the non-prioritized D4PG exhibits better
performance, however later these performance curves level out. With respect to wall-clock time
these small differences may be due to small latencies in the scheduling of different runs, as we see
that this difference is less for the plot with respect to actor steps.

Finally we consider a humanoid walker which is able to move in all three dimensions. The obstacles
in this domain consist of gaps in the floor, barriers that must be jumped over, and walls with gaps
that allow the agent to run through. For this experiment we utilize the same network architecture as
in the previous experiment, except now the observations are of size xproprio P R

79 and xterrain P R
461.

Again actions are torque controls, but in 21 dimensions. In this task we also increased the number of
atoms for the categorical distribution from 51 to 101. This change increases the level of resolution
for the distribution in order to keep the resolution roughly consistent with other tasks. This is a
much higher dimensional problem than the previous parkour task with a significantly more difficult
control task: the walker is more unstable and there are many more ways for the agent to fail than
in the previous experiment. The results for this particular domain are displayed in Figure 6, and
here we concentrate on performance as a function of wall-clock time, restricted to the previously
best performing roll-out length of N “ 5. In this setting we see a clear delineation between first
the PPO results which are the poorest performing, the D3PG results where the prioritized version
has a slight edge, and finally the D4PG results. Interestingly for D4PG we again see as in the two-
dimensional walker case, the use of prioritization seems to have no benefit, with both versions have
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Figure 5: Experimental results for the two-dimensional (walker) parkour domain when compared
first versus wall-clock time (top) and versus actor steps (bottom).
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Figure 6: Experimental results for the three-dimensional (humanoid) parkour domain.

almost identical performance curves; in fact the performance here is perhaps even closer than that
of the previous set of experiments.

5 DISCUSSION

In this work we introduced the D4PG, or Distributed Distributional DDPG, algorithm. Our main
contributions include the inclusion of a distributional updates to the DDPG algorithm, combined
with the use of multiple distributed workers all writing into the same replay table. We also consider
a number of other, smaller changes to the algorithm. All of these simple modifications contribute
to the overall performance of the D4PG algorithm; the biggest performance gain of these simple
changes is arguably the use ofN -step returns. Interestingly we found that the use of priority was less
crucial to the overall D4PG algorithm especially on harder problems. While the use of prioritization
was definitely able to increase the performance of the D3PG algorithm, we found that it can also
lead to unstable updates. This was most apparent in the manipulation tasks.

Finally, as our results can attest, the D4PG algorithm is capable of state-of-the-art performance on a
number of very difficult continuous control problems.
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Figure 7: Output layers corresponding to different distribution parameterizations. From left to right
these include the Categorical, Mixture of Gaussians, and finally the standard scalar value function.

A DISTRIBUTIONS AND LOSSES

In this section we consider two potential parameterized distributions for D4PG. Parameterized dis-
tributions, in this framework, are implemented as a neural network layer mapping the output of the
critic torso (see Figure 1) to the parameters of a given distribution (e.g. mean and variance). In what
follows we will detail the distributions and their corresponding losses.

Categorical Following Bellemare et al. (2017), we first consider the categorical parameterization,
a layer whose parameters are the logits !i of a discrete-valued distribution defined over a fixed set
of atoms zi. This distribution has hyperparameters for the number of atoms ℓ, and the bounds on the

support (Vmin, Vmax). Given these, ∆ “ Vmax´Vmin

ℓ´1
corresponds to the distance between atoms, and

zi “ Vmin ` i∆ gives the location of each atom. We can then define the action-value distribution as

Z “ zi w.p. pi9 expt!iu. (9)

Observe that this distributional layer simply corresponds to a linear layer from the critic torso to the
logits !, followed by a softmax activation (see Figure 7, left).

However, this distribution is not closed under the Bellman operator defined earlier, due to the fact
that adding and scaling these values will no longer lie on the support defined by the atoms. This
support is explicitly defined by the (Vmin, Vmax) hyperparameters. As a result we instead use a
projected version of the distributional Bellman operator (Bellemare et al., 2017); see Appendix B
for more details. Letting p1 be the probabilities of the projected distributional Bellman operator ΦTπ
applied to some target distribution Ztarget, we can write the loss in terms of the cross-entropy

dpΦTπZtarget, Zq “
ℓ´1
ÿ

i“0

p1
i

expt!iu
ř

j expt!ju . (10)

Mixture of Gaussians We can also consider parameterizing the action-value distribution using a
mixture of Gaussians; here the random variable Z has density given by

ppzq9
ℓ´1
ÿ

i“0

!i N pz |µi, σ
2
i q. (11)

Thus, the distribution layer maps, through a linear layer, from the critic torso to the mixture weight
!i, mean µi, and variance σ2

i for each mixture component 0 ď i ď ℓ ´ 1 (see Figure 7, center).
We can then specify a loss corresponding to the cross-entropy portion of the KL divergence between
two distributions. Given a sample transition px,a, r,x1q we can take samples from the target density
zj „ ptarget and approximate the cross-entropy term using

dpTπZtarget, Zq «
ÿ

j

log ppr ` γzjq. (12)

B CATEGORICAL PROJECTION OPERATOR

The categorical parameterized distribution has finite support. Thus, the result of applying the distri-
butional Bellman equation will generally not coincide with this support. Therefore, some projection
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Figure 8: Results for using a mixture of Gaussians distribution on select control suite tasks. Shown
are two learning rates as denoted in the legends as well as Categorical.

step is required before minimizing the cross-entropy. The categorical projection of Bellemare et al.

(2017) is given by pΦpqi “ řℓ´1

j“0 hzipzjqpj , @i, where h is a piecewise linear ‘hat’ function,

hzipzq “

$

’

’

&

’

’

%

1 z ď Vmin and i “ 0,
z´zi´1

zi´zi´1

for zi´1 ď z ď zi,
zi`1´z

zi`1´zi
for zi ď z ď zi`1,

1 z ě Vmax and i “ ℓ´ 1.

(13)

C MIXTURES OF GAUSSIANS CONTROL SUITE RESULTS

In Figure 8 we display results of running D4PG on a selection of control suite tasks using a mixture
of Gaussians output distribution for two choices of learning rates. Here the distributional TD loss is
minimized using the sample-based KL introduced earlier. While this is definitely a technique that
is worth further exploration, we found in initial experiments that this choice of distribution under-
performed the Categorical distribution by a fair margin. This lends further credence to the choice of
distribution made in (Bellemare et al., 2017).

D CONTROL SUITE DETAILS

In this section we provide further details for the control suite domains. In particular see Figure 9 for
images of the control suite tasks. The physics state S , action A, and observation X dimensionalities
for each task are provided in Table 1.

E MANIPULATION DETAILS

For the dexterous manipulation tasks we used a simulated model of the Johns Hopkins Modular
Prosthetic Limb hand (Johannes et al., 2011) implemented in MuJoCo (Kumar & Todorov, 2015).
This anthropomorphic hand has a total of 22 degrees of freedom (19 in the fingers, 3 in the wrist),
which are driven by a set of 13 position actuators (PD-controllers). The underactuation of the hand
is due to coupling between some of the finger joints. For these experiments the wrist was positioned
in a fixed location above a table, such that rotation and flexion about the wrist joints allowed the
hand to pick up objects from the table, rotate into a palm-up position, and then manipulate them.

We focused on a set of three tasks where the agent must learn to manipulate a cylindrical object
(Figure 10). In each of these tasks, the observations contain the positions and velocities of all
of the joints in the hand, the current position targets for the actuators in the hand, the position
and quaternion of the object being manipulated, and its translational and rotational velocities. The
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Figure 9: Control Suite domains used for benchmarking. Top: acrobot, cartpole, cheetah, finger,
fish, hopper. Bottom: humanoid, manipulator, pendulum, reacher, swimmer6, swimmer15, walker.

Domain Task |A| |S| |X |

acrobot
swingup

1 4 6
swingup sparse

cartpole
swingup

1 4 5
swingup sparse

cheetah walk 6 18 17

finger
turn easy

2 6 12
turn hard

fish
upright

5 27 24
swim

hopper stand 4 14 15

humanoid
stand

21 55 67walk
run

manipulator bring ball 2 22 37

swimmer
swimmer6 5 16 25
swimmer15 14 34 61

Table 1: Domains and tasks in the Control Suite.

Task

Size Catch Pick-up-and-orient Rotate-in-hand

Hand
joint positions 22 � � �

joint velocities 22 � � �

actuator targets 13 � � �

Object
position 3 � � �

quaternion 4 � � �

velocity 6 � � �

Target
position 3 – � –
quaternion 4 – � –
sinz, cosz 2 – – �

Total 70 77 72

Table 2: Observation components given in each of the manipulation tasks, and their corresponding
dimensionalities. Here sinz, cosz refers to the sine and cosine of the target frame’s angle of rotation
about the z-axis.

14
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Figure 10: Sequences of frames illustrating the dexterous manipulation tasks we attempt to solve
using D4PG. Top to bottom: ‘catch’, ‘pick-up-and-orient’, ‘rotate-in-hand’. The translucent objects
shown in ‘pick-up-and-orient’ and ‘rotate-in-hand’ represent the goal states.

observations given in each task are summarized in Table 2. The agent’s actions are increments
applied to the position targets for the actuators.

In the ‘catch’ task the agent must learn to catch a falling object before it strikes the table below. The
position, height, and orientation of the object are randomly initialized at the start of each episode.
The reward is given by

r “ ψppalmheight ´ objheight; c,mq (14)

where ψpǫ; c,mq is a soft indicator function similar to one described by Hafner & Riedmiller (2011)

ψpǫ; c,mq “
"

1 ´ tanhp w
m
ǫq2 if ǫ ą c,

1 otherwise.
(15)

Here w “ tanh´1p
?
0.95q, and the tolerance c and margin m parameters are 0 cm and 5 cm respec-

tively. Contact between the object and the table causes the current episode to terminate immediately
with no reward, otherwise it will continue until a 500 step limit is reached.

In the ‘pick-up-and-orient’ task, the agent must pick up a cylindrical object from the table and
maneuver it into a target position and orientation. Both the initial position and orientation of the
object, and the position and orientation of the target are randomized between episodes. The reward
function consists of two additive components that depend on the distance from the object to the
target position, and on the angle between the z-axes of the object and target body frames

r “ 0.5ψp||objpos ´ objtargetpos ||2; cpos,mposqp1 ` ψpcos´1pobjzaxis ¨ objtargetzaxis q; cori,moriqq (16)

where cpos=1 cm, mpos=5 cm, cori=5
˝, mori=10

˝. Note that the distance-dependent component of
the reward multiplicatively gates the orientation component. This helps to encourage the agent to
pick up the object before attempting to orient it to match the target. Each episode has a fixed duration
of 500 steps.

Finally, in the ‘rotate-in-hand’ task the agent begins with a broad cylinder in its palm, and must
rotate it axially in order to match a moving target. This requires dynamically forming and breaking
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contacts with the object being manipulated. The target angle is initialized uniformly, and then in-
cremented on each time step using temporally correlated noise drawn from an Ornstein-Uhlenbeck
process (σ=0.025˝, θ=0.01; Uhlenbeck & Ornstein 1930). The reward consists of two multiplicative
components

r “ ψpcos´1pobjyaxis||xy, obj
target

yaxis||xyqq; crot,mrotqψpcos´1pobjzaxis, objtargetzaxis q; cori,moriq (17)

where crot=5
˝,mrot=40

˝, cori=45
˝,mori=45

˝, and ||xy denotes projection onto the global xy plane.
The first component provides an incentive to match the axial rotation of the target, and the second
component penalizes the agent for allowing the orientation of the cylinder’s long axis to deviate too
far from that of the target. The maximum episode duration is 1000 steps, with early termination if
the object makes contact with the table.
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